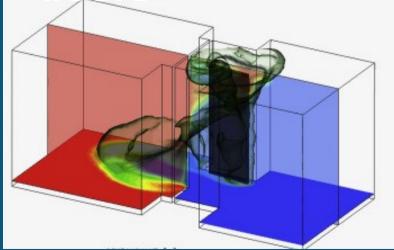


Energy Informational Tool

 $\bullet \bullet \bullet$

Vincent Baker, Josh Fairman, Tommy Livesay, Brooke Sanders, Thuan Tran

BASS CONNECTIONS **Energy Informational** Tool is an online platform that compiles and displays energy usage data from Duke buildings.


Problem

BASS CONNECTIONS

Data Accessibility

Energy waste via doors

Motivations

BASS CONNECTIONS

Energy Informational Tool

Transparency of macro-scale energy usage
 Unified platform

Engineering

Demonstrate micro-scale modular applications

Available Data

BASS CONNECTIONS

- Historic electricity and steam use
 - \bigcirc 10 years, monthly
- Current steam, hot water, and chilled water use
 - 15-minute intervals, updated daily
 - Going back 9 months

Raw Data

Building	Timestamp	Consumption (ft^3)
Gilbert-Addams	9/8/22 4:00	34.2
Gilbert-Addams	9/8/22 4:15	35.8
Gilbert-Addams	9/8/22 4:30	28.04
Gilbert-Addams	9/8/22 4:45	37.03
Gilbert-Addams	9/8/22 5:00	28.3
Gilbert-Addams	9/8/22 5:15	38.32
Gilbert-Addams	9/8/22 5:30	44.84
Gilbert-Addams	9/8/22 5:45	43.98

Our Steam Model

- Purchased historical weather data for Durham, NC
- Merged it with our building steam consumption data
- Used RStudio to create linear regression model identifying predictors of relevance
 - Temperature, UV, and Apparent
 - ____

Regression

Call

 $lm(f + r + v + c = cor_1 + v + pt + n - t + mp + rature + feels_like + uv, data = ga_data)$

Residuals:

Min 1Q Median 3Q Max -629.08 -162.37 -7.12 157.76 673.38

Coefficients:

 Estimate Std. Error t value Pr(>ltl)

 (Intercept) 1395.901
 17.234
 80.997
 < 2e-16</td>

 temperature
 -31.176
 1.671
 -18.660
 < 2e-16</td>

 feels_like
 10.128
 1.443
 7.017
 2.39e-12

 uv
 41.182
 1.316
 31.298
 < 2e-16</td>

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 221.8 on 12356 degrees of freedom (3090 observations deleted due to missingness)
Multiple R-squared: 0.4207, Adjusted R-squared: 0.4206
F-statistic: 2991 on 3 and 12356 DF, p-value: < 2.2e-16

Our Steam Model

BASS CONNECTIONS

- Created web scraping script for weather forecasts
- Predicted steam consumption with historical and weather data
- Use case for information tool platform

Website

BASS CONNECTIONS

<u>Goals:</u>

 Clear and direct displaying of multiple data inputs
 Fidelity and utilization akin to Princeton's Energy Usage Website

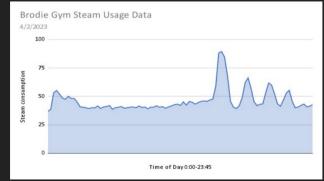
Improvements:

 Improve UI/UX for easier future integration

Website

BASS CONNECTIONS

Energy Information Tool

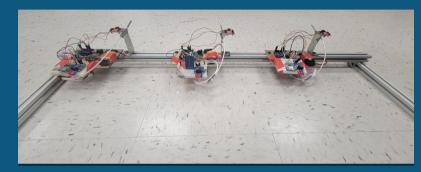

We divided our data and models into building types. Click on one of the buttons to see energy usage data for each building group.

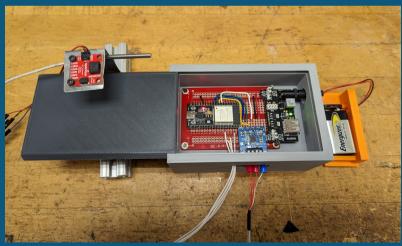
Athletic

Budget & Material

BASS CONNECTIONS

Item	Quantity	Cost per unit (\$US)	Item	Quantity	Cost per unit (\$US)
		10.50	Proto/Breadboard	3	6.75
Platinum RTD Sensor - PT100	6	16.50	1" 80/20 Aluminum	7 ft	2.76
PT100 RTD Temperature Sensor Amplifier - MAX31865	6	14.95 Extrusions			
			9V Battery	3	2.62
FS3000-1015 Air Velocity Sensor Breakout	3	59.95	Barrel Jack	3	3.50
			Wifi Module (ESP8266)	3	7.50
Flexible Qwiic Cable - Breadboard Jumper	3	1.60	80/20 1/4-20 x 0.5" Button Head Socket Cap Screw	25	0.68
Micro SD Card Breakout	3	7.50	with Steel Slide-in T-Nut		
Micro SD Card	3	6.00	80/20 Aluminum 2 Hole	10	4.41
Arduino Uno	3	28.50	Inside Corner Bracket		
				Total	631.82

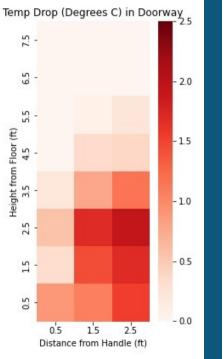

Final Progress - Live Bater BASS

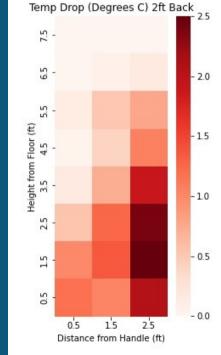

<u>Goals:</u>

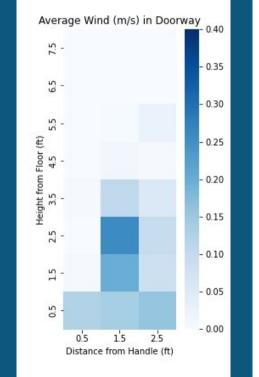
- Understand energy loss

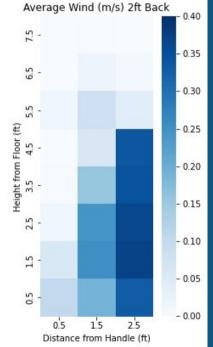
 Numerical model

 Demonstrate future compatibility for the website Improvements:
 - Increase model robustness
 - Better real-time integration with website






Data Collected



BASS CONNECTIONS

Final Progress - Live Data Bass CONNECTIONS

Benefits

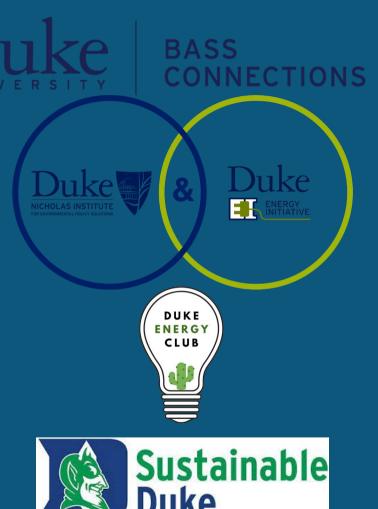
BASS CONNECTIONS

Social

- Student groups can access energy data
- Important for policy-making
- Increases
 awareness of
 steam usage and
 heating patterns in
 student body

Environmental

- Promotes more conscientious energy-use in the student body
- Wasted energy from doors = 7
 Watt hrs for 20
 seconds open


Market

- Helps Duke save money and energy
- Proposed solutions will integrate efficiency with accessibility

Promotion

- In addition to energy/environment- oriented *student groups* to get our tool publicized
- Talked to DSG member → Green Devils to carry on the work potentially
 - Paid student interns
 - Managed by Sustainable Duke
- Future: Contacting energy usage website teams at other campuses to

Results

Informational Tool Platform

- Accessible, presentable website
- Displayed energy use information for different building types at Duke
- Promoted to student body and student groups that work with energy and the environment

BASS CONNECTIONS

Engineering Data Collection

- Constructed a numerical model based on experimental data
- Integrated real-time data with the website tool
- Used collected data to inform campus decisions

Thank You!