SPEEDBUMP PRESENTATION

Grace, Tina, Andrew, Avery, Gabe, Adam

Duke BASS CONNECTIONS

Agenda

Part 2: Results & testing

Part 3: Benefit analysis

Part 4: Basic business plan

Part 1: Introduction & executive summary

Prototype a system that utilizes the basic functions of a speed bump for the purpose of energy capture

Duke Bass Connections

decided this
approach with
decision matrix

final designwith professors'help

Decision matrix

	Cost	Technical Complexity	Power output/capacit y/efficiency	Safety	Environmental impact	Maintenance	Total
Weight	0.2	0.25	0.2	0.15	0.15	0.05	1
Hydraulic	4	2	4	2	3	3	3
Compressed gases: Open loop (air)	4	5	4	3	4	4	4.1
Compressed gases: Closed loop (other gas)	3	2	5	1	4	2	2.95
Piezoelectric	1	1	1	4	4	1	1.9
Combination piezoelectric and hydraulic	2	1	5	3	2	1	2.45
Mechanical (axel and generator)	5	5	3	3	4	4	4.1

Analysis of Design

Justification of:

- Tank
- Pump
- Hinging mechanism

McMaster as main site for supplies

Testing

- Pump was manually compressed 125 times
- Tank pressure was noted
 11 times during pumping
 process
- Relationship between tank pressure and # of compressions was plotted
- To fill tank (max 160 psi), approximately 1500 compressions needed!

Compressions

Duke Bass Connections

DEMO

Results

- Estimated energy stored in our prototype tank (7 gallon, 160 psi): m = 0.0326 kgV/Vo = 14C = mRT = 2810IW = 14000J = approximately 0.04 kWh
- Estimated energy stored in a 500 gallon tank with 2000 psi capacity: W = 1.4e8J = approximately 39 kWh
- Like our prototype, many compressions would be required to fill this tank, but a scaled-up version could power an entire single family home for a day or two

Social benefit analysis

Increased	Increased traffic	Awareness
pedestrian	and	environme
safety	vehicle safety	conservati
Assessed via community surveys of pedestrian satisfaction and collision data	Assessed via traffic safety data and driver satisfaction metrics	Provides opportunity education environmen issues

ss of Iental tion

es ty for n on ental S Individual empowerment for environmental activism

Example of individual action taken by students towards tangible environmental benefit

Environmental benefit analysis

Reduced energy costs for universities - for 100 bumps: 13.13 \$/day

Passive form of clean energy generation = reduced energy generation costs

Reduced energy consumption on college campuses - for 100 bumps: 139.3 kWh/day

Reduced emissions associated with roadside devices - for 100 bumps: 118.4 lbs CO2/day

> Wasted mechanical energy --> pressurized air --> energy production

Less reliance on fossil fuels for energy generation on campus

All calculations assume 2000 PSI, 500 gallon tanks w/ same pump as prototype -100 installed on campus

Each filled in 2 weeks

Target market

Vehicle **Operators on** high-traffic campus roads

Colleges and Universities seeking to increase reliance on clean energy

Cost structure
Revenue streams
Payback period

Overall, existing market landscape and cost-benefit ratio present a *challenging path* to market

<u>Estimating</u> cost on a \$/speed bump basis

- Approx. *full-scale system*
- Based on discounted retail prices & assumptions on manufacturing, maintenance, CapEx
- Contracts, partnerships, economies of scale to further reduce costs

Scaled System - 250-500 gallon tank @ Max 1000-2000 PSI				
Estimated Lifetime Cost (\$ / speed bump)				
Pumps (2 - 8 total)	\$	500		
Tubing (10 ft. total)	\$	50		
Misc. Hardware	\$	50		
Tank (300-500 gallons)	\$	2,000		
Turbine & Generator	\$	1,000		
Manufacturing/Assembly	\$	150		
Labor	\$	150		
Planning & Installation	\$	1,000		
Lifetime maintenance	\$	400		
CapEx (\$ per Unit)	\$	500		
Total	\$	5,800.00		

Revenue & Value-Add

- Electricity output (\$/kWh)
 NC 11.5 cents/kWh
- Safety value
 - University target market
- CO2 abatement & env. benefits
- Long-term energy storage option

Assume WTP of \$.15 / kWh from customers

Estimated Payback Period

Assumptions:

- Lifetime, all-inclusive cost est. \$5800/unit
- Revenue of \$.15/kWh
- 50% "power-to-power" efficiency
 - (kWh electricity) = (1/2) (kWh work)
- System sized to reach max P once/day
 - ~50L pump stroke volume
 - ~1200 compressions (600 cars)

250 gallons @ 2000 PSI = 19 kWh work

	C
р	a
	r

Corresponds to yback period of oughly 11 years

Seek opportunities to reduce costs and increase system capacity

ike BASS CONNECTIONS

> What incentives are the government offering to help us roll out our product?

Government Incentives

- Federal R&D Tax Credit.
- SBIR & STTR Grants through the DOE.
- Chapel Hill Silver LEED Requirement.

• Purchasing Tax Credit (PTC) & Investment Tax Credit (ITC)

Thank you!

Any questions?