

BASS CONNECTIONS

PVT Final Presentation

Woodley, Powell, Ashley, Kevin, Will, Swetha, Katie

Motivation

Capture thermal energy

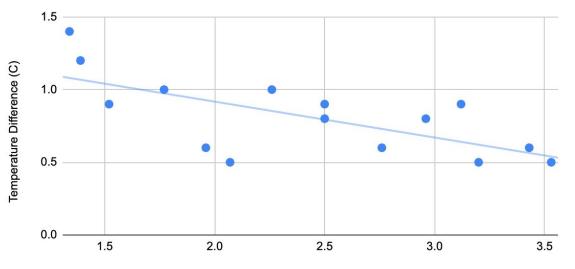
- 1. Test efficacy of Heat Pipes
- 2. Test different Heat Pipe configurations

Past Experiment Takeaways

- Smaller effective length = increase in heat pipe temperature
- More insulation along heat pipe = smaller temperature difference between ends of heat pipe
- Little difference in heat transfer between 0° and 45° orientation
- Smaller mass flow rate = larger temperature increase

Experiment #4: Integrated PVT Model

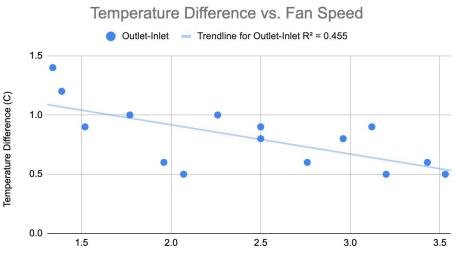
What: Heat solar cell with heat lamps. Measure temperature of heat pipe at both ends


Why: See how effectively the heat pipe operates while integrated with solar cell

Lessons Learned: Heat pipe got to 34 °C. <u>Room for</u> <u>improvement.</u>

Experiment #4: Results

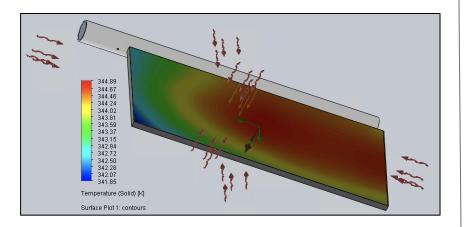
Temperature Difference vs. Fan Speed


Outlet-Inlet — Trendline for Outlet-Inlet R² = 0.455

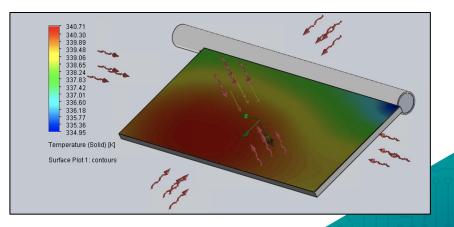
Fan Speed (m/s)

Experiment #4: Conclusions

- Data was consistent with expectation of temperature increase
- Statistically inconclusive given potential error in thermal readings

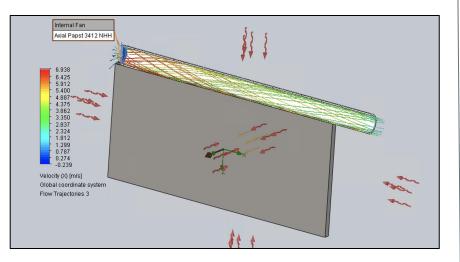


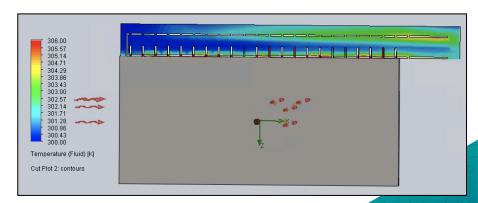
Fan Speed (m/s)


SolidWorks Simulation

Panel with Heat Pipes Extending to PVC

System with Natural Convection


System with Fan Forced Convection


SolidWorks Simulation

Panel with Heat Pipes Extending to PVC

Fan Velocity of 7 m/s

<u>Air Heated 2-3°C</u>

Final Design with Reduced PVC Pipe

Minor improvements with air flow reduction, ~2 degree C

 Continued to suggest temperature increase trend

Bill of Materials

Item	Quantity	Price
500 mm long, 7 mm diameter Round Copper Heat Pipe	6	\$15.11
Fan	1	\$10.00
1.5" diameter, 3 ft long PVC Pipe	1	\$2.00
Foam board insulation	1	\$20.00
Total		\$47.11

NREL Case Study

<u>PV vs. PV-T</u> (NREL Study)

- PV-T can provide up to 10-26% of hot water capacity
- PV-T is 85% more expensive than a PV array
- PV-T has a payback period (in the US) between 19-98 years
- Cell efficiency increased by 15%, when compared to a normal PV array
- Total system costs of \$43,000
- Use Case:

 (\bullet)

- Federal buildings must use solar thermal for 30% of hot water heating in new buildings and major renovations
- High levels of insolation and a hot climate
- High energy costs
- Limited roof space (increases need for combined PV and solar thermal)

Environmental Analysis

Areas to Investigate for Final Report:

- Quantifying energy savings
 - Energy in the form of heat
- Analyzing Supply-chain Considerations & Negative Impact
 - Manufacturing of heat pipes
 - Mining of copper
 - Recyclability of components

Next Steps & Future Work

- Next Steps for Team:
 - Finish report
- Potential Improvements:
 - Multiple panels
 - Increase # of heatpipes
 - Conductive backing
 - Flow restrictor
 - Water as working fluid

Thank you!

Questions?

Heat Pump vs. Water

Heat Pump

- Cheaper installation
 - Hot air
- Can be deployed in smaller modules
- Non-reversible heat pumps only
- Most effective when heat is not needed (e.g. summertime)
- Best for prototyping

<u>Water</u>

- Expensive installation
 - Piping
 - ◎ Sealant
- Can pre-heat water all year round
- Only cost effective in large numbers with central water tank
- High level of research and literature surrounding use