DESIGN AND ANALYSIS OF A STIRLING ENGINE FUELED BY NEGLECTED HEAT

By Chris Orrico, Alejandro Sevilla, Sam Osheroff, Anjali Arora, Kate White, Katie Cobb, Scott Burstein, Edward Lins

> BASS CONNECTIONS

Duke

MOTIVATION

ENERGY WASTE

Every process that has energy input produces energy waste

LOW GRADE HEAT

Makes up a significant portion of wasted energy, is difficult to capture and use

STIRLING ENGINE

Provides a possible engineering solution that can generate electricity from low grade waste heat

PROJECT STAGES

CONFIGURATION SELECTION

Reviewed existing literature to determine optimal stirling engine configuration

COMPUTATIONAL MODEL

Modelled system thermodynamics and kinematics in Matlab to define design parameters

CAD MODEL

Designed engine in Solidworks based off of computational parameters

APPLICATIONS

Determine real world applications where the engine could successfully achieve goal of energy reclamation

MANUFACTURE AND TESTING

Plan to construct and test an engine prototype to verify and evaluate functionality

THERMODYNAMIC MODEL

Stirling Cycle

- Thermal Energy→
 Mechanical Energy
- Types of Stirling Engines
 - Free-piston Stirling engine

Alpha Stirling Engine

Beta Stirling Engine

Model Results

 More conservative estimate: 23 W from a 200K temperature difference

CAD MODEL

Current Unit Total Price for Duke ME Lab: **\$971.05**

Anticipated External Machining Costs (Weldment and Precision Machining): **\$100-\$200**

DYNAMIC MODEL

Parameter	MATLAB Model	SolidWorks Model				
Piston Amplitude	1.62 cm	1.61 cm				
Displacer Amplitude	1.25 cm	1.22 cm				
Phase Shift	85°	108°				

ENCLOSURE

TESTING

EXPERIMENTATION

Air: at 1.01 bar, 2 bar Helium: at 1.01 bar, 2 bar

MEASUREMENT

Output: generator wired to load resistor, DAQ Heating: thermocouple control loop

SAFETY

Enclosure: ¹/₈" acrylic shield Protection: eyewear, safe areas

Budget:

PROCESS FAILURE MODES AND EFFECTS ANALYSIS (PFMEA)

Process Step/Input	Potential Failure Mode	Potential Failure Effects	. 10)	Potential Causes	OCCURRENCE (1 - 10)	Current Controls	- 10)		Action Recommended
What is the process step, change or feature under investigation?	In what ways could the step, change or feature go wrong?	What is the impact on the customer if this failure is not prevented or corrected?	SEVERITY (1	What causes the step, change or feature to go wrong? (how could it occur?)		What controls exist that either prevent or detect the failure?	DETECTION (1	RPN	What are the recommended actions for reducing the occurrence of the cause or improving detection?
Regenerator Housing	Manufacture produces unexpected ID/OD	Inability to assemble; Piston Jamming	8	Warping during 3D printing process	5	Account for documented warping effects in model	2	80	3D print the housing first, measure real dimensions to bore cylinder/machine displacer

SCALING UP: 1 kW ENGINE

Size:

- Beale equation
- Piston swept volume increase
- Diameter & height increase

Cost:

- Larger parts (+)
- Bulk purchasing (-)
- Production costs (+)
- Process automation (-)

PRODUCTION COST/UNIT: \$2500 SELLING PRICE: \$3000

APPLICATIONS DECISION MATRIX

	INDUSTRIAL WASTE HEAT	LAUNDRO- MATS	DATA CENTERS	SOLAR PV	PAVEMENT	ROOFS AND ATTICS	KITCHENS
HEAT DIFFERENCE	5	2	1	1	1	1	2
EASE OF IMPLEMENTATION	3	4	4	3	1	1	3
DISTRIBUTION OF HEAT	4	3	4	4	2	2	3
UTILITY OF OUTPUT	2	4	3	4	3	4	3
CONSISTENCY OF HEAT	5	4	4	3	3	3	3
TOTAL	19	17	16	15	10	11	14

APPLICATION 1: INDUSTRIAL WASTE HEAT

APPLICATION 2: LAUNDROMATS

Durham Temp: 10-30°C → Temp Difference: 60-80°C

BUSINESS PLAN: \$3000 ENGINE

- Saves \$500 in energy per dryer per year
- Dryer life: 15 years
- Total savings per dryer life: \$7500

- Saves \$6.81 per year per factory (assume 4 EAF)
- REC
- Utility credits

ENVIRONMENTAL AND SOCIAL IMPACTS

CO2 Emissions

Emission-free substitute for electricity generation

3.2 tons of CO2 equivalent avoided per year -Laundromats

Environmental Impacts

CO2 Reductions versus Manufacture - Net Benefit from reduced electricity consumption

Payback period of less than three months

Potential ecotoxicity from manufacture

Social Impacts

Wellbeing: Cleaner air from reduced emissions

Human impact categories: carcinogenic byproducts

Longer social impact payback

Utilities benefit

- Capture of waste heat will be essential to solving society's energy and decarbonization problems.
- This conceptual free piston Stirling engine is intended to demonstrate one possible solution to the issue of heat waste.
- Success of this engine concept hinges on testing results, requiring the construction of a physical prototype.
- Prototype testing will further inform estimations on scalability and real world applications.

ACKNOWLEDGEMENTS

- Dr. Emily Klein & Dr. Josiah Knight
- Patrick McGuire
- Steven Earp & Greg Bumpass of the Pratt Student Machine Shop
- Duke Bass Connections

QUESTIONS?

SOURCES

- Moran, M., Shapiro, H., Boettner, D. & Bailey, M. (2011). Gas Power Systems. Fundamentals of engineering thermodynamics. Hoboken, N.J: Wiley.
- Zare, Sh., and A.R. Tavakolpour-Saleh. "Frequency-Based Design of a Free Piston Stirling Engine Using Genetic Algorithm." Energy 109 (August 2016): 466–80. https://doi.org/10.1016/j.energy.2016.04.119
- Riofrio, Jose A., Khalid Al-Dakkan, Mark E. Hofacker, and Eric J. Barth. "Control-Based Design of Free-Piston Stirling Engines." In 2008 American Control Conference. IEEE, 2008. https://doi.org/10.1109/acc.2008.4586709
- Karabulut, Halit. "Dynamic Analysis of a Free Piston Stirling Engine Working with Closed and Open Thermodynamic Cycles." Renewable Energy 36, no. 6 (June 2011): 1704–9. https://doi.org/10.1016/j.renene.2010.12.006
- Sowale, Ayodeji, and Athanasios Kolios. "Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine." Energies 11, no. 3 (February 27, 2018): 505. https://doi.org/10.3390/en11030505
- https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
- "Thermal Conductivity of Selected Materials and Gases." Engineering ToolBox. Accessed April 5, 2020. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
- Ebrahimi, Babak, Mir Behrad Khamesee, and Farid Golnaraghi. "Eddy Current Damper Feasibility in Automobile Suspension: Modeling, Simulation and Testing." Smart Materials and Structures 18, no. 1 (December 15, 2008): 15017. https://doi.org/10.1088/0964-1726/18/1/015017
- Paul, Partha, Chetan Ingale, and Bishakh Bhattacharya. "Design of a Vibration Isolation System Using Eddy Current Damper." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 4 (May 10, 2013): 664–75. https://doi.org/10.1177/0954406213489408
- Khripach, Nanatolyevich, Ivanov, Denis, Lezhnev, Lev Yurievich, and Fedor Andreevich Shustrov. "Calculation Studies of a Free-Piston Stirling Engine." Jr. of Industrial Pollution Control 33(2)(2017) pp 1603-1611.
- Johnson, Ilona, and William Choate. "Waste Heat Recovery: Technology and Opportunities in U.S. Industry," 2008.
- Marsh, Jacob. "How Hot Do Solar Panels Get? PV Temperature Explained: EnergySage." Solar News. EnergySage, August 1, 2019. <u>https://news.energysage.com/solar-panel-temperature-overheating/</u>.
- Stumpf, Calynn & Hunt, Alexander & Nobes, David. (2018). Effect of Scaling Up Low Temperature Differential Stirling Engines.
- Monroe, Mark. "How to Reuse Waste Heat from Data Centers Intelligently." Data Center Knowledge, May 10, 2016. https://www.datacenterknowledge.com/archives/2016/05/10/how-to-reuse-waste-heat-from-data-centers-intelligently.
- Bawden, Tom. "Global Warming: Data Centres to Consume Three Times as Much Energy in next Decade, Experts Warn." Independent, January 23, 2016. <u>https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html</u>.
- Sinha-Spinks, Tracey. "The Iron and Steel Manufacturing Process." Thermo Fisher Scientific , April 22, 2016. <u>https://www.thermofisher.com/blog/metals/how-is-it-made-an-infographic-of-the-iron-and-steel-manufacturing-process/</u>.
- "Interactive Steel Manufacturing Process." Association for Iron & Steel Technology. Association for Iron & Steel Technology, 2020. <u>https://www.aist.org/resources/the-msts-steel-wheel/</u>.
- Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin, Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William Lintner. United states data center energy usage report. No. LBNL-1005775. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2016.
- "Chassis-Level Immersion Cooling." Iceotope. Accessed April 9, 2020. https://www.iceotope.com/technologies/chassis-level-immersion-cooling/.
- Barry Schneider, email message and phone interview with Kate White, March 3, 2020.