Introduction

Extreme weather events are occuring with increasing severity in coastal North Carolina.

 Strategies are needed to mediate the impacts of storm aftermath, especially power outages.

• Wind energy could solve these outages.

• Currently, there is no accessible, inexpensive way to harness wind power for individuals.

• Captures wind in three spinning concave pockets.

• Kept suspended by a surf kite.

• Attached to generator at the base.

Harvesting Wind Energy from Kites

Rebecca Schmitt¹, Trevyn Toone², Chris Van Buren¹

¹Pratt School of Engineering, Duke University, ²Trinity College of Arts and Sciences, Duke University

Social Benefits

• Can be easily stored and then set up after extreme weather events.

- Powers fridges for food or medication.
- Powers phone chargers to contact loved ones.
- Powers some emergency medical care services.
- Especially pertinent for marginalized communities.

Acknowledgements

We would like to thank Emily Klein and Josiah Knight and the MEMS Department for their support throughout the project.

• Based on a Savonius turbine design.

Concept

Uriel Salazar Angelini¹, Meredith Short¹, Julia Dworetzky¹,

Prototype

- 8.3%, 10.4%, and 12.5% scale prototypes.
 - 3D printed frame.
 - Pockets sewn onto frame.
 - Testing in the Duke wind tunnel.

Environmental Benefits

• Provides clean, renewable power. • 309g CO, per hour vs natural gas. • 766g CO, per hour vs hard coal. • 908g CO₂ per hour vs brown coal.

 Constructed from tent material to be durable and lightweight.

• 3D printed joints.

• Collapsible full-scale frame.

Design

- Kite lines to base.
- Lines spin generator on the ground.
- ~700 Wh generated.

- 65% less area per kW than a traditional wind turbine.
 - Full lifecycle benefits.
 - Potential for permanent use outside of storms.
 - Promotes energy and environmental education.

Conclusions

 Our prototype demonstrates significant potential for an energy-generating kite.

 Could provide substantial relief to coastal communities after natural disasters.

 Offers an inexpensive and accessible means to harvest a clean, renewable resource.

• Looking forward, we would like to make a full-size first model.

BASS CONNECTIONS