Reign of Reliability

BJ James, Nimisha Pant, Nick Saba, John Sittu, Emily Walker Address growing need for renewable and reliable power in storm-related power outages

Motivation

Create in-home renewable energy from storm events to balance storm-related power losses

Final Concept

Power battery with rooftop gutter-guided rainwater (microgrids) with water harvesting tank

Technical Design

Pelton Wheel Outsourced solidworks design with edits

Generator Permanent magnet commutator motor mounted to turbine

Technical Design

Motor Calculation

$$v_t \,=\, k\omega - i R_A$$

R_A = Armature Resistance

Fluid Calculation $au = \frac{\rho g h Q}{\omega}$ Q = water flow rate

Technical Design: Theoretical Data

Catchment System

Wall mounted tank

Pressure gauge for mechanical metering

Potential app for smart home control

Fluid Calculations

$v = C_v \sqrt{2gh}$

Mainly dependent on height of water C_v is dependent on parameters of water exiting

Fluids Proof of Concept

Assumptions

- 1 in/hr rainfall
- 2700 ft² roof area
- 35 ft roof
- 0.8 efficiency

 $P_{th} = \rho q p h$

Water Collected 6.4 m³ Output Power 15.1 Wh

Experimental Setup

Goal Determine actual performance of turbine Measured Water velocity (height, distance, flow rate), resistance Voltage **Problems Motor Protection** Varying conditions (wind)

Experimental Results

Max Power output recorded:

0.82 W

Proof of concept; scaled up

... Results 0.75 $R^2 = 0.9974$ $R^2 = 0.9979$ $R^2 = 0.9902$ Height $R^2 = 0.9822$ Power Generated (W) 1 meter Resistanc • 0.33 Resistance • 0.5 • 1 • 2 0.33 Ohms 0.25 Power 8.95 W 0.00 0.050 0.000 0.025 0.075 0.100

Height vs. Power Generated for Different Resistances

Calculated Height (m)

Environmental Benefits Rooftop Harnessing Ability to shift gutter flow away from streets or to harvest for use

Potential System Carbon Offset 0.0026 lbs CO₂ produced per watt-hour via portable gas generator

Replacing a gas generator saves 131 lbs CO₂ per house per year

Social Benefits

Safety through enhanced communication (wifi, phones, etc.)

Enhanced Interconnectivity

Potential greywater capture and reuse

Target Market

Rural areas Developing Countries---PAYGO Individual Homeowners Data from Parents of Duke Students:91.5% in owned home74.6% willing to mount system

Expanded Market

Developing Countries

- Renewable and reliable
- Located at home no need to travel long distances for small amounts of power
- Better than solar
 - Easier to fix
 - PAYGO
 - Cheaper

Business Plan

- Costs <\$50 (61%)

- Observe rain data from other parts of the world

- Frequency of blackouts

Subsidized by Duke Energy

- Modular design

Updated Prototype Costs

Purchased

\$95 motor (provided)
\$10 plastic mounting piece
\$3 15/64" drill bit
\$20 plastic rod

<u>Predicted</u>

\$5 cover for turbine\$15 tank\$5 PVC outlet

Conclusions

Larger scale

Cheaper bill of materials

Electrical control of catchment system

Financial Support