Collapsible Electric Longboard

Team Members Jie Cai, Tara Davis, Ismail Iberkak, Philemon Kiptoo, Maya Patel, Joe Squillace, Houston Warren

April 23, 2018

Motivation

- Exploring Alternative/Emerging Transportation
 - Reducing Car Dependency

• The Last Mile Solution \rightarrow Promoting multimodal transportation

Mechanical Technical Design

Prototype Designs

Final Prototype Design

Stress Analysis

Analyses assume a weight of 250 lb.

- 1. Shear of structural rods \rightarrow Factor of Safety (FS): 46.5
- 2. Bending of structural rods \rightarrow FS: 8.61
- 3. Compression of PLA under bolt pretension \rightarrow FS: 2.47
- 4. Compression of PLA under structural rods \rightarrow FS: 5.69
- 5. Fatigue of structural rods \rightarrow 500 million load cycles (~equivalent to 171,000 years, 2 commutes daily and 4 load cycles per commute)

Weight of Skateboard: 20 lbs

Volume of Skateboard:

1312.5in². Folded spans 20" vs. 38.5" unfolded.

0.548 m/s² or 1.23 mph/s

Deflection:0.125" at rest.1.775" with weight at center.

15.2 mph

Top Speed:

Acceleration on Flat Ground:

Mile Range: 3.88 miles*

Energy Usage: 22.2 Wh/mile*

*with testing speeds of 6-11 mph

Software Technical Design

Front End (Presentation)

Swift, Sketch and Supernova Studio User Interface Screen Transitions User Input Collection

Back End (Data Access)

Swift and Firebase Real-time Speed and Distance Calculations Account Info and Trip History Database Queries

•II AT&T LTE	3:24 PM	1 62% 🔲	
Summary			
Calories 121.93	С	CO2 Offset (g) 45.94	
Duration 00:01:58	Avg Speed (m/s) 1.56	Distance (km) 183.77	
	3 Total Trips		
RIDE HISTOR	RY	LOGOUT	

••II AT&T LTE	3:25 PM	ન 62% 🔲
< Back	V	′iew Trip >
20	18-4-23 0:44	:30
201	8-4-23 15:19	9:51
20)18-4-23 15:23	3:7

Database Design

Firebase Advantages:

JSON Database (unstructured data stored in hierarchical key-value pairs)

Built-In Authentication

Swift Application Programming Interface

Electrical Design

Electric Components

Motor

The motor used on this board is a 190KV brushless DC motor. This initial board uses a single-motor setup, but a dual-motor setup could be used to increase acceleration and hill-climbing ability in a production model. **ESC** The electronic speed controller (ESC) is the brains of the board. The ESC reads and translates radio signals from the remote and routes battery power accordingly to drive the motor. This board is running on the VESC opensource ESC software, which implements regenerative braking for the board.

A 6S2P lithiumion battery powers the board The performance measurements for this board are based on this battery size, but a full production model will include a larger 12S battery, which will greatly increase both the top speed and range.

iOS App Design

1. Ride

Trip statistics, updated live as users ride.

2. User Profile

Store past rides of users after account registration.

iOS App Significance

1. Improve User Experience

Give users a graphical platform to check their skateboard and ride statistics.

2. Research Data Platform

Set up platform to collect transportation data, useful for alternative transportation research.

Societal Impacts

How much time does the average American spend sitting in traffic while commuting to an urban center, per year?

Social Benefit Analysis

Economic Improved productivity from time savings Reduced Traffic Congestion Social Environment **Reduced pollution** Less frustration from vehicles and from idling in traffic

Social Benefit Analysis

Additional Social Benefits

Subjects who commuted by car on a daily basis gained nearly twice as much weight over a five-year period as those who didn't have a car-based commute.

-American Journal of Preventive Medicine

Money Spent at Local Businesses Per Capita Per Week by Different User Types:

Bicyclists	\$168
Pedestrians	\$158
Car drivers	\$143
Public transit	\$111

Environmental Benefit Analysis

2.

Material Selection

1. Carbon Footprint Calculations

Gas Car

 $0.383 \text{ kg}_{\text{CO2}}/\text{miles}$ $1.53 \text{ kg}_{\text{CO2}}$ for 4 miles

Electric Longboard

0.0105 kg_{co2}/miles 0.0420 kg_{co2} for 13 miles

⇒ 2.8% car emissions

Material	Environmental Impact
PLA Plastic	Biodegradable (made from fermented plant starch)
Carbon Fiber	Long lifecycle, recyclable, energy intensive to produce (more so than steel)
Maple	Often grown/harvested sustainably, native to U.S.
Steel	Production is energy intensive and emits GHG (not as much as Al and other metals), recyclable
Li-ion Battery	Very long life, can be recycled, contributes to resource depletion of cobalt, copper, nickel, etc
Raspberry Pi	Complies to EU reg. on electronic waste.

Business Plan

Open Source

All components can be easily purchased or 3d printed. Will always be free of charge. Encourages adoption and engagement. No oversight needed - anyone can build, regardless of background.

Simple

Free

Target Market

Geographic	Demographic	Behavioral	Psychographic
Urban, developed bike lane infrastructure	Age: 20-30 Able to spend ~\$800	Regular commuter Status gained from different or cool	Liberated, young, early-adopter Want to have <i>fun</i> commuting, in life

- 1. A young, urban, innovative commuter looking for a replacement for their current commute.
- 2. A young, urban, commuter looking to adapt their commute with an innovative last mile solution.

An e-bike-esque commuter looking for more flexibility

Total Cost of Final Prototype

Item	Description	Quantity	Price
Plywood	1/2" thick, 2' x 4' sanded plywood	1	\$13
Maple Veneers	1/2" thick (1); 10"x24"	1	\$15
Steel Rods	1/4"-20 Steel Rods, 10" long	2	\$5
Carbon Fiber Rods	Carbon Fiber Rod, 1/2" Diameter, 12" Long	2	\$48
Fasteners	Bolts, Locknuts	NA	\$10
Mechanical Kit	83mm wheels (2), trucks (2), 1/4" truck risers, drivetrain*	1	\$299
Motor	6355 190kV Motors, 2500W, 2.83Nm	1	\$90
Battery	6S2P Electric Skateboard EPower Battery Pack	1	\$185
VESC	Torque ESC VESC Electronic Speed Controller	1	\$100
Remote	2.4 GHZ Remote Controller	1	\$60
Servo Connector	Male-male connection, connects VESC to RC Receiver	1	\$2
		Total	\$826

Looking forward

Further improvements:

- Mechanical
 - Lower volume & weight
- Hardware
 - Increase mile range
- Software
 - Improve app UI
 - Automatic Tracking
 - Improve Map Statistics & Features

Questions?