Solar Thermoelectric Refrigeration: An Off-Grid Solution to Vaccine Storage

Ananya Chaurey Chad Curd Katelyn McCracken Narendran Narasimhan Sam Pickerill April 23, 2018

Motivation

Every day 16,000 children die globally from preventable diseases, totalling nearly 6 million per year

Nigeria

- Lowest vaccination rate (42%)
- 3rd worst under-5 mortality (9%)
- Low electricity access (57%)
- Frequent epidemics of preventable diseases
- High solar potential

Progress

System Design - Approach

- Existing Cold Chain Products
- Current Refrigeration Methods on Market
- Alternative Refrigeration Methods

-
$$T_{interior} = 2^{\circ}C - 8^{\circ}C$$

- T_{exterior} = 40°C
- Off-grid power source
- Transportable
- Low-maintenance

- Power requirement
- Geometry
- Materials

Refrigeration Method: Thermoelectric

- Peltier Effect
- Pros:
 - solid state
 - small size and weight
 - quiet
 - DC power
 - no refrigerant
- Cons:
 - low C.O.P.

Refrigerator Compartment Design

Primary Driver: Heat Removal Requirements

- rigid polyisocyanurate foam insulation
 - k = 0.023 W/mK

Modeling Parameters

- $T_{interior} = 2^{\circ}C$

- $T_{exterior}^{interior} = 40^{\circ}C$ $t_{insulation} = 3 \text{ in.}$ $V_{interior} = 0.85 \text{ ft}^3 \approx 25L$

Modeling Results

- Q' = 8.4 W

Small-Scale Prototype

Why?

- to test heat removal capabilities of TEM assembly

Design Goals

- similar heat removal requirements
 - 11 W
- similar geometry
 - 0.125 ft³ = 3.5L
 - 15% of full-scale volume

Prototype Design

Materials:

- Outer Shell: UV-Resistant HDPE
- Insulation: Rigid Polyisocyanurate Foam Insulation
- Inner Shell: Polypropylene

Assembly:

- Base & Lid
 - constructed separately
 - hinge + latch connection
 - rubber seal for airtight seal
- TEM & Heat Sinks
 - connected via thermal paste
 - press fit into insulation

Controls Design

Goal

- Maintain temperature between 2°C 8°C
- Easy to use and replace
- Robust
- Low Power consumption

Ideas

- PWM, PID, Regulators, TEC Controllers, Potentiometer, and Thermostatic control

Feedback Loop: Temperature Probe $\leftarrow \rightarrow$ Controller $\leftarrow \rightarrow$ TEM Power

Controls Design

- Thermostatic Control most apt
- Below 2°C off. Only turn on at 6°C
- Temperature changes very gradually

Solar Panel and Battery Sizing

Design Considerations

- Off-grid capability with 24-hour backup
- Flexible in power source
- Easy to maintain and repair
- 1.1 kWh per day energy required for refrigerator
- Lowest insolation in Maiduguri: 0.925kWh/m²/day in August¹

Results: Small-Scale Prototype

Results: Full-Scale Prototype

Prototype Conclusions

Small-Scale Prototype

- achieves cold chain temperatures \checkmark
 - $22.3^{\circ}C \rightarrow 7.6^{\circ}C$ in 13.5 minutes
- maintains cold chain temperatures with load \checkmark

Full-Scale Prototype

- provides some cooling \checkmark
 - ΔT ≈ 10°C

Thermoelectric Cooling at Cold Chain Temperatures is Possible!

Environmental Benefit Analysis

Environmental Metric	Benefit/drawback vs. conventional refrigerator
CO ₂ Emissions Abated	40 x = 1 x of CO_2 abated in a year*
Life Cycle Emissions of Lead	~50g of toxic Lead emissions ² from battery
Other factors	 Waste reduction due to fewer components No risk of indoor air quality issues through leakages since there is no refrigerant

*Assumption: compared to a 30W small vaccine refrigerator, and 420gCO₂/kWh Nigeria grid carbon intensity

Social Benefit Analysis

- Decreased strain on public health facilities
- Increased economic productivity
- Decreased spending on treatment
- Improved quality of life
- SDG 3

Hep B in Kano: \$3,771/unit/year

Business Plan: Market Optimization

- Minimize maintenance costs
- Utilize community partner to connect with clinics
- Compatible with Particle Mesh to improve cold chain data
- Competitors: Haier, Vestfrost, Dometic, Sure Chill* and SunDanzer*(\$2500-\$3500)

AFRICA POWER STORAGE

Business Plan: Pricing

Production Costs

- For one unit...
 - Materials: \$800, Labor/Operations: \$120, Shipping: \$200
 - Total: \$1135

Overhead Costs

- For one year...
 - Tools: \$6500, Salary: \$60,000, Leasing: \$40,000
 - Total: \$106500

Unit price: \$2199 if 100 refrigerators are sold

Business Plan: Manufacturing

Prototype Manufacturing

- Imprecise plastic assembly
- Non-standardized production method

Upscaled Manufacturing

- Plastic thermoforming
- Economies of scale

Next Steps

Optimize Full-Scale Prototype:

- reduce volume
- integrate multiple TEMs
- Fully Develop Business Plan
 - local networks
 - distribution

Refine Prototype

- User friendly and ergonomic functionalities

Questions?

References

- 1. Osueke, C. et al. June 2013. *Study and Evaluation of Solar Energy Variation in Nigeria*. Sourced from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.8387&rep=rep1&type=pdf
- 2. Liu, W. et al. December 2015. *Life cycle assessment of lead-acid batteries used in electric bicycles in China*. Sourced from: <u>https://www.sciencedirect.com/science/article/pii/S0959652615009063</u>