
Energy Access Team

Kerim Algul, Nitish Garg, Ryan Hussey, Cassidee Kido, Ashley Meuser, Savini Prematilleke, Tyler Wakefield

Process Overview

South Africa's Energy needs

- Location
- Resources

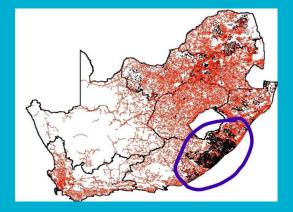
Community Profiles

- Energy Load
- Cattle Waste
- Income

Technology Choices

- Availability
- Suitable for community size and needs

Model Testing and Refinement


- Storage Technology
- Electric Load Increase
- Biomass Gasification and Reclamation

Model Verification

- Lifetime Analysis
- Financing
- Government priorities
- Social Impact

Problem Background

- 1.1 billion people around the world lack energy access
- 86% of South African households have electricity access

Benefits and Costs of Microgrids

Benefits	Costs
Less investment needed per project	Amount of Systems Needed to Supply the Overall Energy Demand
Can use energy sources already in the community	Less profit per project - Fewer incentives for Investors
Generation close to use	
Lower environmental costs	
Easier (Local) maintenance	
Greater Energy Security	
Faster project completion	

Past Research

Techno-economic analysis of microgrid for universal electricity access in Eastern Cape, South Africa

Omowunmi Mary Longe finds that a standalone microgrid can be used to achieve electricity access in rural off-grid areas of developing countries.

Renewable Energy Sources Microgrid Design for Rural Area in South Africa

O. M. Longe, K. Ouahada, H. C. Ferreira, S. Chinnappen Dept. of Electrical & Electronics Engineering Science, University of Johannesburg, Johannesburg, South Africa. {mlonge, kouahada, hcferreira, suvendic}@uj.ac.za

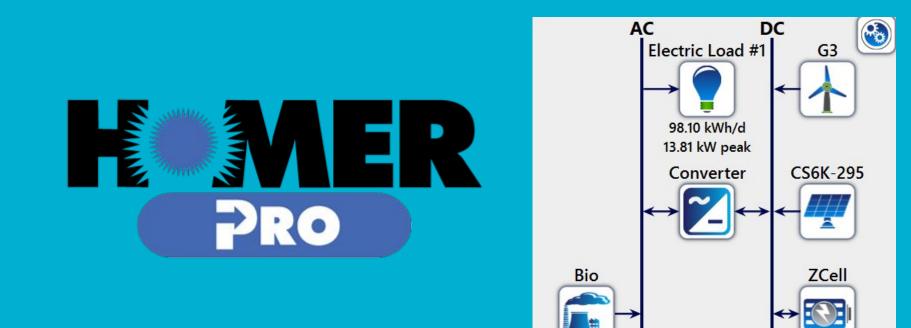
Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion

J.G. Castellanos, M. Walker, D. Poggio, M. Pourkashanian, W. Nimmo*

Energy Technology Innovation Initiative (ETII), Faculty of Engineering, University of Leeds, Leeds LS2 9JT, UK

Current Market

Private


> accenture High performance. Delivered.

NGOS

What is HOMER?

Assumptions

• Electric Load

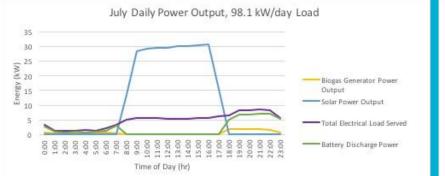
- Linear increase with community size
- 1.5% annual increase

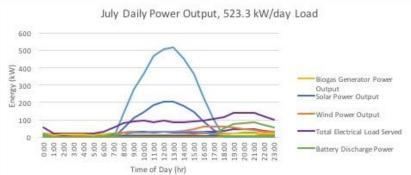
• Cattle Waste

- Linear increase with community size
- 2.5 cattle/household
- 15 kg waste/cattle/day
- 25% waste reclaimed

• Financial

- Inflation = 6.5%
- Nominal Discount Rate = 8%
- Average household income: USD \$1080.40/yr
- Conversation rate: 1 USD: 0.07 ZAR
- Not considered: cost of transmission infrastructure, controller


Component Selection



Original Models

Community Size (households)	Electric Load (kWh/ day)	Peak Load (kW)	PV (kW)	Wind (kW)	Biogas Generator (kW)	Storage (kW)	Converter (kW)	Cost of Energy	Net Present Cost (25 years)	Operating Cost	Initial Cost
75	98.1	13.81	83.1	0	2	79.47	14.5	\$0.273	\$204,628	\$3,364	\$134,145
400	523.3	73.68	349	96	10	298.01	68.1	\$0.25	\$999,365	\$13,815	\$709,949
1250	1635.0	230.2	874	207	30	1,142.38	228	\$0.243	\$3,030,000	\$38,622	\$2,230,000

Daily Power Output

Changes to Model: 75 Households

Model Type	Electric Load (kWh/day)	PV (kW)	Wind (kW)	Biogas Generator (kW)	Storage (kW)	Inverter (kW)	Cost of Energy	Net Present Cost (25 years)	Operating Cost	Initial Cost
Original	98.1	<mark>83.1</mark>	0	2	<mark>79.47</mark>	14.5	<mark>\$0.273</mark>	\$204,628	\$3,364	<mark>\$134,145</mark>
1.5% Load increase per year	144.23 (year 25)	<mark>130</mark>	0	2	<mark>119.16</mark>	21	<mark>\$0.317</mark>	\$285,797	\$4,054	<mark>\$200,866</mark>
75% biomass reclamation	98.1	<mark>37.54</mark>	0	8	<mark>19.86</mark>	9.7	<mark>\$0.194</mark>	\$145,312	\$3,682	<mark>\$68,178</mark>

Changes to Model: 400 Households

Model Type	Electric Load (kWh/day)	PV (kW)	Wind (kW)	Biogas Generator (kW)	Storage (kW)	Inverter (kW)	Cost of Energy	Net Present Cost (25 years)	Operating Cost	Initial Cost
Original	523.3	<mark>349</mark>	<mark>96</mark>	10	298.01	68.1	<mark>\$0.250</mark>	\$999,365	\$13,815	<mark>\$709,949</mark>
1.5% Load increase per year	759.3 (at year 25)	420	<mark>90</mark>	10	297.9	90	<mark>\$0.276</mark>	\$1,100,000	\$14,190	<mark>\$805,204</mark>
75% biomass reclamation	523.3	<mark>196</mark>	<mark>N/A</mark>	40	158.94	48.9	<mark>\$0.197</mark>	\$786,398	\$18,497	<mark>\$398,883</mark>

Changes to Model: 1250 Households

Model Type	Electric Load (kWh/day)	PV (kW)	Wind (kW)	Biogas Generator (kW)	Storage (kW)	Inverter (kW)	Cost of Energy	Net Present Cost (25 years)	Operating Cost	Initial Cost
Original	1635.0	<mark>874</mark>	207	30	1,142.38	228	<mark>\$0.243</mark>	\$3,030,000	\$38,622	<mark>\$2,230,000</mark>
1.5% Load increase per year	2372.7 (at year 25)	<mark>1600</mark>	<mark>375</mark>	30	1,490.38	350	<mark>\$0.304</mark>	\$4,560,000	\$53,726	<mark>\$3,440,000</mark>
75% biomass reclamation	1635.0	<mark>408</mark>	<mark>66</mark>	140	367.41	310	<mark>\$0.194</mark>	\$2,430,000	\$10,046	<mark>\$1,260,000</mark>

Are these feasible? Who Pays? How Much?

- 75 HH
- \$204,628 NPC
- \$3,364 O&M
- \$0.273 LCOE

Payment Methodology	\$/kWh	Annual Revenue	Present Value (25 Years)	NPC-PV
Avg HH Paying Avg SA COE	\$0.100	\$3,581	\$75,014	\$129,613.62
Avg HH paying at 8% of income	\$0.181	\$6,482	\$135,806	\$68,822.15
Avg HH paying enough to meet NPC	\$0.273	\$9,775	\$204,789	-\$161.26

Business Plan Possibilities

75 HH: \$134,145 Capital Costs

Payment Methodology	\$/kWh	Annual Revenue	Present Value (25 Years)	NPC-PV
Avg HH paying at 8% of income	\$0.181	\$6,482	\$135,806	\$68,822.15

Public/Private Structure

- Private covers CAPEX
- Feed-in Tariff established for excess generation (if eventually grid connected)
- Gov subsidizes electricity cost

Payment Strategy

- Small energy load: pay monthly flat rate
- Large energy load: pre-pay per kW/h
- Energy credits for collecting waste

Operations & Maintenance

- Paid employee runs waste collection
- Located nearby; available for assistance and maintenance

Analysis and Exploration

Sensitivity

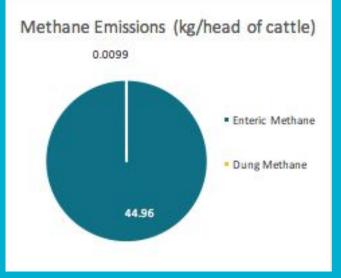
- Availability of biomass
- Cost of biomass

Gamechangers

- Use excess electricity for value-added process or manufacturing?
- Selling excess electricity to grid?
- Concentrated livestock operations?

Social Impacts

- Community acceptance is key to success
- Rural electrification in Kenya:
 - 100-200% increase in productivity per worker, depending on task
 - 20-70% growth in income levels
 - Improved education quality and students' access to the rest of the country
- Electrification has biggest impacts in agricultural sector and small or micro enterprises



Environmental Impacts

Load Size (kWh)	CO2 Emissions from Grid (tonnes of CO2)	Emissions from diesel (tonnes of CO2)*	Emissions from microgrid (tonnes of CO2)‡
98.1	0.092	0.0245	0.00166
523.3	0.492	0.131	0.0083
1635	1.537	0.408	0.0249

* does not include emissions associated with transporting diesel to remote areas ‡ assumes biogas output is equal to that associated with original model

Environmental Impacts

Conclusions

- Specific technology input data & community characteristics crucial for HOMER to be of value
- Microgrid design is only 1/3 of process
- Renewable energy solution is possible
 - Can help with building economy of scale

Thank You!

References

http://www.sciencedirect.com/science/article/pii/S0305750X08003288

http://blogs.berkeley.edu/2015/02/25/how-to-build-a-microgrid/

http://bbqboy.net/eastern-cape-province-transkei-travel-tips/

https://www.researchgate.net/figure/302555565_fig2_Figure-2-Dwellings-in-a-rural-village-in-the-Eastern-Cape-South-Africa-Photo-Ser ena

http://self.org/

https://microgridknowledge.com/solar-microgrids-in-south-africa/

http://www.renewableenergyworld.com/articles/2016/08/solar-microgrids-in-south-africa-electrify-boost-economic-development.html

http://microgridprojects.com/africa-microgrids/