Introduction

- Autoclave: a pressure vessel used for sterilizing medical equipment, generally with pressurized steam.
- Without a reliable electrical grid, this technology is unable to function in the same way as in an industrialized country.
- Our team partnered with a non-profit, *Grupo Fenix*, that implements engineering solutions to problems in the developing world.
- Two major design considerations: (1) how to achieve/hold pressure and (2) how to heat the system.
- Our solution: Combine a simple/inexpensive pressure cooker with a rudimentary solar reflector/concentrator.
- Our prototypes concentrate between one and two square meters of solar energy onto a pressure vessel large enough to hold medium-sized medical tools.

Prototype #1

- 1 m² wooden 2x4 frame
- Medium density fiberboard (MDF) backing
- Stretched highly reflective mylar sheet (same material as "space blankets")
- Sealed with silicone caulk
- Installed check value allows air to be removed from the system, creating a vacuum
- Vacuum creates naturally near-parabolic shape in mylar sheet, which concentrates/focuses sunlight

Reflector did not perform well. Too heavy to be useful, and would not hold vacuum seal.

• 22-qt pressure cooker • Insulated with two layers of R-10 foam insulation • 1 m² plastic drainage tray with stretched reflective mylar sheet • Vacuum sealed to create parabolic shape

Prototype #3 Reduced pressure cooker size to 8-qt model for proof of concept • Added a second 1 m² reflector (identical to other) • Testing is still in progress (early April)

Duke BASS CONNECTIONS

Sterilizing Medical Equipment With The Sun A NON-ELECTRIC AUTOCLAVE FOR RURAL MEDICAL CLINICS

Prototypes #2 & #3

Prototype #2

#1 unable to achieve temperature and pressure benchmarks as of early April 2015.

Environmental Impact Assessment

Governed by Ministry of Environment and Natural Resources

- Municipal governments must be consulted by MARENA • Environmental Impact Statement must include alternatives to

Eco properties: Polyethylene Tere	ephthala	ate (PET)
Global Production, main component	9.5 x 10 ⁶	metric ton/yr
Embodied energy, primary production	81 - 89	MJ/kg
CO ₂ footprint, primary production	3.7 - 4.1	kg/kg
Water usage	14.7 - 44.2	l/kg
Eco-indicator	276	millipoints/kg

Spare gasket - \$10/2 years

Pressure cooker - \$35/6 years

Heat Transfer Analysis: Theoretical

Heat Needed to Reach 121°C

 $Q_{heat water} = cm\Delta T = (4.19 \frac{J}{g \circ C})(2521.97g)(121 - 25 \circ C) = 1,014,437 J$ $Q_{heat Al} = cm\Delta T = (.900 \frac{J}{g \circ C})(5897 g)(96 \circ C) = 509,500.8 J$ $Q_{latent} = m_{vaporized}L$

 $pV = nRT = 2.022atm(20.82 L) = n(.08206 \frac{L atm}{mal K})(394.15K)$ $n = 1.3 mol H_2O$ $m = 18 \frac{g}{mal}(1.3mol) = 23.4g H_2O$ $Q_{latent} = (.0234kg)(2.26x10^6 \frac{J}{k_a}) = 52,884 J$

 $Q_{total} = 1,014,437J + 509,500.8J + 52,884J = 1,576,821.8J$

 $Re = \frac{u_{\infty}D}{v} = \frac{(3.6 \text{ m/s})(.45m)}{2.056 \text{ s} \cdot 10^{-5} \text{ m}^2/\text{s}} = 78,794 \rightarrow \text{Laminar Flow}$ $\overline{Nu} = 2 + (.4Re^{1/2} + .06Re^{2/3})Pr^{2/5} \left(\frac{\mu}{\mu}\right)^{1/4} = 225.4$ $\overline{h} = \frac{\overline{Nu \cdot k}}{D} = \frac{(225.4)(.0295\frac{W}{mK})}{45m} = 14.8 \frac{W}{m^2 K}$ $Q'_{conv} = h_c A \Delta T = (14.8 \frac{W}{m^2 K})(.62m^2)(394.15 - 299.82K) = 865.6W$ $\overline{h_{max\,wind}} = 23.2 \ \frac{W}{m^2 K}$ $Q'_{conv,max wind} = 1357 W$

Critical Insulation Thickness

 $Q'_{out, max wind} = \frac{\Delta T}{\frac{1}{hA} + \frac{t}{kA} + \frac{t}{kA}} = \frac{394.15 - 299.82}{\frac{1}{23.2(62)} + \frac{100.87}{167(.62)} + \frac{t_{insulation}}{0.45(.62)}} \le 700 W$ $t_{insulation} = 0.0018 m$ $Q'_{out, average day} = \frac{\Delta T}{\frac{1}{hA} + \frac{l}{kA} + \frac{l}{kA}} = \frac{394.15 - 299.82}{\frac{1}{14.8(.62)} + \frac{00587}{167(.62)} + \frac{.0018}{.045(.62)}} = 543.5 W$

x 2

Researc

Category Mylar Roll Pressure Cookers Wood + Screws Tape + Caulk Spill Trays Sterilization Indicator Kit Total

Projected

Category Mylar Roll Pressure Cooker Plastic Swimming Pool Adhesive Sterlization Indicator Kit Total Sales Price

\$75.00

Ryan Buxbaum '15 Danielle Colson '15 Samip Desai '17 Duncan Dodson '15 Katie Ernst '15 John Gitau '15 Hal Press '16 Zach Wiener '15

Dr. Emily Klein | Dr. Josiah Knight

1000 1200 140

olar Intensity, W/m^2

Budget

h & Development Budget		
Expenditures	% of Total Budget	
\$37.81	7.5%	
\$102.10	20.3%	
\$49.33	9.8%	
\$62.90	12.5%	
\$237.20	47.2%	
\$13.08	2.6%	
\$502.42	100.0%	

it Cost of Solar Autoclave		
Cost	% of Total Cost	
\$3.78	7.1%	
\$35.45	66.6%	
\$11.99	22.5%	
\$1.96	3.7%	
\$0.05	0.1%	
\$53.23	100.0%	
Profit per Autoclave	Profit Margin	
\$21.77	29.0%	

- none have succeeded.
- incomplete as of this time.

