Extending the Challenge in Mathematics Author: Linda Jensen Sheffield Presenter: John Olive The University of Georgia

- Mathematical Frame of Mind
 - 1. Loves exploring patterns and puzzles
 - 2. Sees mathematics and structure in a variety of situations
 - 3. Recognizes, creates, and extends patterns
 - 4. Organizes and categorizes information
 - 5. Has a deep understanding of simple mathematical concepts, including a strong number sense

- Mathematical Formalization and Generalization
 - 1. Generalizes the structure of a problem, often from only a few examples
 - 2. Uses Proportional Reasoning
 - 3. Thinks logically and symbolically with quantitative and spatial relations
 - 4. Develops proofs and other convincing arguments

- Mathematical Creativity
 - 1. Processes information flexibly--switches from computation to visual to symbolic to graphic representations as appropriate in solving problems
 - 2. Reverses processes--can switch from a direct to a reverse train of thought (reversible reasoning)
 - 3. Solves problems in unique ways, tries unusual methods
 - 4. Strives for mathematical elegance and clarity in explaining reasoning

- Mathematical Curiosity and Perseverance
 - 1. Is curious about mathematical connections and relationships--asks "why" and "what if"
 - 2. Has energy and persistence in solving difficult problems
 - 3. Digs beyond the surface of a problem, continues to explore after the initial problem has been solved

An Open Approach to Problem Solving

It is picture can't be displayed.	

Start at any point on the diagram and proceed in any order

An Open Approach to Problem Solving

- <u>Relate</u> the problem to other problems you have solved.
- <u>Investigate</u> the problem. Think deeply and ask questions.
- <u>Evaluate</u> your findings. Did you answer the question? Does the answer make sense?
- <u>Communicate</u> your results. How can you best let others know what you have discovered?
- <u>Create</u> new questions to explore. What else would you like to find out about this topic? Start a new investigation.

Questions! Questions! Questions!

Think Deeply About Simple Things

- How might I model or organize my thoughts
- Why did that work?
- Why didn't that work?
- How is this like any other problem I have solved?
- How is this different from other problems?
- Is that always true?
- Will that ever work?
- What patterns do I notice?
- What is the largest possible answer? The smallest?
- How many solutions are possible?
- How might I best convince others of my results?

Questions! Questions! Questions!

- Question the Answers: Don't Just Answer the Questions
 - What other questions came up as I solved the original problem?
 - What if part of the problem were not there or a new part were added?
 - Can I do that another way? How many ways might I...?
 - What other patterns do I notice?
 - What generalizations might I make? Are they always true?
 - What other problems might I solve in a similar way?

Organization of Activities

- Differentiated for students with different mathematical experiences
 - Level A for students who can reason additively
 - Level B for students who can reason multiplicatively
 - Level C for students who can reason proportionally and symbolically

Plan for Part 1, Thursday

Number and Operations

- Investigation 2: Same Sums
 - Pages 36-38
- Algebra
 - Investigation 2: Heads or Tails?
 - Pages 62-65
 - Investigation 3: Field of Dreams
 - Additive combinations only, pages 66-73

Plan for Part 2, Friday

Data Analysis and Probability

Investigation 2: On Your Mark
Pages 126-128

Investigation 3: Bull's Eye

Pages 129-134

Geometry and Measurement

Investigation 2: Shape Up!
Pages 99-101
Investigation 3: Connect the Dots

• Pages 102-103