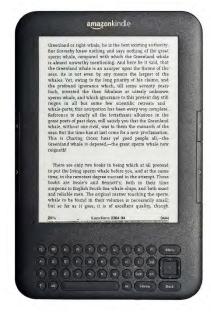


Sustainable Duke

What is Sustainability?

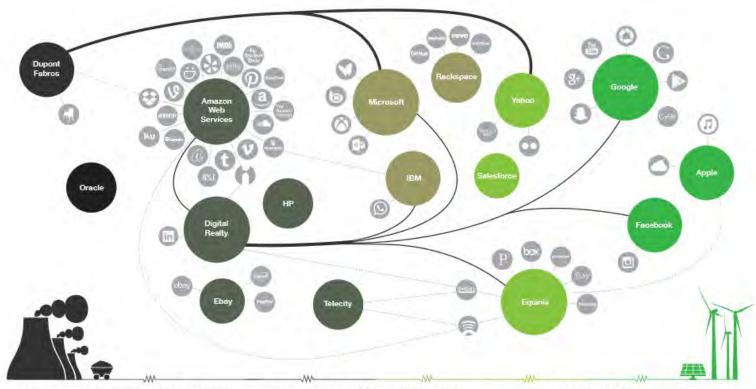
"Meeting all the needs of the present without compromising the ability of future generations to meet their own

needs"



Technologies in Daily Use

Global Environmental Implications



Data Centers

- 2% of global greenhouse gas emissions
 - Same as aviation
- Water
 - 3.5 million gallons / MW
 - Data centers range from 5-30 MW
 - 800+ data centers in California
- Tech companies could be drivers for clean technology

2015 REPORT

Stuck in dirty energy past: Efficiency only, using mostly dirty energy, have taken few or no steps to switch to renewables

GREENPEACE

Middle of the Road: Taking steps toward a greener internet, but not leading the way.

Green Internet Innovators:

Committed to 100% renewable energy. Their leadership is helping to make our lives, online and offline, greener.

How Much Energy is "A Lot?"

1 Btu

Avg. 170 Btu/hr

700 Btu

114,000 Btu

Aggregate Impacts

- 1 iphone 5
 - About 5 watts per charge
 - \$.41 to charge in a year
- Consider:
 - 2016: 1 billion people worldwide have a smart phone

Energy in Production

- Mining accounts for ~10% of global energy use
- Manufacturing uses between 50-80% of an electronic product's total energy requirement
- Energy expended in manufacturing just a handful of microchips can be as much as energy to manufacture a car

Materials

- Resource depletion
- Hazardous chemicals
 - Health impacts in production & disposal
- For example:
 - Smart phone
 - 60+ elements
 - 200 chemical compounds
 - Computer circuitry production
 - 500-1000 chemicals

Computer, Tablet, Wearables

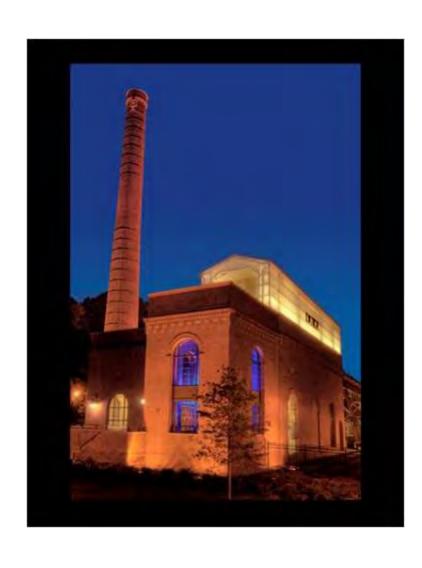
- Copper
- Aluminum
- Gold
- Zinc
- Nickel
- Tin
- Silver

- Iron
- Platinum
- Palladium
- Cobalt
- Tantalum (coltan)
- Silicon
- Antimony

- Arsenic
- Hafnium
- Barium
- Cadmium
- Selenium
- Gallium
- Indium
- Niobium
- Lithium

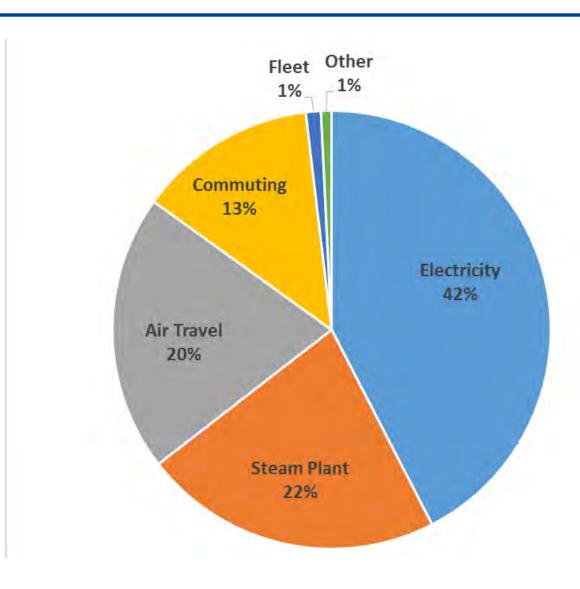
End of Life

- Global e-waste: 41.8 million tons in 2014
 - Equivalent to 22 million standard sized sedans
- Average American: 65 lbs per year
- 60-90% of e-waste
 - Mountains of rubbish in developing world
 - Traded through criminal e-waste networks
- Worker health & safety
- Toxic chemicals, heavy metals
 - Residents, soil, water

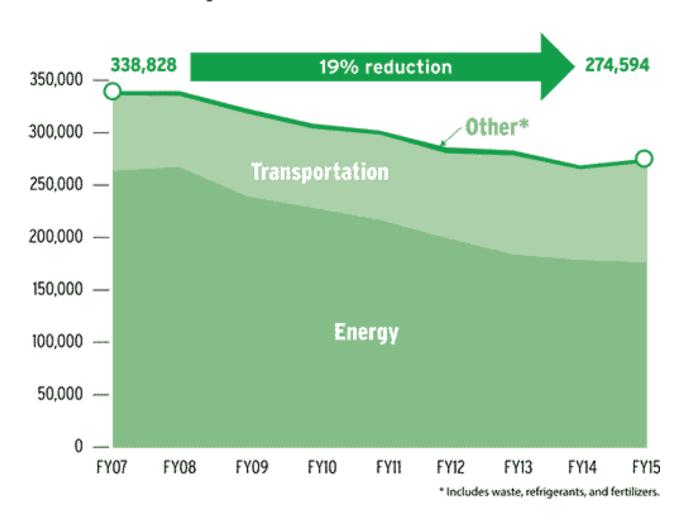

Paper

- Basic recipe: wood, water, energy
- Water
 - 3 gallons water / sheet of paper
- Energy
 - Chop, dry, cook wood; roll and dry pulp
 - Equivalent to 2 gallons of gasoline / ream of paper

Sustainable Duke



What is Duke doing?

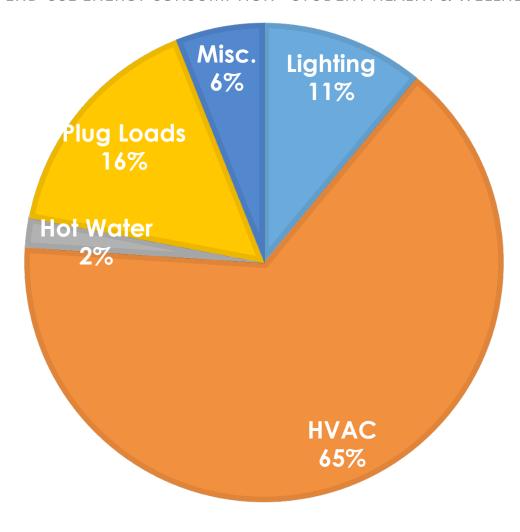

Duke University's GHG Emissions

FY15 GHG Emissions - University

University Greenhouse Gas Emissions

What does this reduction mean?

- 19% reduction from 2007 baseline
- 64,000 metric tons of carbon reduced
- Equivalent to annual emissions from:
 - 13,500 passenger vehicles
 - 68 million pounds of coal burned
 - 5,800 homes' energy use
- Emissions are up from last year
 - Transportation
- Carbon offsets reach neutrality



How Much Energy & Water Does Duke Demand?

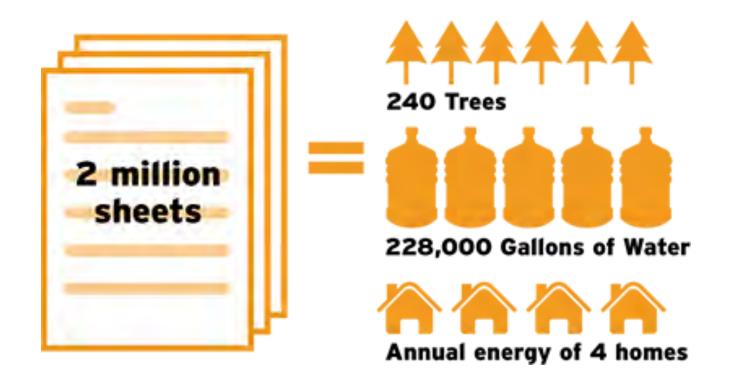
System	Projected Usage, FY16	Common Energy/Water Units	Peak Demand
Steam	1,187,994,036 lbs	1,238,594 MMBtu	350,000 lbs/hr
Chilled Water	130,642,200 ton- hrs	1,567,706 MMBtu	37,000 tons
Electricity	468,987,331 kW-h	1,600,185 MMBtu	78 MW
Water	59,233,796 CF	442,993,994 Gal	2 MGD
4,406,485 Million Blu of Energy		442,993,994 Gallons of Water	

How Do Buildings Use Energy?

MODELED END-USE ENERGY CONSUMPTION - STUDENT HEALTH & WELLNESS CENTER

Greening IT at Duke

- Energy Star policy
- Consolidating servers into efficient data centers
- Educating staff
 - Power management
- Donating used computers
- E-waste recycling
- Telecommuting
- Phone & video conferencing


E-waste Recycling

- Refurbished when possible for local schools & non-profits
- Electronics recycler

Case Study: ePrint

ePrint Paper Savings

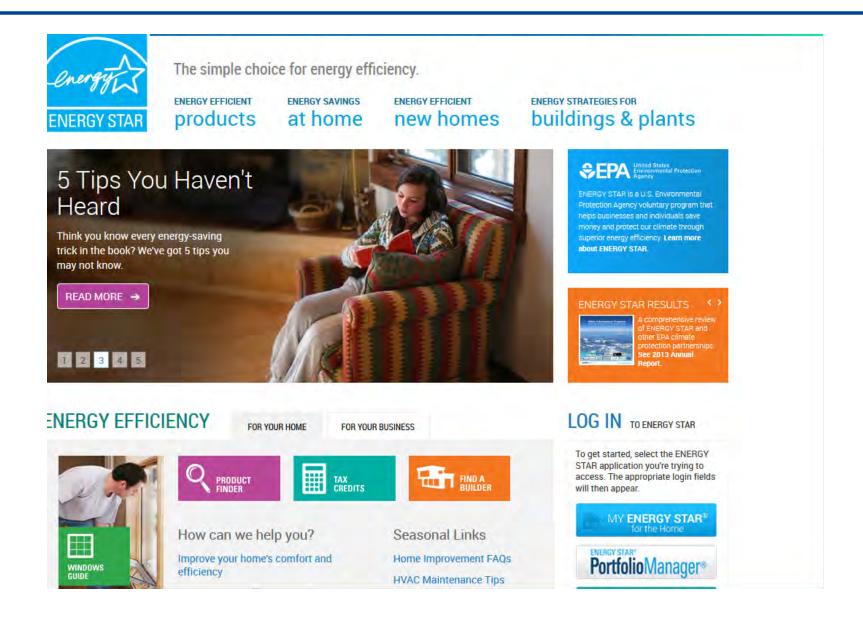
24% reduction in undergraduate printing in fall 2014

Sustainable Duke

What can you do?

Complex Choices: Book vs. eReader?

- Manufacturing
 - Book
 - 2/3 lb of materials
 - 2 gallons water
 - 2kw hours
 - eReader
 - 33 lb of materials
 - 79 gallons of water
 - 100kw hours

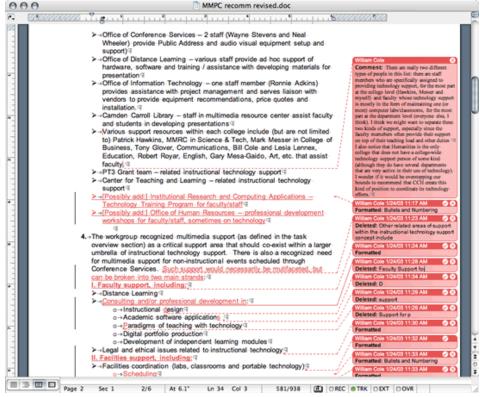

Complex Choices: Book vs. eReader?

- Over lifetime
 - eReader's lifetime ~ 2 years
 - Biological and ecological toxins are estimated to be 70 times greater
 - Environmental impact of one eReader is equivalent to 100 print books
- Will you read 50 books per year?

- Use electronics longer
- Purchasing electronics
 - EPA Energy Star
 - 15-25% more efficient
 - Recycled content
 - LED lighting
 - Printers and copiers
 - Duplex capable
 - Automatic stand by features

- Energy Conservation
 - Turn off equipment and lights
 - Computer, monitor, printer, speakers, etc
 - Check with IT
 - Phantom power
 - Powerstrip
 - Energy saving modes
 - Sleep, hibernate
 - No screen savers
 - Eliminate unnecessary equipment

Power Management


- Strict energy management can reduce overall energy use of a typical workstation by up to 88%
- Sleep and hibernate modes can reduce energy consumption up to 60%

- Purchasing paper
 - High post-consumer recycled content
 - Staples offers comparable pricing
 - Forest Stewardship Council Certified
 - Chlorine free
 - Unbleached

- Printing
 - Default doublesided
 - "One-side-used" bin
 - Grayscale
 - Narrow margins

- Reuse, then Recycle
 - Recycling bins
 - Recycle toner cartridges
 - Recycle all e-waste
 - At Duke
 - Durham, Wake, Orange counties

- Travel
 - Telecommuting
 - Phone & video conferencing

Sustainable Duke

Duke Green Workplace Certification

Learn More

- Leading for Environmental Sustainability workshop
 - June 2, 8:30-11:30am

Questions?

Casey Roe Sustainable Duke

casey.roe@duke.edu

919.660.1470

Amanda Starling Gould PhD Candidate in Literature amandastarling@gmail.com