
answers to these sorts of questions
and, in so doing, identify the neural
pathways that link sensory perception
to behaviour.
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Cell Polarity: Netrin Calms an
Excitable System

In a tractable model for cell invasion, the Caenorhabditis elegans anchor cell
migrates through basement membranes towards a polarity cue provided by
netrin. A new study reveals that the anchor cell polarity network can break
symmetry and oscillate in the absence of netrin, suggesting the presence of
interlinked positive and negative feedback loops, which are common in polarity
pathways.

Allison W. McClure
and Daniel J. Lew*

Establishment of cell polarity and
guidance of cell growth or movement
are critical processes for proper
development of a multicellular
organism. However, because of the
difficulty in detecting and manipulating
such processes in vivo, most studies
on polarity mechanisms have focused
on single-cell systems. A new study by
Wang et al. [1] published in the Journal
of Cell Biology exploits the transparent
nematode worm Caenorhabditis
elegans to demonstrate that polarity
control principles recently discovered
in single-cell systems also act in a
multicellular context.

In order to initiate uterine–vulval
attachment, the C. elegans anchor cell
polarizes toward a netrin spatial cue
and invades through the basement
membranes separating the uterine and
vulval tissues (Figure 1Ai) [2]. Netrin, a
laminin-related protein, is secreted by
the ventral nerve cord and is sensed
by the anchor cell through the netrin
receptor UNC-40 (the ortholog of the
vertebrate deleted in colorectal cancer
receptor, DCC). In addition to anchor
cell invasion, netrin directs several
other polarization events in C. elegans,
including dendritic and axon outgrowth
[3,4], synaptogenesis [5], and distal tip
cell migration [6].

Cells that orient towards specific
cues generally develop a stable polarity

axis with a clear ‘front’. But what
happens when the spatial cue is
removed? Wang et al. [1] found that, in
the absence of netrin, UNC-40 and its
effectors cluster at a random site in
the anchor cell. Using high-resolution
time-lapse microscopy, the authors
found that these polarity clusters
were dynamic: they disassembled
and then reassembled at a new site in
an oscillatory manner (Figure 1Aii).
Clusteringat randomsites is suggestive
of the existence of positive feedback,
such that small asymmetries in polarity
protein concentration are amplified
to promote clustering. Subsequent
cluster disassembly is suggestive of
delayed negative feedback, which
counteracts positive feedback.
The presence of interlinked positive

and negative feedback loops has
been inferred from similar oscillatory
or excitable behavior in other systems.
In appropriate environments, cells
of the social amoeba Dictyostelium
discoideum aggregate to form fruiting
bodies. The cells migrate towards
each other following gradients of the
chemoattractant cyclic AMP (cAMP)
and such cells stably concentrate
the polarity regulators Ras-GTP and
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phosphatidylinositol-3,4,5-triphosphate
(PIP3) at the front (Figure 1Bi). But
when D. discoideum cells are deprived
of a spatial cue, Ras-GTP and PIP3

spontaneously cluster at random
locations. The polarity clusters then
disperse and reform at other sites
(Figure 1Bii) [7]. In another example,
cells of the budding yeast
Saccharomyces cerevisiae stably
polarize Cdc42 and associated polarity
factors at preselected bud sites
demarcated by a system of inherited
bud-site-selection cues (Figure 1Ci).
But in mutants lacking such cues,
polarity factors spontaneously cluster
at a random location on the cell cortex.
These polarity clusters also disperse
and reform, often, though not always,
at the same site (Figure 1Cii) [8]. Similar
oscillatory behaviors have also been
noted for Cdc42 and related GTPases
in T cells [9], fission yeast [10,11], and
pollen tubes [12]. Although these
various examples utilize different
molecules and occur on different
timescales (Figure 1Aii,Bii,Cii), they
appear to reflect a common underlying
architecture of interlinked positive and
negative feedback loops [13].

Studies on biological oscillators,
like those controlling circadian rhythms
and the cell cycle, have established
that interlinked positive feedback and
delayed negative feedback loops
constitute an excellent way to construct
a robust oscillator [14,15]. But there
is no obvious need for a polarity
system to oscillate. Indeed, oscillatory
or excitable behaviors of polarity
regulators were only revealed when
experimenters deprived polarizing
cells of their normal spatial cues
(Figure 1Aii,Bii,Cii). So, what benefits
would interlinked positive and negative
feedbackprovide for polarity networks?

One hypothesis on the potential
role of feedback derives from the
observation that, in their physiological
contexts, polarizing cells are often
called upon to track very shallow
chemical gradients in a noisy
environment. Positive feedback
provides an effective way to amplify a
shallow gradient signal into a strongly
polarized response that can orient
cell motility or growth. However, the
resulting hair-trigger polarization may
lead cells to polarize in the wrong
direction, and, once polarized, positive
feedback would make it hard to change
direction. Theoretical studies showed
that addition of a slower negative
feedback loop could counteract these

problems, allowing error correction
and effective gradient tracking [16].
Thus, the circuit design revealed by
oscillatory behavior in the absence of
spatial information may have been
optimized to allow effective gradient
tracking when spatial cues are present.
Alternatively, it has been speculated
that negative feedback may serve

to restrain the spreading of polarity
clusters by positive feedback, making
polarity systems more robust [8].
Testing whether these concepts

hold in the anchor cell will require
elucidation of the mechanisms of
positive and negative feedback, so
that they can be surgically removed.
Wang et al. [1] show that UNC-40 and
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Figure 1. Removal of spatial cues reveals a potential for oscillatory behavior in several polarity
systems.

(Ai) The C. elegans anchor cell (AC) invades through the underlying basement membrane
to initiate uterine–vulval attachment (pictures courtesy of Judith Kimble, University of
Wisconsin-Madison, and [17]). The anchor cell polarizes towards the spatial cue, netrin, which
is released by the ventral nerve cord. (Aii) In animals without netrin, the anchor cell netrin
receptors cluster at a random location, disperse, and then repolarize at a different site. The graph
represents the concentration of netrin receptor (UNC-40/DCC) at the blue and red sites in the
picture [1]. (Bi) D. discoideum cells migrate up the cAMP gradient released by other cells as
they aggregate (pictures courtesy of M.J. Grimson and R.L. Blanton, Texas Tech University,
and [18]). (Bii) In uniform cAMP, the cells polarize transiently, then depolarize and repolarize in
a random direction. The graph represents the local concentration of the polarity regulator
Ras-GTP [7]. Note the faster time scale of clustering and disassembly. (Ci) S. cerevisiae cells
polarize towards an internal spatial cue at the bud scar. (Cii) In mutants lacking the spatial
cue, cells cluster Cdc42 at a random location in an oscillatory manner. The graph represents
the local concentration of Cdc42-GTP in the cluster [8].
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its effectors localize to the polarity
clusters, and that the UNC-40 receptor
itself is required for polarity cluster
oscillations. This suggests that the
receptor is active even in the absence
of netrin, and may itself participate in
the posited feedback mechanisms.
Given the polarizing roles of netrin/DCC
in other cell types, it will be very
interesting to see whether similar
feedback loops are common in other
developmental contexts. More
generally, an understanding of the
feedback mechanisms in different
polarity systems will allow us to
appreciate whether they are indeed
employed to hone gradient tracking or
whether they provide additional
benefits.
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Evolution: A Rapid Flight towards
Birds

Remarkable feathered dinosaur fossils have blurred the lines between early
birds and their non-avian dinosaur relatives. Rapid skeletal evolution and
decreasing body size along one particular lineage of theropod dinosaurs paved
the way for the spectacular radiation of birds.

Daniel T. Ksepka

With approximately 10,000 living
species, ranging from tiny nectivorous
hummingbirds to soaring raptors to
secondarily aquatic penguins, birds
represent one of the most remarkable
vertebrate radiations. How did birds
achieve such astonishing diversity?
Birds split from their closest living
relatives, the crocodilians,
approximately 250 million years ago.
This deep split places questions about
the earliest phases of avian evolution
beyond the reach of methods sampling
only extant taxa. Thus, evolutionary
biologistsmust turn to the fossil record.
An ever-growing trove of fossil
theropods — the clade of feathered
bipedal dinosaurs that includes such
well-known taxa as Velociraptor and

Tyrannosaurus—provides the rawdata
needed to reconstruct the crucial steps
preceding the appearance of primitive
birds roughly 150million years ago. In a
recent issue of Current Biology,
Stephen Brusatte and colleagues [1]
harness the fossil record of theropods
to provide insight into rates of evolution
near the transition between non-avian
dinosaurs and birds.

Using an expansive morphological
character dataset and methods for
estimating rates of evolution, Brusatte
and colleagues [1] identify a faster
rate of skeletal character change along
the theropod lineage leading to birds,
as well as a faster rate within birds
(as a clade) compared to other
theropod clades. Conversely, the study
detects no great leap between
advanced theropods and basal birds

in morphospace (a multidimensional
representation of the possible form
of an organism, with each axis
representing variation of a specific
feature). This drives home the message
that, although birds represent the
endpoint of an exceptional
fast-evolving lineage in the theropod
evolutionary tree, there is no wholesale
morphological transformation on the
particular branch leading directly to
birds (Figure 1). Rather, the earliest
birds were extremely similar to their
non-avian theropod contemporaries,
and it was after the basic bird ‘body
plan’ was acquired that they began a
runaway diversification.

Early Birds
Investigating the evolution of birds
requires several pre-requisite steps,
including identifying the earliest bird.
This is no longer an easy task.
For much of the 20th century, the iconic
Jurassic fossil bird Archaeopteryx
seemed to be clearly separated from
non-avian dinosaurs. Now, however,
the former ‘Urvogel’ (original bird)
occupies an increasingly crowded
and controversial region of the
theropod tree. Indeed, several recent
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