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Cell invasion through basement membrane: the anchor cell
breaches the barrier
Elliott J Hagedorn and David R Sherwood
Cell invasion through basement membrane (BM) is a

specialized cellular behavior critical to many normal

developmental events, immune surveillance, and cancer

metastasis. A highly dynamic process, cell invasion involves a

complex interplay between cell-intrinsic elements that promote

the invasive phenotype, and cell–cell and cell–BM interactions

that regulate the timing and targeting of BM transmigration. The

intricate nature of these interactions has made it challenging to

study cell invasion in vivo and model in vitro. Anchor cell

invasion in Caenorhabditis elegans is emerging as an important

experimental paradigm for comprehensive analysis of BM

invasion, revealing the gene networks that specify invasive

behavior and the interactions that occur at the cell–BM

interface.
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Introduction
The basement membrane (BM) is a dense, highly cross-

linked sheet of extracellular matrix that structurally

underlies all epithelia and endothelia [1]. During normal

development and immune surveillance, specialized cells

cross through BM in a process known as cell invasion or

BM transmigration [2]. Examples include gastrulation [3];

trophoblast implantation [4,5]; epicardial, myoblast, and

neural crest cell migrations [6–8]; and leukocyte traffick-

ing [9]. Cell invasion is also key to the pathology of many

human diseases, including asthma, rheumatoid arthritis,

pre-eclampsia, and, most notably, metastatic cancer

[10–14]. Cell invasion involves dynamic interactions be-

tween the invading cell(s), the tissue that is invaded, and

theBM separating them. An inability to recapitulate these

interactions in vitro and the difficulty of experimentally
www.sciencedirect.com 
accessing them in vivo have limited our understanding of

this fundamental cell biological process.

Recent advances using ex vivo and in vivo systems, how-

ever, are beginning to yield significant new insights into

cell invasion. The chick chorioallantoic membrane (CAM)

and rat peritoneal BM invasion assays, which allow direct

visualization of cell–BM interactions, are uncovering the

cellular and molecular mechanisms used to breach a native

BM [15,16��,17��]. Studies modeling tumor development

in Drosophila imaginal discs have revealed signaling inter-

actions between wild-type and oncogenic neighbors

that initiate invasive behavior [18��,19,20,21,22��]. In

vertebrates, studies of leukocyte transmigration have

identified regions of the perivascular BM that contain

reduced levels of the BM components laminin and type

IV collagen, sites that may present invading cells less

resistance [23]. Further, intravital imaging studies in mur-

ine tumor models have found remarkable plasticity in

invasive cell motility, including collective, mesenchymal,

and amoeboid migration, as well as lymphatic and hema-

togenic mechanisms of dispersal [24��,25]. In spite of the

different strengths of each of these models, none allow for

the observation of events at the cell–BM interface in vivo.

Furthermore, these models lack the predictability required

for a rigorous examination of dynamic events that occur

during BM transmigration. Thus, despite considerable

advances, our understanding of cell invasion through

BM remains incomplete.

Anchor cell invasion: a simple model of cell
invasion in vivo
Anchor cell (AC) invasion in Caenorhabditis elegans is

unique amongst models of cell invasion in that it com-

bines predictability, tractable genetics, and subcellular

visual resolution [26]. The molecular organization of BM

in C. elegans is highly conserved with vertebrate BM and

contains orthologs of the major structural components,

including type IV collagen, laminin, perlecan, and nido-

gen [27]. Moreover, these BM components have been

tagged with GFP, which, paired with AC-specific expres-

sion of fluorescent protein fusions, allows the cell–BM

interface to be easily visualized [28,29�,30�] (Figure 1).

The AC is a specialized uterine cell that invades through

the juxtaposed uterine and ventral epidermal BMs and

then moves between the central vulval precursor cells

(VPCs) to initiate uterine-vulval connection during her-

maphrodite development [26]. AC invasion is highly

stereotypical, occurring in tight synchrony with the div-

isions of the underlying 18 VPC P6.p and its descendants
Current Opinion in Cell Biology 2011, 23:589–596
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Figure 1
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Anchor cell invasion in the nematode C. elegans. Panels depict four time points over the course of anchor cell (AC) invasion. Schematic diagram (top),

single confocal z-section of AC (F-actin probe mCherry::moeABD, green) and basement membrane (BM; laminin::GFP shown in magenta)

fluorescence overlaid on DIC micrograph (middle; anterior is left, ventral is down in this and subsequent figures; brackets denote 18 vulval precursor

cell (VPC) P6.p and its descendants), and 3D reconstructions of a confocal z-stacks of the AC and BM fluorescence, rotated 458 forward (bottom). (a)

Approximately five hours before invasion, during the early L3 larval stage (P6.p one-cell stage), secretion of UNC-6/netrin (yellow arrows) from the

ventral nerve cord (VNC) acts in conjunction with integrin signaling to establish an F-actin-based invasive membrane domain (orange) within the AC at

the interface with the BM. (b) During the mid-L3 larval stage, the 18 VPC P6.p cell daughters (P6.p two-cell stage) secrete a chemotactic vulval cue

(blue arrows) that stimulates protrusions from the AC’s invasive membrane domain that breach the BM. The transcription factor FOS-1A controls the

expression of target genes within the AC (black arrows), including the BM protein hemicentin (purple spots), that promote BM removal. (c) By the mid-

to-late L3 stage (P6.p four-cell stage) the AC has generated a large hole in the BMs and has invaded between the central 18 VPCs, initiating uterine-

vulval connection. (d) During the late L3 larval stage, the hole in the BM expands beyond the AC as the underlying vulval cells invaginate. The AC

invades between the central vulval cells (out of the plane of focus), and sits at the apex of vulval.
(Figure 1a–d). BM transmigration, which occurs over a 90-

min period (Figure 1b and c), is controlled by a combi-

nation cell-intrinsic factors that promote BM removal

[31–33] and extracellular cues that control the timing

and targeting of AC invasion [26,29�,34�]. Many genes

regulating AC invasion have been implicated in other

developmental invasion events and metastasis [29�,31,

34�,35��], suggesting the AC’s tissue-invasive program is

conserved. As we discuss in this review, the AC’s exten-

sive experimental toolkit is allowing for a comprehensive

analysis of cell invasion: from identifying the factors that

specify the invasive phenotype to understanding the role

of the microenvironment and visualizing the dynamic

cellular events that orchestrate BM removal.

Transcriptional control of AC invasion:
specifying the invasive phenotype
Cell invasion through BM is a transcriptionally acquired

behavior [36,37]. In embryonic development and tumor
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progression, cell invasion is strongly associated with epi-

thelial-to-mesenchymal transitions (EMTs), wherein

individual epithelial cells downregulate cell–cell adhe-

sions, lose polarity, and acquire mesenchymal-like moti-

lity and invasive capabilities [38,39]. Several transcription

factors are known to promote EMT, including Snail, Slug,

Twist, and Zeb1/2 [36]. The known links between these

transcription factors and the invasive cellular machinery

(e.g. proteases and F-actin-based structures called invado-

somes), however, are indirect, suggesting that these EMT

transcription factors do not themselves specify invasion

[40,41]. Furthermore, BM invasion is not always tied to

EMT, as cells can invade through BM without adopting a

full mesenchymal phenotype. These include collective

invasions during normal morphogenetic processes and

tumor progression, in which groups of cells assume

mesenchymal-like migratory properties at an invasive

front, while maintaining cell–cell junctions [38,42,43].

AC invasion most closely resembles this type of invasion
www.sciencedirect.com
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[26,29�] (Figures 1c and d and 2a). In addition, leukocytes

and some cancers adopt an amoeboid-type of motility and

are invasive [44]. On the basis of these observations it is

unclear whether distinct invasion programs are used in

different contexts (e.g. EMT, collective or amoeboid

invasion) or if EMT regulators and other cell-specific

factors intersect with transcriptional regulators of a shared

BM invasion program.

One of the first genes found to regulate AC invasion was

fos-1a, the C. elegans ortholog of the transcription factor
Figure 2
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Fos [31]. Vertebrate Fos proteins have been associated

with a wide range of cell invasions, from trophoblast

implantation to many types of metastatic cancers [45–
47]. Furthermore, Fos proteins are a component of the

AP-1 transcription factor complex, which in vertebrates is

the major regulator of matrix metalloproteinases (MMPs),

a class of proteases whose expression is strongly correlated

with normal BM invasion and tumor progression

[20,48,49�,50]. In fos-1a null mutants, the AC extends

polarized cellular protrusions that flatten at an intact BM,

indicating that targeting and polarization to the site of
PI(4,5)P2 laminin

isosurface

laminin hemicentin
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invasion are normal but the ability to breach the BM

barrier is compromised. FOS-1A is upregulated in the AC

before invasion and regulates the expression of the Evi-1

transcription factor ortholog EGL-43L, the protocadherin

CDH-3, the conserved extracellular matrix protein hemi-

centin (HIM-4) and, strikingly, the MMP ortholog ZMP-

1 [31–33]. Considering the conservation of Fos regulation

of MMP expression from C. elegans to humans and the

strong association of Fos and MMPs with diverse BM

invasion events, we suspect that Fos is a component of a

conserved BM transmigration program that intersects

with cell-specific transcriptional elements. Consistent

with this idea, vertebrate Fos proteins have recently been

shown to function with EMT transcription factors in

multiple contexts [39,51,52]. Importantly, in addition to

FOS-1A, other transcriptional regulators appear to con-

tribute to the AC’s invasiveness. ACs in fos-1a null

mutants maintain expression of several genes required

for BM invasion, including the Rac GTPase MIG-2, the

integrin heterodimer INA-1/PAT-3 and the guanylate

kinase GUK-1 [29�,34�,35��]. Identifying and examining

how these additional factors function, as well as how FOS-

1A is regulated during AC invasion, will advance our

understanding of the transcriptional regulation of BM

invasion and likely help elucidate how diverse cell types

become invasive.

Integrating cell-intrinsic factors and
extracellular cues at the AC–BM interface
How extracellular cues are integrated with cell-intrinsic

pathways to control BM transmigration is poorly under-

stood. Studies on AC invasion have shown that a combi-

nation of cell-intrinsic and extrinsic signals co-ordinates

the precise timing and targeting of BM invasion and that

these pathways intersect at the AC–BM interface.

Approximately five hours before invasion, the guidance

factor UNC-6/netrin, which is secreted from the ventral

nerve cord (VNC; Figure 1a), polarizes its receptor UNC-

40/DCC to the basal membrane of the AC (i.e. the AC–
BM interface) [29�]. Here, netrin signaling, in combi-

nation with the putative laminin-binding integrin INA-1/

PAT-3, is thought to act as a scaffolding to localize actin

regulators. These include the phospholipid phosphatidy-

linositol 4,5-bisphosphate (PI(4,5)P2), the Rac proteins

MIG-2 and CED-10, and the Ena/VASP ortholog UNC-

34 [29�,34�] (Figure 2b and c). By establishing this inva-

sive membrane domain at the AC–BM interface, the first

two signals (integrin and netrin) prepare the AC to

respond to a third, currently unidentified, chemotactic

cue secreted from the underlying vulval cells. In response

to this cue, the AC extends protrusions from its invasive

membrane domain that breach the BM (Figures 1c and

2a). Illustrating how extrinsic and cell-intrinsic pathways

integrate at the AC–BM interface, the proper deposition

of the FOS-1A transcriptional target hemicentin (HIM-4;

Figure 2d), which promotes BM removal by the AC, is

also dependent on integrin and netrin signaling [29�,34�].
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Convergence of distinct pathways at the invasive cell–BM

interface is likely a key principle of all cell invasions.

BM remodeling during AC invasion: breaching
the barrier
To transit through BM, it is thought that cells must

disassemble, displace, or proteolytically break down the

BM [2,53], or alternatively, find regions with reduced BM

components or cross-linking [23,54]. A lack of in vivo
models and visual markers to monitor the fate of the BM

and the corresponding activity of invading cells over time

has hindered our ability to determine the relative contri-

butions of each of these processes.

During AC invasion, the transcription factor FOS-1A

plays a key role in regulating the expression of genes

within the AC that enable BM removal, including the

MMP ZMP-1. Animals harboring null mutations in zmp-
1, however, show only a mild AC invasion defect,

suggesting ZMP-1 functions redundantly, possibly with

other MMPs. Consistent with this idea, a recent screen of

the predicted proteases in the C. elegans genome failed to

identify a single protease that alone was required for AC

invasion [30�]. In vertebrate development and tumor

progression, MMPs are strongly expressed within or near

invading cells [50,55] and have been functionally impli-

cated in BM transmigration in ex vivo assays [15]. Similar

to AC invasion, however, mouse knockouts of MMPs

show only mild phenotypes and there is to date no clear in
vivo evidence demonstrating a requirement for MMPs in

cell invasion through BM [2]. Furthermore, therapies

targeting MMPs have been unsuccessful in a wide range

of cancers, though the reasons for these failures are

unclear [56]. Thus, the role of MMPs in BM transmigra-

tion remains a crucial gap in our understanding of cell

invasion. Given that C. elegans has only six MMP family

proteins, compared to more than 20 in vertebrates, a

functional analysis of potentially redundant roles should

be more feasible.

The unbiased genetic approaches in C. elegans have also

facilitated the identification of new, unexpected players

that regulate BM removal. An example of this is HIM-4,

the C. elegans ortholog of the conserved matrix protein

hemicentin [31,57]. Hemicentin is paradoxically secreted

by the AC into the BM through which the AC later

invades (Figure 2d). Hemicentin might promote BM

removal by providing increased adhesion for the AC or

by biophysically changing the BM, which has been

hypothesized as a mechanism for the repeated non-

destructive transmigration of leukocytes [2]. Suggesting

a conserved role in invasion, hemicentin has been shown

to localize to the surface of pre-implantation trophoblasts

[58].

Considering the essential role of BM in cellular physi-

ology and tissue integrity, it seems likely that BM
www.sciencedirect.com
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AC invasion screens identify genes required for human cancer cell invasion. Top panels show the C. elegans AC (expressing F-actin probe

mCherry::moeABD, green) and BM (laminin::GFP, magenta) in RNAi fed animals at the P6.p four-cell stage, the time by which wild-type BM invasion is

complete. Bottom panels show siRNA transfected MDA-MB-231 human breast cancer cells (green) plated on a chick chorioallantoic membrane (CAM;

nuclei, blue; type IV collagen in BM, red). Arrowheads point to intact BM. (a) In empty vector RNAi controls, the AC invades through the BM (asterisk;

top panel). In scrambled siRNA controls, the breast cancer cells breach the chorioallantoic epithelial BM (asterisk, bottom panel) and invade into the

extraembryonic intermediate mesenchyme (invading cells outlined by dotted white line). (b) RNAi and siRNA-mediated knockdown of the TCP1-like

chaperonin CCT-5 blocked BM invasion by the AC (top) and breast cancer cells (bottom), respectively. (c) Knockdown of NEMO-like kinase (NLK)

similarly blocked BM transmigration by the AC and human breast cancer cells.
removal is more complex and tightly regulated than

previously recognized. Supporting this idea, we recently

developed a BM optical highlighting technique and

found that a combination of bulk BM movement followed

by targeted cell–BM adhesion contributes to the for-

mation of the large BM gap during the later stages of

uterine-vulval development [30�] (Figure 1d). Combin-

ing more advanced microscopy methods and BM markers

with genetic analysis of AC invasion promises to better

resolve the initial stages of BM removal during cell

invasion.

AC invasion as a gene discovery tool: a
comprehensive approach
The ability to identify functionally relevant genes using

powerful genetic screens and functional genomics has

been a great strength of AC invasion. For example, both

integrin and netrin signaling were identified in screens for

regulators of AC invasion [29�,34�]. More recently, Matus

et al., 2010 conducted a whole-genome RNA interference

(RNAi) screen that identified 99 genes that promote AC

invasion [35��]. The identified genes included chaperone

complexes, transcriptional regulators, kinases, and con-

served molecules with unknown functions. Notably, most

of these genes have clear human orthologs but have never

been implicated in cell invasion. To investigate potential

functional homology in vertebrate cells, two of the genes

that had single orthologs in humans, the TCP-1-like
www.sciencedirect.com 
chaperonin cct-5 and the NEMO-like kinase (NLK)

ortholog lit-1, were knocked down by siRNA in metastatic

breast and colon cancer cells. Depletion of either CCT-5

or NLK abrogated the ability of these cells to breach the

BM in an in vivo CAM assay (Figure 3a–c), providing

strong evidence for the conservation of invasive programs

in development and disease.

As this was the first genome-wide functional screen of BM

invasion in vivo, it will be important to further character-

ize the identified genes to determine where each gene

functions during AC invasion and to examine whether

these genes have conserved roles in promoting cell inva-

sion in other contexts. Ultimately, the human orthologs of

genes identified in screens for AC invasion might provide

novel therapeutic targets to modulate invasive behavior in

disease states such as metastatic cancer.

Future directions: major unanswered
questions at the invasive front
Although AC invasion has begun to yield important new

insights into BM transmigration, several major questions

remain (summarized in Figure 4). The full complement

of FOS-1A targets that enable BM removal remains a

critical gap in our understanding of AC invasion, as does

the nature of the FOS-1A-independent transcriptional

pathway(s). The molecular identity of the vulval cue

and its receptor are also unknown. Identifying these
Current Opinion in Cell Biology 2011, 23:589–596
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Figure 4
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Current understanding of AC invasion and major unanswered questions. Schematic diagram depicts the integration of multiple extrinsic (integrin,

netrin, and the vulval cue) and cell-intrinsic (FOS-1A, EGL-43L, and hemicentin) factors at the visually accessible AC–BM interface (highlighted by red

box). Questions for future research are labeled in italics and include identifying additional targets of the transcription factor FOS-1A, other transcription

factors, the molecular nature of the vulval cue and its receptor, as well as investigating the potential roles of proteases and invadosomes.
molecules will be particularly important to understand

how this cue stimulates the formation of the AC’s invasive

membrane protrusions that breach the BM. Notably,

many of the molecules that localize to these invasive

protrusions are also components of invadosomes, F-actin-

based membrane protrusions found in numerous invasive

cell types when cultured in vitro [59�]. It will thus be of

interest to investigate whether the structures in the AC

might be the in vivo equivalent of invadosomes. Finally,

though protease expression is associated with AC invasion

and protease activity has been strongly implicated in in
vitro and ex vivo models of cell invasion, a defined role for

proteases in AC invasion, as in other in vivo contexts,

remains a major unanswered question.

Currently, there is no unifying model for how cells, in

either normal or pathological contexts, breach BM. As BM

can have tissue-specific properties and compositions,

different strategies might be employed to transmigrate

distinct BMs [1,2]. In general, however, BMs have a

highly conserved composition that is shared throughout

the animal kingdom, particularly regarding the core struc-

tural components. Thus, it seems equally plausible that

cells use a common but adaptable invasion program to
Current Opinion in Cell Biology 2011, 23:589–596 
breach BM. Supporting this idea, cancer cells and leu-

kocytes can invade BMs of diverse tissues. Further, many

of the genes associated with AC invasion (Fos, integrin,

and MMPs) are thought to regulate cell invasion in

diverse contexts in vertebrates and Drosophila. Finally,

invasive cancer cells appear to have adaptive properties,

as they have been found to match the strength of their

invasive machinery to the rigidity of the matrix [60]. We

thus favor the notion that a conserved but flexible cell

invasion program underlies BM transmigration in most

cell types. We anticipate that studies on AC invasion will

help to elucidate this conserved BM invasion program

and bring about a deeper, more unified understanding of

the mechanisms controlling this fundamental and clini-

cally important cellular behavior.
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