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olution structural MR images are being assembled to quantitatively examine the
relationships between brain anatomy, disease progression, treatment regimens, and genetic influences upon
brain structure. Quantifying brain structures in such large databases cannot be practically accomplished by
expert neuroanatomists using hand-tracing. Rather, this research will depend upon automated methods that
reliably and accurately segment and quantify dozens of brain regions. At present, there is little guidance
available to help clinical research groups in choosing such tools. Thus, our goal was to compare the
performance of two popular and fully automated tools, FSL/FIRST and FreeSurfer, to expert hand tracing in
the measurement of the hippocampus and amygdala. Volumes derived from each automated measurement
were compared to hand tracing for percent volume overlap, percent volume difference, across-sample
correlation, and 3-D group-level shape analysis. In addition, sample size estimates for conducting between-
group studies were computed for a range of effect sizes. Compared to hand tracing, hippocampal
measurements with FreeSurfer exhibited greater volume overlap, smaller volume difference, and higher
correlation than FIRST, and sample size estimates with FreeSurfer were closer to hand tracing. Amygdala
measurement with FreeSurfer was also more highly correlated to hand tracing than FIRST, but exhibited a
greater volume difference than FIRST. Both techniques had comparable volume overlap and similar sample
size estimates. Compared to hand tracing, a 3-D shape analysis of the hippocampus showed FreeSurfer was
more accurate than FIRST, particularly in the head and tail. However, FIRST more accurately represented the
amygdala shape than FreeSurfer, which inflated its anterior and posterior surfaces.

Published by Elsevier Inc.
Introduction

Rapid advances in magnetic resonance imaging (MRI) have
enabled noninvasive exploration of the human brain with increasing
level of detail. Quantitative MRI studies have revealed differences in
the volume of particular brain structures in several neuropsychiatric
conditions including depression (Videbech and Ravnkilde, 2004),
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posttraumatic stress disorder (Bremner et al., 1995, 1997), schizo-
phrenia (Turetsky et al., 1995; Vita et al., 2006), and Alzheimer's
disease (Apostolova et al., 2006). Large databases of MR images are
being assembled to enable researchers to examine subtle relation-
ships between quantitative brain anatomy, disease progression,
treatment regimens, risk, and other factors for various diseases. This
research has been recently extended to an investigation of genetic
influences on brain structure. The advent of technologies capable of
assaying many thousands of gene variations on single chip has
resulted in demand for ever larger data sets.

These research programs rely upon accurate segmentation and
quantification of brain regions from high-resolution MR images. Until
recently, manual tracing of brain regions by experts in neuroanatomy
has been the accepted standard. However, as the size of the MRI
datasets has increased, the time and cost required for the labor
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Fig. 1. A selection of manually segmented hippocampal slices of a representative subject.
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intensive process of manual tracing has become prohibitive. An
experienced researcher may require two hours to trace a single
structure such as the hippocampus, and more than a week to trace all
of the major structures of the brain. Differences in criteria among
experts can lead to systematically different volume estimates of some
brain regions, and so the highest consistency and sensitivity is
achieved when a single individual traces the entire dataset. However,
the criteria used by even a trained expert can subtly drift during the
course of a long study. For these reasons, automated procedures for
segmenting and quantifying the brain have attracted considerable
interest. Automatedmethods provide consistent results with repeated
iterations on a given dataset. Improvements in the segmentation
algorithms can be accommodated with relative ease even on large
data sets by re-analysis with updated software.

Despite the availability of several sophisticated automated and
semi-automated segmentation algorithms, there have been relatively
few published comparisons of automated segmentation and hand
tracing of brain structures (Barnes et al., 2008; Jatzko et al., 2006;
Powell et al., 2008). Thus, there is little guidance in the literature for
clinical research groups embarking upon a large-scale quantitative
study of human brain anatomy. Here, we assessed the performance of
two popular fully automated segmentation and quantification soft-
ware tools available in the public domain and developed by leading
neuroimaging analysis groups. FreeSurfer [Martinos Center for
Biomedical Imaging, Harvard-MIT, Boston USA] performs subcortical
and cortical segmentation and assigns a neuroanatomical label to each
voxel based on probabilistic information automatically estimated from
a large training set of expert measurements (Fischl et al., 2002). FSL/
FIRST [FMRIB Integrated Registration and Segmentation Tool, Oxford
University, Oxford UK] performs subcortical segmentation using
Bayesian shape and appearance models (technical report at http://
www.fmrib.ox.ac.uk/fsl/first/index.html). Fischl et al. (2002) reported
performance characteristics for FreeSurfer in 2002; however, since
that report there has been steady improvement in the quality
(contrast to noise ratio) of high-resolution structural MR image acqui-
sition at 3 T and improvements in the FreeSurfer software. The FIRST
softwarewas released in 2007 and performancemetrics have not been
published. Image quality improvements are sure benefit to both auto-
mated and manual brain segmentation although automated algo-
rithms are likely to incur greater benefit because an expert rater is
better able to estimate boundaries by employing multiple heuristics
when insufficient contrast or other feature information is available.

Our first goal was to compare the accuracy of automated
segmentation of the hippocampus and amygdala by FreeSurfer and
FIRST as compared to manual tracing. These brain structures were
chosen because of their relevance to a variety of neuropsychiatric
disorders, and because their segmentation is technically challenging.
Comparative performance was measured with four metrics (i) percent
volume overlap (ii) percent volume difference (iii) correlation with
manual tracing across the sample, and (iv) group-level 3-D shape
analysis. These are well accepted approaches for comparing perfor-
mance of competing segmentation methodologies (Fischl et al., 2002).

Our second goal was to provide sample size estimates for each of
the methods to study differences in hippocampal or amygdala volume
between two groups of subjects (e.g., healthy control and clinical
populations). Many disorders that are associated with region-specific
volume differences are also accompanied by an increased variability in
volume. Thus, comparison of clinical group to a healthy group requires
measurements that reliably capture the true variance represented in
each group. The introduction of additional variance from inaccurate
segmentation leads to a corresponding reduction in power to detect
differences. We estimated the number of subjects required to
adequately power a study for a range of anticipated effect sizes
using the variance derived from hand tracing as the standard.

Differences in hippocampal and amygdala volumes have been
reported in the literature for various neuropsychiatric disorders and
the magnitude of the difference depends on the disorder in question.
For instance, change in hippocampal volume range from 25% for
epilepsy (Theodore et al., 1999) to 10% for PTSD (Bremner et al., 1995,
1997), while amygdala volumes showed reduction of 32% in
dissociative identity disorder (Vermetten et al., 2006) and 17% in
pedophilia (Schiltz et al., 2007). As a final confirmatory step in sample
size estimation, we used FreeSurfer and FIRST to measure an existing
dataset within our lab to examine hippocampal and amygdala volume
differences associated with major depression (Campbell et al., 2004;
Kronmuller et al., 2008; Videbech and Ravnkilde 2004).

Methods

Subject data

We collected high-resolution structural MR images at the Duke-
UNC Brain Imaging and Analysis Center from 20 participants without
history of neurologic disorder or head trauma that were enrolled at
the Durham Veterans Affairs (VA) Medical Center during 2006–2008.
Participants provided written informed consent to participate in
procedures approved by the Institutional Review Boards at Duke
University and the Durham VA Medical Center. High resolution
T1-weighted images with 1 mm isometric voxels were acquired on a
General Electric 3 T EXCITE system using the Array Spatial Sensitivity
Encoding Technique (ASSET) with fast spoiled gradient-recall (FSPGR).
Image parameters were optimized for contrast betweenwhite matter,
gray matter, and CSF (TR/TE/flip angle=7.484 ms/2.984 ms/12°,
256 mm FOV, 1 mm slice, 166 slices, 256×256 matrix, 1 Nex).
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Fig. 2. A selection of manually segmented amygdala slices of a representative subject.
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Manual tracing of the hippocampus and amygdala

A detailed description of the manual segmentation protocol of
hippocampus and amygdala are presented in Appendix A. Manual
tracing in a sample subject is illustrated for eight representative
coronal slices of the hippocampus in Fig. 1 and the amygdala in Fig. 2.
Manual tracing of the hippocampus was performed by a single expert
rater (YX) with experience performing over 500 hippocampal tracings
(Lewis, 2005; Provenzale et al., 2008). Intrarater reliability for YX and
a second expert rater, DVL, were measured for hippocampal volume
measurement in a separate dataset using the intraclass correlation
coefficient (ICC). Hippocampal volumes measured by DVL and YX had
interrater ICCs of 0.89 for both sides together, 0.88 for the left side and
0.90 for the right side. The ICCs ranged from 0.87 to 0.97 for intrarater
reliability of hippocampal volume readings. These indicate excellent
agreement between and within these two observers. Manual tra-
cing of the hippocampus was performed using ITK-SNAP v1.4.1
(Yushkevich et al., 2006) in native space and orientation on conti-
guous coronal slices proceeding from the most posterior to most
anterior slice.

Manual tracing of the amygdala was performed independently of
the hippocampal tracing by rater YX with oversight by KSL. Tracing
proceeded from posterior to anterior using coronally oriented slices.

The intraclass coefficients were calculated from a separate sample
47 subjects from a two-way mixed single measure coefficient, i.e. the
raters, not selected at random, rated a random sample of subjects.
Therefore, the raters are considered a fixed effect and the subjects are
the random effect. The scans relevant to the ICC were collected on two
different scanners, also different from the scanner used in the present
study (see above). The first scanner was a GE 1.5 T with 3D, coronal,
fast SPGR, TR/TE/flip angle=12 ms/5 ms/30°, full echo, 200 mm FOV,
1.5 mm slice, 124 slices, 256×192 matrix, 2 Nex, while the second
scanner was a Siemens 1.5 T scanner with 3D, coronal, TR/TE/flip
Table 1
Comparison of automated measures to manual tracing

Automated measure Average
volume±SD

% Volume overlap

Left Righ

Hippocampus
FreeSurfer 4190±526.7 82%±1.5 82%
FSL-FIRST (threshold=2) 4193±634.9 79%±3.6 80%
FSL-FIRST (threshold=3) 4843±743.4 78%±3.8 79%
FSL-FIRST (version 4.1) 4404±730.1 77%±5.9 80%

Amygdala
FreeSurfer 1945±266.5 75%±3.2 72%
FSL-FIRST (threshold=2) 1469±243.8 73%±3.2 72%
FSL-FIRST (threshold=3) 1591±254.7 73%±3.2 73%
FSL-FIRST (version 4.1) 1526±295.2 70%±9.6 70%
angle=12 ms/5 ms/20°, full echo, 20 cm FOV, 1.5 mm slice, 124 slices,
256×192 matrix, 2 averages. Therefore, it is likely that the higher
resolution and enhanced contrast to noise resulting from improved
scanner hardware and software in the present study would lead to
higher ICC. The typical variation observed in automated segmentation
of the amygdala with FIRST and FreeSurfer, and the hippocampus with
FIRSTwas far greater than the variation associatedwith the quoted ICC
values. Only the segmentation of the hippocampus with FreeSurfer
yielded variation that was in the neighborhood of the ICC values.

Automated segmentation with FIRST and FreeSurfer

Automated segmentation of amygdala and hippocampus was
performed using FIRST (FSL v4.0.1) which uses a Bayesian probabilistic
approach. The shape and appearance models in FIRST are constructed
from a library of manually segmented images. Themanually generated
labels are parameterized as surface meshes and then modeled as a
point distribution. Using the learned models, FIRST searches through
shape deformations that are linear combinations of the modes of
variation to find the most probable shape instance given the observed
intensities from the input image. Using T1 images with NIFTI headers
in LAS orientation, the segmentation was performed with two-stage
affine transformation to standard space ofMNI 152 at 1mm resolution.
The first stagewas a standard 12 degrees of freedom registration to the
template and the second stage applied 12 degrees of freedom regis-
tration using anMNI152 subcorticalmask to exclude voxels outside the
subcortical regions. Boundary voxels were thresholded at z=3, along
with the recommended number of modes (iterations) for the
hippocampus (30) and amygdala (50). The boundary voxel threshold
is an important parameter that represents the z-score of the amount of
noise in the boundary voxels. Thus a boundary voxel threshold of z=2
has less noise and therefore is stricter or more conservative than a
boundary threshold of z=3. FIRST includes these boundary voxels as
% Volume difference Correlation with
manual segmentationt Left Right

±2.8 4%±2.1 5%±1.7 r=0.82, y-intercept=496
±2.9 4%±2.4 4%±2.3 r=0.66, y-intercept=1502
±2.8 6%±3.4 7%±2.3 r=0.66, y-intercept=1480
±2.4 5%±3.2 5%±2.8 r=0.66, y-intercept=1480

±4.0 7%±3.0 9%±2.7 r=0.56, y-intercept=667
±4.5 3%±2.4 4%±3.2 r=0.35, y-intercept=1024
±4.9 4%±3.1 5%±3.4 r=0.24, y-intercept=1121
±6.6 5%±5.8 6%±4.9 r=0.28, y-intercept=1125
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part of the segmented region. To our knowledge, there is little guidance
from the FSL designers about the appropriate use or selection of a
boundary threshold. Given that on average, FIRST overestimated the
volume of both the hippocampus and amygdala relative to manual
tracing, it seemed plausible that using a stricter boundary threshold
might yield a volume that is more consistent with manual tracing. The
main analysis was performed with threshold of z=3, but a secondary
analyses with threshold of z=2 is included in Table 1. The only non-
default option was the inclusion of a neck mask for improving the
performance of the registration step with our T1 images. Overlap with
neighboring structures was included to be consistent with our
approach of independent manual tracing of hippocampus and
amygdala. Segmented labels were automatically transformed back to
native space by FIRST using the inverse transformation matrix derived
in the initial registration step.

Automated segmentation and labeling of amygdala and hippo-
campus was also performed by FreeSurfer (v4.0.5) which utilizes an
affine rigid linear transformation and combines information about
voxel intensity relative to a probability distribution for tissue classes
with information about the spatial relationship of the voxel to the
location of neighboring structures obtained from a manually labeled
atlas. Details of FreeSurfer subcortical segmentation are described in
Fischl et al. (2002). Segmented labels were returned to native space
using the FreeSurfer library function mri_label2vol and the transfor-
mation matrix generated by tkregister2 which minimizes the
distortion introduced by interpolation. Individual areas were
extracted from the large segmentation volume that contains all the
regions of interest. The analysis pipeline of transformations for seg-
mentation and reverse transformations to native space for volumetric
comparisons are diagrammed in Fig. 3. (Analysis commands and
scripts are detailed at http://fourier.biac.duke.edu/wiki/doku.php/
mirecc:mireccanat)
Fig. 3. Method for transforming brains from native space to standard space to perform segm
and shape comparisons. The function tkregister2, available in the FreeSurfer library, performs
regions retain their original dimensions.
Analysis of automated segmentation performance

To validate the success of the automated segmentation procedure,
we compared the results with manual tracing, the assumed reference
standard, using a dataset of 20 brains. The automated segmentation
methods were compared to manual tracing using the following
criteria (i) percent volume overlap or Dice's coefficient as defined in
Eq. 1 (ii) percent volume difference as defined in Eq. 2 (iii) correlation
between automated measures and manual tracing, and (iv) 3-D shape
difference analysis. Given two different labelings of a structure, L1 and
L2, and a function V(L), which takes a label and returns its volume, the
percent volume overlap is given by:

O L1; L2ð Þ = V L1 \ L2ð Þ
V L1ð Þ + V L2ð Þ

2

� � ×100 ð1Þ

For identical labelings, O(L1,L2) achieves its maximum value of 100,
with decreasing values indicating less perfect overlap. Note that the
overlap between two different labelings will be reduced by slight
shifts in the spatial location of one label with respect to another. Given
that many neuroanatomical studies are only interested in quantifying
volumetric changes, we quantified volume difference between two
labelings that is insensitive to spatial shift.

D L1; L2ð Þ = jV L1ð Þ−V L2ð Þj
V L1ð Þ + V L2ð Þ

2

� � ×100 ð2Þ

For labels with identical volume, D(L1,L2) achieves its optimal value
of zero, with increasing values indicating a greater volume difference
between the two labelings. Note that greater values of D(L1,L2) lead
directly to reduced statistical power to detect subtle volumetric
changes in subcortical structures.
entation with FreeSurfer and FIRST and then transform back to native space for volume
transformationwithminimal interpolationwhich typically leads to distortion. Therefore

http://fourier.biac.duke.edu/wiki/doku.php/mirecc
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Fig. 4. Percent volume overlap (Dice's coefficient) between FreeSurfer segmentation
and manual tracing is greater than the overlap between FIRST and manual tracing for
the left and right hippocampus. In the amygdala, the overlap is not different bet-
ween manual tracing and either of the two automated methods. Percent volume over-
lap is greater in the hippocampus than the amygdala regardless of the segmentation
method.

Fig. 5. In the left and right hippocampus, the percent volume difference relative to
manual tracing, is smaller with FreeSurfer than FIRST. In the left and right amygdala, the
volume differencewithmanual tracing, is smaller with FIRST than FreeSurfer. Therewas
a smaller FreeSurfer-Manual volume difference in the L-amygdala than the R-amygdala.
No other laterality differences were detected.
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The performance was compared using Multivariate Analysis of
Variance (MANOVA) on two dependent variables, volume overlap and
volume difference, with 3 factors: region (2 levels: amygdala,
hippocampus), method (2 levels: FIRST, FreeSurfer), and hemisphere
(2 levels: left, right).

Correlation of automated segmentation measures with manual tracing

To measure the ability of automated methods to capture the true
variability in volume within a group, we computed Pearson correla-
tion. We computed correlations between manual tracing and both the
automated segmentation methods. A strong correlation yields small
volumes for small structures and large volumes for large structures.
Again, we assume that volumes calculated by manual tracing are
closest to the true volumes for a given structure. The intercept of the
fitted line provides information about systematic differences in
volume estimates between measures.

Bland–Altmanplots offer another approach to assessing agreement
betweenmeasures. Bland–Altman analyses provide information about
the interchangeability of two measures without assuming that either
is the gold-standard and can be of value in clinical settings.

Assessing systematic shape bias between methods with 3D contour maps

We computed group-level difference maps between manual
tracing and FreeSurfer and FIRST. Difference maps were created by
SPHARM shape analysis tool v1.5 [UNC NeuroImage Analysis
Laboratory (NIAL), Chapel Hill, NC]. The input — segmentations of
the hippocampus and amygdala — were converted into a corres-
ponding spherical harmonic description (SPHARM), and then
sampled into triangulated surface meshes, and aligned. Differences
between groups' surface characteristics were then computed using
the Hotelling's T2 for two samples metric. The comparisons
included (i) a significance map showing p-values corrected using
permutation testing which provides a conservative (comparable to
Bonferroni correction) and tractable approach for handling the
multiple comparisons problem (Pantazis et al., 2004), (ii) a mean
difference map thresholded by the distance between corresponding
vertices on the mesh of the reference group and the comparison
group, (iii) vectors superimposed on the difference maps that show
the directionality between corresponding vertices, and (iv) ellip-
soids superimposed on the difference map that show variance in
the comparison group where the dimensions of the major axes
(x, y, z) of the ellipsoid conveys the magnitude of variance (Styner
et al., 2006). Difference maps and significance maps were
computed for the hippocampus and amygdala between the refe-
rence group (manual tracing) and each of the comparison groups
(FreeSurfer, FIRST).

Sample size estimation

Sample size estimates were computed for manual tracing, Free-
Surfer, and FIRST segmentation of the amygdala and hippocampus to
detect volumetric differences between a hypothetical reference
group and a comparison group for a range of effect sizes (0.1 to
0.9) assuming a power level of 0.8, significance level of 0.05, and
normal distributions in both groups. We estimated variance by
computing the standard deviation while effect size was computed
based on the standard deviation for manual tracing. The first step in
the sample size estimation was to calculate adjusted volumes for
each method by removing the influence of the actual mean of the
group and retaining only the variance of the group. Thus, the
adjusted volume was calculated by subtracting the mean volume of
the method from each observation resulting in a fitted line with a
zero-intercept. Using the adjusted volume, power was calculated
based on a non-inferiority test of the difference of two means using
the Power Analysis and Sample Size (PASS) software [NCSS: Kaysville,
Utah USA] (Hintze, 2005). Note that since the empirically derived
variances were different for each method, an effect size of 0.1 for
manual tracing corresponded to a slightly different effect size for
FreeSurfer and FIRST. Thus, the sample size requirements are
provided for each method to detect an effect size of 0.1 or volume
difference of 45.9 mm3 (ES×SDmanual=0.1×459), and so on for effect
sizes up to 0.9 in increments of 0.1. For example, 45.9 mm3

corresponds to an effect size of 0.1 for manual tracing but an effect
size of 0.092 for FreeSurfer based on a standard deviation of 501, and
an effect size of 0.067 for FIRST based on a standard deviation of 688.

As a proof of concept, we examined hippocampal and amygdala
volumes in an existing dataset of subjects with Major Depressive
Disorder (MDD) to compare results from FreeSurfer and FIRST. The
subject group was comprised of veterans who were enrolled in the
Durham VA Medical Center between 2006 and 2008 using the scan-
ning protocol described above. Participants were assessed for MDD
using the Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I) (First et al., 2002). Nine participants withMDD, based on SCID



Fig. 6. (A) Hippocampal volume derived from FreeSurfer segmentation is highly
correlated with manual tracing (R=0.82; pb10−9). (B) Hippocampal volume derived
from FSL/FIRST segmentation is correlated with manual tracing (R=0.66; pb10−5).

Fig. 7. (A) Amygdala volume derived from FreeSurfer is correlated with manual tracing
(R=0.56; pb0.0005). (B) Amygdala volume derived from FSL/FIRST was poorly
correlated with manual tracing (R=0.24; pN0.13).
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diagnosis, were compared to 48 non-depressed individuals. To
account for the unequal sample size in the control group, a subset of
10 non-depressed individuals were randomly selected for comparison
to the nine participants with MDD (demographic characteristics des-
cribed in Table 1).

Results

The major results of analyses are summarized in Table 1.

Performance of methods based on volume overlap

As assessed by volume overlap (Dice's coefficient), FreeSurfer
was superior to FIRST for hippocampal segmentation but not for
amygdala segmentation as seen in Fig. 4; significant interaction of
region⁎method [F(1,19)=16.9; pb0.001]. The volume overlap for
FreeSurfer and manual tracing was greater than for FIRST and manual
tracing in the left and right hippocampus [t(40)=5.3, pb10−6]. There
were no corresponding differences between methods for amygdala
segmentation [t(40)=0.05; pN0.5]. Percent volume overlap was
greater for the hippocampus than the amygdala regardless of the
measurement method [t(40)=12.4, pb10−24].

Performance of methods based on volume difference

When comparing percent volume differences between automatic
and manual measurements, FreeSurfer was superior to FIRST for
hippocampal segmentation, but FIRST was superior to FreeSurfer for
amygdala segmentation as seen in Fig. 5 (significant interaction of
region⁎method [F(1,19)=125.6; pb0.0001]). Note that lower values of
percent volume difference indicate superior performance. The volume
difference for FreeSurfer was less than FIRST in the hippocampus
[t(40)=4.1, pb10−4]. On the other hand, volume difference for FIRST
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was less than FreeSurfer in the left and right amygdala [t(40)=5.5,
pb10−6]. Volume difference was smaller in the hippocampus than the
amygdala; main effect of region [t(40)=2.3, pb0.02].

A comparison of volume differences between automated and
manual segmentation showed greater FreeSurfer-Manual volume
difference in the L-amygdala than the R-amygdala [t(40)=2.2,
pb0.05]. However, no FIRST-Manual volume difference was detected
between the left and right amygdala [t(40)=0.16, pN0.8]. Comparing
the left and right hippocampus, we failed to detect a Freesurfer-
Manual volume difference [t(40)=1.1, p=0.3], or a FIRST-Manual
volume difference [t(38)=1.7, p=0.1].

Correlation of automated segmentation methods

The correlation of hippocampal volume between FreeSurfer and
manual tracing (R=0.82, pb10−9) was higher than the correlation
between FIRST and manual tracing (R=0.66, pb10−5) (Fig. 6). Both
automated methods yielded larger hippocampal volumes relative to
manual segmentation.

The correlation of amygdalavolumebetween FreeSurfer andmanual
tracing (R=0.56, pb0.0005) was higher than the correlation between
FIRST and manual tracing (R=0.24, pN0.13) (Fig. 7). Both automated
methods yielded larger amygdala volumes relative to manual
segmentation.

The Bland–Altman plots (see Fig. 8) confirm that both automated
methods generated systematically larger volumes than manual
tracing. We also examined the extent to which the automated
Fig. 8. Bland–Altman mean difference plots f
measures performed poorly on the same images by comparing
subjects whose volume differences approached or exceeded 2 SDs.
Across the four plots, there were five data points showing an
overestimation of automated volume compared to manual volume.
However, these five data points represented images from five
unique subjects, confirming that the automated techniques were not
giving their worst performance on the same images. Thus, we find
no evidence that gross anatomic anomalies that were unduly
influencing results.

Shape analysis of segmentations

Group averaged 3D shape renderings generated for shape analyses
demonstrate that FreeSurfer had better overall performance than
FIRST in segmenting the hippocampus, particularly in the head and
tail regions that are especially challenging. Difference maps (with
variance) and significance maps for the hippocampus show shape
differences between FIRST and manual tracing (Fig. 9A), and shape
differences between FreeSurfer and manual tracing (Fig. 9B). The
difference map for FIRST reveals that the head and tail had the largest
shape difference and greater variance indicating that much of the
inflated volume estimates of FIRST originate from extended surface
estimations in the head and tail regions. The difference map for
FreeSurfer shows the anterior-medial surface had prominent shape
difference and some increased variance indicating that this regionwas
the major source the inflated volume estimates from FreeSurfer when
compared to hand tracing. Though ellipsoids indicate increased
or hippocampal and amygdala volumes.



Fig. 9. Shape analysis of the hippocampus in 3-D where differencemaps show the distance between segmentation contours thresholded from 0.2 mm to 2.0mm. Vectors indicate the
directionality between the corresponding mesh vertices of the two segmentation methods. Ellipsoids indicate the [x, y, z] components of variance introduced by the automated
segmentation. Significance maps (permutation corrected, pb0.05) highlight shape differences between automated segmentation and manual tracing. (A) FIRST compared to manual
tracing, and (B) FreeSurfer compared to manual tracing.

Fig. 10. Shape analysis of the amygdala in 3-D where difference maps show the distance between segmentation contours thresholded from 0.2 mm to 2.0 mm. Vectors indicate the
directionality between the corresponding mesh vertices of the two segmentation methods. Ellipsoids indicate the [x, y, z] components of variance introduced by the automated
segmentation. Significance maps (permutation corrected, pb0.05) highlight shape differences between automated segmentation and manual tracing. (A) FIRST compared to manual
tracing, and (B) FreeSurfer compared to manual tracing.
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Fig. 11. FreeSurfer segmentation had the power to detect differences in hippocampal
volume between groups for a range of effect sizes (power=0.8; alpha=0.05) with
negligible increase in sample size relative to manual tracing. On the other hand, FIRST
segmentation required a modest increase in sample size particularly to detect relatively
small effects.
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variance in the tail region, the difference maps indicate that the mean
difference between surfaces is relatively small (suggested by the green
color of the tail section). Significance maps (permutation corrected,
pb0.05) confirm prominent shape differences between FIRST and
manual tracing as well as between FreeSurfer and manual tracing. The
latter comparison revealed less widespread shape differences provid-
ing additional evidence that FreeSurfer performed favorably relative
to FIRST in the hippocampus.

Shape analysis results suggest FIRST had better overall perfor-
mance than FreeSurfer in segmenting the amygdala. Difference maps
and significance maps for the amygdala show shape differences
between FIRST and Manual tracing (Fig. 10A), and shape differences
between FreeSurfer and Manual tracing (Fig. 10B). The maps suggest a
general increase in volume in the anterior and posterior surfaces
Fig. 12. FreeSurfer and FIRST segmentation had roughly equal power in detecting
differences in amygdala volume between groups for a range of effect sizes (power=0.8;
alpha=0.05 but, both methods required a modest increase in sample size relative to
manual tracing, particularly to detect relatively small effects. Note that sample size
estimates were derived solely from standard deviation with correlation having no role
in the estimation process.
generated by FreeSurfer that is less pronounced with FIRST. This
finding is consistent with the larger FreeSurfer-Manual volume
difference (8.3%) than FIRST-Manual volume difference (4.5%) as
represented in Fig. 5. Notably, the ellipsoids for both methods reflect
the greater overall variance for the amygdala compared to the
hippocampus. This is consistent with the relative variances seen in
Figs. 6 and 7. Significance maps (permutation corrected, pb0.05)
confirm prominent shape differences between FreeSurfer and manual
tracing as well as between FIRST and manual tracing. The latter
comparison revealed less widespread shape differences providing
additional evidence that FIRST performed favorably relative to
FreeSurfer in the amygdala.

Sample size estimation

Based on the additional variance introduced by FreeSurfer and
FIRST methods relative to manual tracing of the hippocampus,
FreeSurfer requires a relatively small increase in sample size over
hand tracing for the entire range of effect sizes. On the other, hand a
substantial increase in sample size is required if FIRST is used for
measurement compared to hand tracing. For example, for an effect
size of 0.9, which reflects a change in volume of 414 mm3

(ES×SD=0.9×459) or about 12% of typical hippocampal volume
(414/3560), would require a per group sample size of n=12 for
manual tracing, n=14 for FreeSurfer, and n=24 for FIRST. Sample size
estimates for a range of effect sizes (power=0.8; alpha=0.05) are
shown in Fig. 11 for each method.

The sample size estimates for amygdala measurements show that
both FreeSurfer and FIRST required considerably larger numbers of
subjects relative to manual tracing. For example, for an effect size of
0.9, which reflects a change in volume of 145 mm3 (ES×SD=0.9×161)
or about 10% of typical amygdala volume (145/1389), would require a
per group sample size of n=12 formanual tracing, n=23 for FreeSurfer,
and n=24 for FIRST. Sample size estimates for a range of effect sizes
are shown in Fig. 12 for each method.

It is important to note that standard deviationwas the determining
factor in estimation of sample size. Both automated segmentation
methods introduced additional variance in measures of total volume
relative to manual segmentation. For hippocampal measures, Free-
Surfer (SD=501) and manual tracing (SD=459) introduced less
variance than FIRST (SD=688). For amygdala measures, approximately
equal variance was introduced by FreeSurfer (SD=234) and FIRST
(SD=237) but, both were greater than manual (SD=161).
Fig. 13. FreeSurfer showed a 9% reduction in hippocampal volume for participants
diagnosed with major depressive disorder (MDD) compared to a matched Control
Group. However, FIRST did not show differences between MDD and Control groups.



Table 2
Demographic and clinical characteristics of MDD and control groups

Characteristic MDD (n=9) Control (n=10) t/Chi square p

Age (years), [std dev] 37.2 [8.5] 35.4 [11] 0.40 N0.69
Gender, no. (%) of females 3 (33) 4 (40) 0.90 N0.76
Handedness, no. (%) right-handed 7 (78) 9 (90) 1.20 N0.54
Ethnicity, no. (%)
of Caucasian subjects

5 (56) 3 (30) 1.27 N0.25

Education (years), [std dev] 13.6 [0.9] 14.4 [1.2] 1.76 N0.09

864 R.A. Morey et al. / NeuroImage 45 (2009) 855–866
Utility of methods in major depression

Analysis of hippocampal and amygdala volumes in MDD showed
that hippocampal volume, measured by FreeSurfer, was reduced in
depressed patients relative to controls (t(55)=2.22, pb0.04) but not
when these same hippocampi were measured by FIRST (t(55)=0.54,
pN0.59) (see Fig. 13). The difference in volume between the MDD
and control groups as measured by FreeSurfer was about 9%,
consistent with published studies (Videbech and Ravnkilde, 2004).
Given the large disparity in sample size between MDD and control
groups, we randomly selected 10 participants from the control group
to serve as secondary reference group (see Table 2). Consistent results
were obtained showing lower hippocampal volumes associated
with depression using FreeSurfer (t(17)=2.14, pb0.05) but not FIRST
(t(17)=0.57, pN0.57). The MDD and control groups did not differ in
total cerebral volume (t(17)=0.05, pN0.96). Neither method showed
differences in amygdala volume associated with depression.

Discussion

FreeSurfer was superior for segmenting the hippocampus by all of
the objective measures we utilized, including volume overlap with
manual tracing, volume difference with manual tracing, correlation to
manual tracing, sample size estimation, and group-level 3-D shape
analysis. However, assessment of amygdala segmentation was more
equivocal. FreeSurfer and FIRST had comparable volume overlap and
sample size estimates, while FIRST had smaller volume difference.
FreeSurfer volumes correlated more strongly with manual tracing,
suggesting higher validity, although for study of amygdala morpho-
metry, FIRST may be preferable. The correlation of amygdala volumes
between FIRST and hand tracing was not significant. Both methods
overestimate the amygdala volumewith larger overestimates by FIRST
than FreeSurfer. These analyses were repeated using Version 4.1 of
FIRST, released shortly after the initial submission of this paper,
showed very similar results (summarized in Table 1).

We estimate that in group comparison studies of hippocampal
volume, FreeSurfer can be used with only a marginal increase in the
sample size relative to manual tracing. By comparison, the FSL/FIRST
method performs less favorably with a substantially greater variance
than the manual segmentation. FreeSurfer showed a 9% reduction in
hippocampal volume for participants diagnosed withMDD, while FSL/
FIRST did not show differences between MDD and control groups.
These findings provide evidence for the utility of FreeSurfer in
detecting differences in hippocampal volume associated with neu-
ropsychiatric disorders. On the other hand, sample size estimates of
amygdala segmentation show that both FreeSurfer and FIRST require
appreciably greater numbers of subjects relative to manual tracing. It
is interesting to observe that while the power calculation shows
negligible change in sample size, FreeSurfer provides a volume
measure of amygdala that varies among subjects similarly to hand
tracing. Thus, in evaluating the automated methods, it is important to
consider the combined merits of the entire constellation of perfor-
mance metrics, as focusing on a specific metric might be misleading.

It is notable that both automatic methods provided larger volume
estimates for both hippocampus and amygdala than hand tracing.
Systematic differences in segmentation contours between automated
and manual methods were expressed as group difference maps
rendered in 3-D space. The hippocampal shape analysis showed that
when compared to manual tracing, FreeSurfer performed better than
FIRST, which tended to inflate surfaces in the head and tail regions.
The amygdala shape analysis showed that when compared to manual
tracing, FIRST performed better than FreeSurfer which tended to
inflate generally over the entire amygdala but particularly in the
anterior and posterior surfaces. The maps highlight significant
discrepancies in the surface contours generated by the automated
methods that may guide users interested in performing “post hoc
editing” targeted at areas with systematic biases. It is possible that
surface inaccuracies are introduced by conversion of the surface to an
image and back again to a surface. Super-sampling the original
surfaces for spherical harmonics is one approach to mitigating
possible distortions, although these distortions are expected to be
minimal.

We conclude that FreeSurfer is a reasonable substitute for manual
tracing of the hippocampus and may be an acceptable substitute for
the amygdala, depending on the scope of the study. Recent findings
comparing hippocampal segmentation by FreeSurfer to manual
tracing as well as other automated measures support this conclusion.
There is evidence for accurate diagnostic classification of patients with
temporal lobe epilepsy using FreeSurfer (McDonald et al., 2008) and
greater agreement with manual tracing relative to automated
segmentation of the hippocampus using the Individual Brain Atlases
Statistical Parametric Mapping (IBASPM) (Tae et al., 2008). However,
users should be aware that volume estimates of these regions are
consistently inflated relative to manual tracing. FreeSurfer could be
especially beneficial in studies where a large cohort of subjects is
required based on an expected effect size that is small and/or the
association with multiple or noisy outcome variables. The complexity
can be further aggravated by outcome variables such as behavioral
differences and the role of genetics. Longitudinal multi-site studies are
particularlywell suited for adoption of an automated approach such as
FreeSurfer. In these studies, maintaining consistency across raters at
centers that are geographically distant over long durations where staff
transitions are commonplace may be especially challenging. The
sample size estimates we provide may guide investigators in the
design and feasibility of structural MRI studies.

Additional techniques have recently been proposed that may im-
prove upon the volumetric output provided by FreeSurfer, including
combining FreeSurfer with large deformation diffeomorphic metric
mapping (LDDMM) (Khan et al., 2008). There is some evidence that
combining these methods increases segmentation reliability and ac-
curacy compared to using FreeSurfer alone for regions such as the
caudate nucleus and putamen. However, the evidence for improvement
of hippocampal estimates was less convincing, particularly for older
adults. This suggests that combining the methods may be useful for
some structures, but not all. Researchers may therefore need to weigh
the potential benefit of combining the two methods against the
limitation of added computational time required to implement LDDMM.

Limitations

One important source of variance that can influence the outcome
of segmentation is associated with the MRI scanner. The possibility
that scan–rescan differences may confound results was investigated in
five subjects that were scanned 7–9 days apart using the same
acquisition sequence and scanner. The scan–rescan segmentation by
FreeSurfer (see Supplementary data, Figure S1) showed consistent
results in the hippocampus and slightly less consistent results in the
amygdala. The scan–rescan segmentation by FIRST (see Figure S1)
showed less consistent results in the hippocampus and the amygdala.
It is interesting to note however, that the rescan values are not
identical, suggesting that small differences in image contrast,
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ostensibly in boundary voxels, can result in the segmentation
algorithms computing non-trivial differences in volume. Although
these results are preliminary, this issuewarrants systematic investiga-
tion in a much larger scan–rescan sample. We expect more robust
reproducibility with a larger sample that more accurately captures
scanner associated variance. Nonetheless, this information highlights
the importance of MRI scanner quality assurance and careful
technique calibration.

While manual tracing was our reference standard, it is unknown
how well manual tracing itself represents the true volume of the
structures examined particularly because there are several difficulties
inherent in this method. For example, manual labeling may lead to
inconsistent labeling across slice directions (Fischl et al., 2002). Post-
mortemvolume assessment may provide the closest possible estimate
of true volume but is clearly impractical. Therefore, for this study we
assume, in a manner consistent with the literature, that manual
tracing is an accurate representation of the true boundaries, and that
these boundaries can be discerned by objective means. Finally, it may
also be the case that even post-mortem examination is limited, e.g. a
transition layer where cells share features of both structures. In this
case, conventions are established for defining boundaries based on
anatomical landmarks or some other feature(s). These issues border
on the larger issues of epistemology faced by all methods of
observation and measurement in scientific inquiry. These limitations
may be partially overcome in the future with the promise of high-field
(7 T) structural MRI capable of revealing details at ∼100 μm in-plane
resolution. Finally, these findings are reflective of the MR acquisition
sequence used in the present study and may not fully generalize to
other scanners or sequences.

Conclusion

We found that FreeSurfer and FIRST are not equal when
compared to manual tracing and we provide practical information
for making decisions in the choice of segmentation tools depending
on the scope of the study. Based on converging data from shape
and volume measures, we conclude that FreeSurfer generally is pre-
ferred to FIRST for automated segmentation of the hippocampus, with
results from the amygdala being less robust andmore equivocal across
automated methods.
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Appendix A

Manual tracing of the hippocampus

Boundaries of the tail of the hippocampus
The most posterior hippocampal slice was measured at the point

where portions of both the crus of the fornix and hippocampal tissue
were clearly visible, with sufficient hippocampal tissue visible to
outline an ROI even though the full extent of the crus may appear on a
more anterior slice. We did not trace more posterior slices where the
crus could not be discerned. The superior boundary of the tail is
limited by but does not include the crus and, medially, the lateral
extent of the splenium. More anteriorly, the upper surface abuts the
lower margin of the thalamus, which is usually a lighter shade of gray
(in T1 sequences) than the hippocampal tissue.

Boundaries of the body of the hippocampus
CSF defines the lateral and superior boundaries in the ventricle and

ambient cistern, except near the tail where the superior surface is the
interface between hippocampus and inferior thalamus. We did not
include the fimbria outline in the tracing, and the boundary between
fimbria and hippocampal tissue was defined by a smooth line
following the curve of the alvear surface of the hippocampus. The
inferior boundary was defined inferiorly by the interface of the
subicular gray matter and the underlying white matter. The medial
limit of subicular/presubicular gray was defined by a line drawn from
the superior portion of themostmedial extent of the underlyingwhite
matter across the subicular gray to the cistern. The point at which this
line crossed the subicular gray to the cistern was estimated by
imagining a horizontal line tangential to the surface of the subicular
gray matter projecting to meet a vertical line along the surface of the
parahippocampal gray. The line of crossing the subicular gray starts at
the most medial and superior aspect of the underlying white matter
aimed towards the intersection of the imaginary lines.

Boundaries of head of hippocampus
The limit of the anterior superior hippocampal surface and lateral

surface was often defined by ventricular CSF. The lateral inferior limit
was the junction of gray hippocampal tissue and the collateral white
matter. The medial inferior hippocampal boundary was defined to
include the subicular gray matter and was defined by the junction of
the subicular gray and the underlying white matter, with the medial
extent of this junction defined as above in the description of the body.
Inmore anterior slices of the head, the uncinate gyruswas identified as
it turns superiorly to join the amygdala. The most superior limit of the
uncinate gyruswas defined by a tangent line to the upper surface of the
hippocampal head extended to cut across the uncinate gyrusmedially.

Tracing proceeded to the most anterior slice, defined as follows.
ITK-SNAP allows simultaneous views of coronal, axial and sagittal
planes. With this feature, the anterior superior boundary of the
hippocampal head in the sagittal plane was used to mark the most
anterior slice of that structure in all three planes. Also, in the most
anterior portions of the hippocampus, the upper boundary of the
hippocampus was often defined by the alveus or the uncal recess of
the temporal horn of the lateral ventricle if it was present.

Manual tracing of the amygdala

The most posterior slice
Themost posterior slice of the amygdalawas that slice inwhich the

uncinate gyrus that connects the hippocampus to the overlying
amygdala, first becomes visible while proceeding in an anterior
direction. Proceeding anteriorly for several slices, the inferior border
of the amygdala was bounded by the CSF in the uncal recess of the
temporal horn of the lateral ventricle. The superior margin was
boundedmedially by the CSF in the entorhinal sulcus and laterally by a
line extending from the optic tract to the most inferior portion of the
circular sulcus. The lateral marginwas bounded by thewhite matter of
the temporal stem.

Mid-level slices
Proceeding anteriorly, the inferior border of the amygdala was

indicated by the alvear white matter on the superior surface of
the head of the hippocampus. The superior border was defined by
the white matter of the junction of the internal capsule and
cerebral peduncle, and the lateral border by the temporal stem. The
medial border was bounded by CSF in the ambient cistern and
entorhinal sulcus.

Anterior slices
The tracing was continued anteriorly to the slice just posterior to

the crossing of the anterior commissure where an ovoid convexity,
created by following the grey matter contours in the sagittal and axial
planes, forms a closed surface in the coronal plane that is bounded
anteriorly by the uncus.



866 R.A. Morey et al. / NeuroImage 45 (2009) 855–866
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.12.033.
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