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Modulation of serotonin transporter
expression by escitalopram under
inflammation
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Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the
monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part
because of their variable clinical efficacy and in part because of their delayed onset of action. Because
of the complexities involved in replicating human disease and clinical dosing in animal models, the
scientific community has not reached a consensus on the reasons for these phenomena. In this work,
we create a theoretical hippocampal model incorporating escitalopram’s pharmacokinetics,
pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT)
internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral
escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-
state. We show escitalopram’s chemical efficacy is diminished under inflammation. Our model thus
offersmechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance
of optimized dose and time for future antidepressant discoveries.

Depression is the leading cause of global disease burden1. The condition is
known to increase absenteeism at work, the risk of suicidal tendencies, and
other conditions such as cardiovascular disease2,3. The most prescribed
antidepressants, selective serotonin reuptake inhibitors (SSRIs), directly
target the serotonin system, more specifically the serotonin transporter
(SERT), ona rationale built upon themonoaminehypothesis of depression4.
Despite a substantial body of evidence from animal and clinical studies
supporting the hypothesis5–10 and the potential efficacy of SSRIs11, their
clinical use remains a subject of controversy. Twokey contributing factors to
this controversy include the variable clinical efficacy (30-60%, depending on
the study)12–14 and the extended period of chronic administration required
for clinical relief15. Due to the challenges faced when modeling these two
issues in animals, the scientific community has not yet reached a consensus
on the underlying reasons for these phenomena. Consequently, there is
increasing interest in exploring alternative treatments, such as ketamine and
psychedelics16–20, that offer mechanisms of action beyond the monoamine
hypothesis.

Our group has been at the forefront of developing and utilizing real-
time fast-scan cyclic voltammetry (FSCV) tools for serotonin detection in
animal models. Our recent findings have revealed serotonin as a promising
biomarker for stress-induced depression phenotypes in mice (as a

consequence of inflammatory signaling processes). Further, we found that
escitalopram was chemically less able to increase serotonin during
inflammation6,21. Finally, we confirmed that serotonin is a common target
linking various classes of antidepressants22. Collectively, our studies provide
compelling evidence for the important role of serotonin in the pathology of
depression, but also underscore the need for amore nuanced understanding
of how this messenger is modulated during depression and chronic SSRI
dosing.

Given the difficulty of modeling these complex clinical phenomena
experimentally, here we adopted a theoretical approach based on our prior
experimental data in the hippocampus.We chose to focus on escitalopram,
which is thought to be one of the most clinically efficacious SSRIs due to its
allosteric binding to SERTs and rapid induction of SERT internalization22–25

and the known interaction of this agent in the hippocampus26.
First, we developed amodel, comprising 51-differential equations, that

incorporated orthosteric and allosteric binding of escitalopram to SERT,
SERT internalization, inflammation, and receptor dynamics to fit our
experimental FSCV data under acute escitalopram. Second, we simulated
chronic oral escitalopram dosing in mice, analogous to human clinical
treatment, and found that extracellular serotonin needs significant time to
reach a new steady-state after the onset of oral dosing, as a function of
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autoreceptors. Finally, we simulated inflammation via histamine released
from mast cells and glia and demonstrated how inflammation-induced
histamine inhibits serotonin via H3 receptors, offering a possible reason for
why under inflammation, SSRIs may be less effective.

Our study proposes potential mechanisms that underlie the important
facets of escitalopram and stresses the importance of considering the opti-
mal dose and timing of therapywhendesigning future antidepressant drugs.

Results
Allosteric binding and rapid SERT internalization are required to
model acute escitalopram’s effect on serotonin
In this study, we utilized previously published experimental data where four
different acute doses of escitalopramwere used inmice22. In the experiment,

cohorts of mice were anesthetized, and serotonin release was stimulated in
the CA2 region of the hippocampus by electrical stimulation of the medial
forebrain bundle (MFB) (Fig. 1a). To measure the release and reuptake of
serotonin, we performed FSCV. An example of raw data, “a color plot”, of
the response upon this stimulation is in Fig. 1b. Figure 1c shows experi-
mental measurements of evoked serotonin release prior to and at various
time points post-drug administration with four different escitalo-
pram doses.

We previously utilized a one-differential equation model for experi-
mental data in mice after antidepressants27. This simple model failed to
successfully explain the dynamic dose-response data shown in Fig. 1c.
Primarily, we were not able tomodel the strong decrease of reuptake rate in
all doses and the decrease in amplitude at higher doses (10 and 30mg kg−1).

Fig. 1 | Modeling evoked FSCV antidepressant data. a Schematic of experimental
protocol for evoked FSCV serotonin signals in the CA2 region of the hippocampus.
bRepresentative FSCV color plot controlfile. Inset: The vertical trace (i vs. v) shows a
representative serotonin CV, while the horizontal trace (i vs. t) shows the release and
reuptake profile of serotonin over the course of the experiment. c Experimental
concentration vs. time traces from the CA2 region of the hippocampus of female
mice (n= 4 animals each dose, mean ± SEM) pre- and post-escitalopram

intraperitoneal administration at time and dose given in the legend. d Simulation of
serotonin extracellular concentration pre- and post-escitalopram at time and dose
given in the legend solely assuming competitive inhibition. e Simulation following
the same protocol as inD, adding non-competitive inhibition. f Simulation following
the same protocol as in E and adding SERT internalization. Illustrations made with
Biorender.com.
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Therefore, we combined previously developed models that include several
additional biochemical processes relevant to serotonin and histamine
neurotransmission, including synthesis, metabolism, release and reuptake
in terminals and glia28,29, and a model of the pharmacokinetics (PK) of
escitalopram after intraperitoneal (i.p.) injection22.

To represent this data, we had to incrementally refine the combination
of models to include escitalopram-specific phenomena. First, we simulated
the experimental results by modeling only escitalopram’s competitive
inhibition of SERTs (Fig. 1d) and found that we could not capture the data
well. As demonstrated by the simulated traces, the decrease in reuptake rate
is not as observed in the experimental data. Specifically, for lower doses, the
amplitude of the evoked trace does not increase proportionally, as seen in
the post-drug experimental traces, and the reuptake speed ismuch faster. To
quantify the disparity between experimental and simulated data, we first
calculated the maximum amplitude of the trace and the half-life of evoked
serotonin for experimental and simulation traces (see Fig. S1 in Supple-
mentary Information). Additionally, we calculated the root mean squared
error (RMSE) and mutual information score (MI) between experimental
and simulated traces. The average error over all traces (dose and time) was
RMSE = 19.21 ± 1.12 nM and agreement of information MI = 0.66 ± 0.03.
We sought to simultaneously decrease the error, increase the mutual
information between simulations and experimental, and visually maximize
the similarity between simulated and experimental data.

Next, we added escitalopram’s non-competitive inhibition of SERTs to
the model (Fig. 1e)23. The simulated traces have an increase in evoked
amplitude and, as escitalopram dose increases, the reuptake strength
decreases in comparison to Fig. 1d. Additionally, the agreement between
experimental and simulation traces increased (RMSE = 16.06 ± 1.26 nM,
MI = 0.84 ± 0.04). While these simulations are closer to experimental data,
they visually still do not fully capture the data. Finally, by adding rapid SERT
internalization22 to themodel, we were able to capture the datamost closely
(Fig. 1f), as well as further reducing the deviation from experimental
(RMSE = 15.23 ± 1.08 nM, MI = 1.01 ± 0.05). These changes in SERT den-
sity are dynamic and occur directly and rapidly instantaneously as a func-
tion of escitalopram concentration. The modeled traces for lower doses (1
and 3mg kg−1) at time 30min are not as pronounced as the experimental
data. The reuptake at higher doses (10 and 30mg kg−1) at time 10min post-
administration is slower than in the experimental data, implying that there
may be further mechanisms not currently included in the model, respon-
sible for these responses.

These simulations aremuch closer to the experimental data, since they
show the substantial decrease in reuptake rate evidenced by the greatly
decreased slope of reuptake. Additionally, measurements of amplitude and
clearance rate (see Fig. S1 in Supplementary Information) show a much
clearer agreement between experimental data and the simulations where we
modeled the three escitalopram effects.

Therefore, tomodel dynamic dose-response data, we combined several
previously models, and added escitalopram’s competitive inhibition30, non-
competitive inhibition23,24 and SERT internalization22,31,32. The model that
fits these data comprises 51 differential equations (see Supplementary
Information for full mathematical description of the model). The next
section presents this new model.

The model of escitalopram-modulated serotonin
Figure 2 displays the schematic of the main processes incorporated in the
computational model. Table 1 provides descriptions of each variable
depicted in the model, including the effects induced by drugs. Table 2
describes each enzyme, transporter, and receptor.

The computational model encompasses all relevant processes, con-
sidered byus, involved in the synthesis, release, and reuptake of serotonin, in
synaptic terminals (Fig. 2a). The model includes the well-described (by us
and others) inhibition of serotonin release by histamine H3 receptors

33–35.
Additionally, the model includes a comprehensive representation of the
ability of glia (microglia and astrocytes) to reuptake both histamine and
serotonin and, in some cases, synthesize histamine (Fig. 2b). Finally, we

introduce a novel representation of the dynamic effects of escitalopram on
serotonin reuptake dynamics (Fig. 2c). The escitalopram modeling began
progressively with the creation of a four-compartment PK model of esci-
talopram after an i.p. injection and modeling the competitive effects of the
drug on serotonin reuptake using a single equation.We subsequently added
non-competitive inhibition (effects on the inhibition constant of escitalo-
pram), as well as the influence of both serotonin receptors and escitalopram
on SERT internalization (SERT pool trafficking). A detailed description of
the model equations, variables, and functions, along with a definition of the
equilibrium state, can be found in the Supplementary Information.

The ability of this model to closely represent and simulate important
processes, such as autoreceptor control of cytosolic processes and the
availability of a readily releasable pool of vesicles, allows for a closer
representation of the effects of escitalopram observed in the experimental
data (Fig. 1c).We thus use this model to study phenomena that are difficult
to experimentally test.

Mathematically modeling chronic escitalopram administration
Clinically, escitalopramandother SSRIs are takenorally onadaily basis. The
dose regime is designed so that consistent levels of the drug remain in the
plasma; commonly, the dose is repeated before the elimination half-life,
which for humans, is around 27–32 h36.

To model this chronic oral regime in mice in silico, we had to modify
our model, which was initially designed to represent acute, intraperitoneal
administration in mice. First, we decreased the adsorption rate and bioa-
vailability of the drug to represent the adsorption differences between the
gut and the peritoneum (seemethods). Figure 3ai depicts the simulated time
course of escitalopram in the brain for an i.p. vs. oral administration.
Thedecreasedamplitudebut increaseddurationof theoral trace is a result of
the lower adsorption rate; escitalopram is adsorbed slower when taken
orally, so the plasma and brain concentrations reached are lower, and the
drug takes longer to clear37. In rodents, due to their faster rate ofmetabolism
compared to humans, the i.p. elimination half-life is much lower38,39, and so
is our estimated oral elimination half-life (~10 h). Taking these parameters
into account, we simulated a chronic paradigm by repeating the adminis-
tered dose every 8 h. Figure 3aii and iii show a representative brain escita-
lopram simulation where dosing occurs every 8 h in the hours range and
days range, showing how the overall concentration of escitalopram builds
up in the system over time in a mouse.

Wenext simulated the system response to an oral administration and
compared it to the previous intraperitoneal results. Figure 3b shows
simulations of i.p. and oral administration of a mouse-equivalent dose of
5 mg escitalopram (~1.02mg kg−1, see methods for conversion proce-
dure). The decrease in amplitude and slower elimination half-life of brain
escitalopram (i) are transferred to the effects of escitalopram on extra-
cellular serotonin (ii), and SERT density (iii). Then, repetition of the oral
administration was simulated every 8 h for 15 days. Figure 3c shows the
response of brain escitalopram (i), extracellular serotonin (ii), and SERT
density (iii) for the chronic oral paradigm. As mentioned earlier, escita-
lopram reaches a steady-state concentration of ~1–2 after the first dose,
while serotonin and SERT density overshoot, not reaching stability for
7–8 days after the first dose.

One reason the model puts forth is the autoreceptors finding a new
steady-state basedon the increasing levels of serotonin after escitalopram. In
the model, the mechanism behind the overshoot is the temporal difference
between the effects of escitalopram on serotonin levels (fast) and the slower
effect of autoreceptor regulation of serotonin via decreased synthesis and
release. Escitalopram rapidly slows down the reuptake of serotonin, near
instantly increasing extracellular serotonin and those higher levels of ser-
otonin activate the autoreceptors, which inhibit the synthesis and firing of
serotonin and decrease extracellular serotonin. In the model, one equation
captures the concentration of serotonin after escitalopram while a chain of
equations describes the effects of the autoreceptors,meaning that early on in
the chronic dosing regime, the effects of escitalopram on serotonin outrun
the effects of autoreceptors, hence the overshoot. Over some days, the
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autoreceptor effect catches up and a new steady-state is reached. As the dose
increases, the new steady-state concentration is higher, and it is reached
faster (Figs. S2, S3).

Having shown that serotonin levels take considerable time to reach a
steady-state after chronic oral dosing with escitalopram in a control situa-
tion due to autoreceptors seeking a new state, we next asked how these
effects are mediated under an inflammation model of depression.

Chronic escitalopram during inflammation
To simulate an inflammation model of depression, we drew on previous
experimental work that showed increased brain histamine in mice that
underwent a chronic stress paradigm and thus developed behavioral phe-
notypes of depression6. We simulated this increase in histamine via glial

activation and mast cell degranulation (Figs. 2b, 4ai). Figure 4ai shows the
biochemical mechanisms that modulate histamine release from mast cells.
Figure 4aii depicts a proposedmodel of how extracellular histamine levels in
the hypothalamus change in response to inflammation and the subsequent
effects on serotonin (histamine inhibits serotonin viaH3 heteroreceptors on
serotonin neurons). Figure 4b is analogous to Fig. 3c, showing how chronic
escitalopram performs under inflammation.

To better compare the difference between control and inflammation,
we present the two data sets in Fig. 4bii. The control starting ambient levels
are 60.0 nM, compared to values under inflammation, 47.5 nM. After
chronic escitalopram in control the serotonin levels stabilize with amean of
69.78 nM (16% increase) and under inflammation this is 53.62 nM (12%
increase)—it is worth noting that chronic escitalopramunder inflammation

Fig. 2 | Representation of the relationships in the mathematical model of ser-
otonin, histamine, and glia. a Schematic of serotonin and histamine neuronal
terminals. b Schematic of glia. c Detailed modeled SERT processes. Symbols of the
model’s main variables are depicted in red rectangular labels and described in Table 1.
The acronyms of main enzymes, transporters, and receptors are represented with blue
elliptic labels and described in Table 2. The pharmacological effects of escitalopram

(ESCIT) and α-fluoromethylhistidine (FMH) are represented in purple rectangular
labels. Notice that variables and enzymes with the same name in the schematic but
present in different compartments are different entities (e.g., HTDC in histamine
neurons and HTDC in glia). An extended description of each variable and enzyme/
transporter by compartments can be found in the Supplementary Information. Illus-
tration made with LaTeX Tikz pachage.
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is not able to restore serotonin to control, baseline levels. Figure 4biii shows
how SERT density tracks the serotonin concentrations under control and
inflammation. Motivated to target this inflammation, we modeled the
inhibition of histamine synthesis. Figure 4ci is a simulation of how an acute
i.p dose of a histamine synthesis inhibitor (alpha fluoromethylhistidine
(FMH)) changes histamine over 25 h and the subsequent change in ser-
otonin in Fig. 4cii). Figure 4di simulates the inflammation response after
chronic SSRI and acute FMH. Figure 4dii and iii show a superimposition of
the control response to chronic SSRI (as in Fig. 3c) and now chronic SSRI
and acute FMHunder inflammation. This pharmacological regimemirrors
the control rather well.

Discussion
The community has come to appreciate that a simple reuptakemodel, based
on competitive inhibition via a change in SERT affinity, does not fully
capture the much more complex mechanism of action of SSRIs31,40,41. We
have very much mirrored this realization in our work, which can be illu-
strated here in real time using Fig. 1. Here we took experimental data,
averaged between cohorts of mice, that received different acute doses of
escitalopram over 2 h. In the past, wemathematicallymodeled such profiles
with a 1-differential equation model that expressed the rate of change of

serotonin as a product of only three processes (release, Uptake 1 and 2, and
autoreceptors)27,42. Escitalopram competitive inhibition was simulated by
decreasing the affinity of transporters for serotonin (Km). This simplemodel
failed tofit the strong decrease of reuptake rate for all doses and the decrease
in amplitude at higher doses (10mg kg−1 and 30mg kg−1)22 in experimental
data. Over time, we iterated the model43 and here, to fit the experimental
data in Fig. 1, we added a very high level of complexity; 51 differential
equations.

This complex model includes serotonin synthesis, release, reuptake,
and metabolism in terminals and glia. Auto- and hetero- modulation of
release and regulation of synthesis and reuptake by autoreceptors and
pharmacokinetics and pharmacodynamics (PK/PD) of escitalopram and
FMH.Notably, there are two important facets of themodel that we’d like to
highlight, that were critical to fitting this escitalopram data.

First is the addition of allostericmodulation of SERTs by escitalopram.
The allosteric site of SERTs is a secondary binding site whichmodulates the
function of the transporterwhile not competingwith serotoninbinding44. In
recent years, it is increasingly thought that escitalopram’s effectiveness is
dependent on this allosteric binding23,30,45,46. Although the mechanism of
action is not clear, escitalopram binding to the SERT allosteric site is known
to decrease the dissociation constant of escitalopram binding to the
orthosteric site and prolong its inhibitory effects47,48.

Second is escitalopram’s ability to downregulate SERT membrane
density. This phenomenonhas been recently under the spotlight25,41,49–51 and
while the mechanisms are not fully understood, they are thought to be
independent of allosteric binding51. The internalization process has been
reported to occur over hours (cell culture) and days (humans)32,50. We
recently showed in human-derived serotoninergic neurons that escitalo-
pram can induce this process very rapidly (minutes)22, and indeed, our
model required this process to be fast.

Thus, we developed a complex model, comprising 51 differential
equations, thatfits a temporo-dose-response of acute escitalopram in vivo in

Table 1 | Description of main model variables of compart-
mental concentrations

Name Description

bHT Blood histidine.

cHT Cytosolic histidine.

cHTpool Cytosolic histidine pool.

cHA Cytosolic histamine.

vHAr Reserve of vesicular histamine.

vHA Vesicular histamine.

BHA Bound histamine to receptors.

B5HT Bound serotonin to receptors.

eHA Extracellular histamine.

T Regulator of G protein in receptors.

T� Activated regulator of G protein in receptors.

G G protein in receptors.

G� Activated G protein in receptors.

btrp Blood tryptophan.

trp Cytosolic tryptophan.

trppool Cytosolic tryptophan pool.

bh4 Tetrahydrobiopterin.

bh2 Dihydrobiopterin.

NADPþ Nicotinamide adenine dinucleotide phosphate.

NADPH Reduced nicotinamide adenine dinucleotide phosphate.

5HTP 5-hydroxytryptophan or oxitriptan.

c5HT Cytosolic 5-hydroxytryptamine or serotonin.

5HIAA 5-Hydroxyindoleacetic acid

v5HTr Reserve of vesicular serotonin.

v5HT Vesicular serotonin.

e5HT Extracellular serotonin.

g5HT Glial cytosolic serotonin.

gHT Glial histidine.

gHTpool Glial histidine pool.

gHA Glial histamine.

ESCIT Escitalopram.

FMH (S) α-fluoromethylhistidine.

Table 2 | Description of main enzymes, transporters, recep-
tors, and others

Name Description

HTL Histidine transporter.

HTDC Histidine decarboxylase.

HNMT Histamine methyltransferase.

MAT Vesicular monoamine transporter.

HAT Histamine transporter.

H3 Histamine H3 receptor.

5HTr Serotonin receptor (presumably 5-HT1B receptor).

Trpin Neutral amino acid transporter.

DRR Dihydrobiopterin reductase.

TPH Tryptophan hydroxylase.

AADC Aromatic amino acid decarboxylase.

MAO Monoamine oxidase.

ALDH Aldehyde dehydrogenase.

SERTs Serotonin transporter in the membrane surface.

pho Subsection of phosphorylated serotonin transporters in the surface.

SERTp Serotonin transporter in the pool.

SERTi Inactivated serotonin transporter.

NET Norepinephrine transporters.

DAT Dopamine transporter.

OCT Organic cation transporters.

Leakage Diffusion through cell membrane.

Removal Removal from the model (e.g., diffusion out of the system, capillary
reuptake, etc.)
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the hippocampus, critically as a function of allosteric binding and rapid
SERT internalization. It is important to note that thismodelmay not extend
to other brain regions, as there are regional differences in reported SSRI
effects52–54.Wenext applied thismodel in a bid to provide an explanation for
why, clinically, escitalopram can take several weeks to have a therapeutic
effect.

Behavioral studies of depression are complicated and controversial in
rodentmodels55,56 and the communityhas recently becomeconcernedabout
the validity of commonly used behavioral tests to accurately reflect
depression phenotypes57–60. The forced swim test (FST)61 is a famous
example and has been used extensively (including by us)6,62 in rodents as an
indexof depressivebehavior.A relatively robustfindingusing theFST is that
the length of time it takes for non-depressed animals to enter a learned
helplessness state can be improved by acute injections of antidepressants63.
However, few rodent studies have appropriately captured such behavioral
changes in response to chronic antidepressants in depressed animals64–66. In
addition, while many agents (given acutely to non-depressed animals)
created this behavioral shift in rodents, they failed in humans67,68. Where
antidepressants do show clinical efficacy in humans, the onset of action
usually takes several weeks of chronic administration (once-a-day oral
pill)69,70. The reason for this delay is unknown, and is very difficult (if not

impossible) to model in animals. Animals will not willingly swallow a pill,
and other experimental ways to administer a chronic dose fall short in
reproducing the pharmacokinetics of a human dose regime. This is because
in humans, the concentration of the active agent oscillates around a period
between a single pill administration, dependent on the pharmacokinetics of
the agent and the characteristics of agent release from the pills71. This is also
true for escitalopram.

Thus, in the absence of an appropriate experimental model, we found
an opportunity here to apply our computational model to the investigation
of oral dosing of escitalopram. Using the model described above, we
changed the PKmodel of escitalopram to represent oral chronic dosing.We
did this by decreasing the absorption rate of escitalopram (to represent the
lower rate of absorption in the digestive tract) and obtained the FDA-
recommended equivalent doses in mice of the most prescribed LexaproTM

tablets (5, 10, and 20mg)72. Additionally, we repeated the dose every 8 h (as
opposed to 24 h) to account for the faster metabolism of the drug in mice
(tmice
1=2 = 9,69 h vs. thuman

1=2 = 27-33 h)36,37. The key ideaunderlying oral chronic
dosing theory is that the dose regime should build a desired steady-state
concentrationof thedrug inplasmaover time.Tobuild sucha steady-state, a
new dose is taken before the previous dose has been fully metabolized73,
guided by the t1/2 of the agent (seeMethods section).Whenwemodeled this

Fig. 3 | Model of oral chronic dosing with escitalopram. a Oral dosing paradigm,
(i) shows the differences in escitalopram time profiles in the brain after i.p. and oral
administration, (ii) shows the increase of escitalopram when the administration is
repeated before clearance, and (iii) shows how escitalopram reaches a steady-state
after several administrations. bModeling of brain concentration of escitalopram (i),
serotonin (ii), and SERT surface ratio (iii) following an i.p. injection or oral
administration of 1.04 mg kg−1 (equivalent to 5 mghuman dose, seeMethods). Half-

lives of the clearance are provided in the panels. cModeling oral chronic dosing
effects on escitalopram (i), serotonin (ii), and SERT surface ratio (iii). Adminis-
tration is repeated every 8 h (equivalent to human daily dose, see Methods section).
Maximum and minimum values of oscillations, as well as the mean accumulated
concentration is given in the panels. Results for the 10 mg and 20 mg human doses
can be found in the Supplementary Information Information (Figs. S2, S3). Illus-
trations made with Biorender.com.

https://doi.org/10.1038/s42003-024-06240-3 Article

Communications Biology |           (2024) 7:710 6



Fig. 4 | Inflammation effects on oral chronic escitalopram efficacy. aMast cell
model of histamine degranulation. In (i), the schematic of the computational model
is given. The main variables are depicted in red rectangular labels. The acronyms of
main enzymes, transporters, and receptors are represented with blue elliptic labels.
Pharmacological effects are represented in purple rectangular labels. In (ii), the
modeled reaction of histamine (purple) and serotonin (red) to an inflammation
trigger. bModeling of oral chronic dosing escitalopram (5 mg pill, ~1.02 mg kg−1)
effects on brain escitalopram (i), serotonin (ii), and SERT surface ratio (iii) during
control state and inflammation. For the inflammation simulation, mast cell and glia
production and release of histamine is triggered 35 days before the first dose.
Administration is then repeated every 8 h. cModeling of extracellular histamine (i)

and serotonin (ii) following 20 mg kg−1 i.p. injection of (S) α-fluoromethylhistidine
1 h after the start of the simulation. dModeling of oral chronic co-administration of
FMH (2.5 mg analogous dose for mice, ~0.51 mg kg−1) and escitalopram dosing
effects on brain FMH (i), serotonin (ii), and SERT surface ratio (iii) during
inflammation (purple) and comparison to control administration of escitalopram as
described on panel B (blue). For the inflammation simulation, mast cell and glia
production and release of histamine is triggered 35 days before the first dose.
Administration is then repeated every 8 h. Results for the 10 mg and 20 mg human
doses can be found in the Supplementary Information (Figs. S4, S5). Illustrations
made with Biorender.com.
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notion, we found a very clear time component; that the escitalopram con-
centration oscillates between pills, and the baseline concentration slowly
builds up to a new steady-state after 2 days (in mice). The serotonin con-
centration tracks this fluctuation in real time but taking a longer period to
reach steady-state (7–8 days for 5mg). In our model, this is because the
serotonin extracellular concentration is modulated by other mechanisms
such as autoreceptors that also need to find a steady-state after the dose
regime starts.

Autoreceptor involvement in antidepressant action is not a new idea,
first being proposed by Blier, Descarries and colleagues52,74–76. The auto-
receptor desensitizationhypothesis for the delayedonset of action states that
at the beginning of SSRI treatment, serotonin autoreceptors (e.g., 5-HT1A)
inhibit the firing of serotonergic blocking an increase in extracellular ser-
otonin. In the long term, these autoreceptors internalize (desensitize) in the
presence of the SSRI, firing activity is restored, allowing for an increase in
extracellular serotonin. Our experimental data (and others)6,77–80 are not
consistent with this hypothesis since we observe an instant increase in
serotonin levels in several brain regions81 after SSRIs. Thuswedevelopedour
model by highlighting the coactivity between serotonin and autoreceptors.
We now propose that this phenomenon does not come as a function of
autoreceptor desensitization (as in the original hypotheses), but rather
because of autoreceptor regulation of serotonin synthesis, release and SERT
trafficking82–88. Autoreceptor function depends critically on serotonin
binding to the receptor, and this very binding modulates extracellular ser-
otonin via the aforementioned mechanisms. This mutual dependence is
responsible for the significant time it takes for the autoreceptors and ser-
otonin levels to both converge to a new steady-state. In practice, in our
model, one equation captures the concentration of serotonin after escita-
lopramwhile a chain of equations describes the effects of the autoreceptors,
meaning that at the start of chronic dosing, the escitalopram-induced
increase in extracellular serotonin temporally outrun the effects of auto-
receptors on regulating serotonin. This effect results in an overshoot in the
serotonin concentration. Over time, the autoreceptor regulation catches up
to SERT effects, and a new steady-state is reached.

Thus, our model has put forth new hypotheses an extracellular ser-
otonin needs significant time to reach a steady-state during after chronic
dosing. We next ask if the model can predict reasons for the clinical
variability of escitalopram.

There are no antidepressants that are universally clinically effective.
Escitalopram is considered one of the most clinically efficacious anti-
depressants on the market11,89,90. It is difficult to reconcile highly vari-
able clinical data, but studies report patients response to escitalopram to be
only 10–20% higher than placebo91,92, which is comparable to all other
antidepressants, including psilocybin93.

The scientific community has not agreed on an explanation for this
variability, spurring recent wider speculation that the monoamine
hypothesis is invalid. However, there is now indisputable clinical evidence
that patients presenting with inflammation are likely to be resistant to
SSRIs94–96, a fact that shines a clear light on inflammation as a relevant
mechanism to consider in the pharmacodynamics of SSRIs. Indeed, in our
previous experimental work, we found that an acute dose of escitalopram
was less able to increase extracellular serotonin during acute and chronic
inflammation (induced via LPS and chronic stress)6,21. In this previouswork,
we found that inflammation inducedhistamine acted onH3heteroreceptors
on serotonin neurons to reduce extracellular firing. We also found that
SSRIs, including escitalopram, inhibited histamine reuptake, making an
SSRI less chemically effective inhighhistamine concentration environments
(i.e., inflammation). In line with these results, Dalvi-Garcia et al. proposed a
computational model suggesting that cortisolemia may render SSRIs less
effective in chronic depression97.

Here we modeled this notion in a chronic administration model. We
built a simple model of histamine release in mast cells and glia as a result of
an inflammatory trigger. This histamine release decreased tonic serotonin
levels to a lower steady-state (which we’ve seen before experimentally with
acute LPS and chronic stress)21. In this condition, the nominal escitalopram

could not restore serotonin to baseline. This was not only because serotonin
levels were decreased to start with, but also because the increase following
escitalopram administration was much smaller when histamine was acti-
vated. An interesting point to note is that in our model, SERT density is
reduced during inflammation, which is contrary to recent findings98,99. In
our model, which does not include the effect of inflammation on SERT
function/density, this feature is because of autoreceptor feedback.

A final simulation further tested this idea even further by showing that
if the increase in histamine was blocked (using a histamine synthesis inhi-
bitor), the escitalopram could be more chemically effective on raising ser-
otonin levels.We’ve shown this acutely in animals previously, and nowhere
suggest that it could also work with chronic dosing.

In summary, we have developed a new complex computational model
comprising 51 equations that include allosteric binding and SERT inter-
nalization. With this model, we explained why serotonin levels take sig-
nificant time to reach a new steady-state after chronic oral dosing and
offered a mechanism for potential ineffectiveness of escitalopram under
inflammation. Our computational model has proven to be valuable for
testing experimentally complex and sometimes inaccessible concepts.

Methods
Experimental methods
Thiswork focuses on a computationalmodel, and experimental data used to
guide the mathematical modeling has already been published elsewhere22.
For an extensive description of the experimental design, methods and
ethical approval see the original publication.

Color plots are the most common way to visualize FSCV data (see
Fig. 1b for representative FSCV color plot) and are extensively described
elsewhere100. Each columnof the color plot represents the Faradaic current
obtained with the application of a single voltage waveform.When plotted
against the voltage applied, an analyte/specific signature graph called
cyclic voltammogram (CV) is obtained. The waveform is repeated at
10 Hz. A row trace of the color plot represents the current at every
waveform repetition for a specific potential applied, known as current vs.
time trace.When extracted at the oxidation potential of interest (0.7 V for
serotonin) and converted to concentration with a calibration factor, we
obtain a representation of changes in concentration over the course of the
experiment.

Mathematical methods
A mathematical model was constructed, putting together previously pub-
lished models and adding new proposed physiological mechanisms. The
model includes earliermodels of serotonin and histamine synthesis, release,
and reuptake in varicosities43,101.

More information regarding the previous models can be found in the
previous publications and Supplementary Information. The complete
model consists of a system of 51 differential equations. The full depiction of
the model is given in the Supplementary Information. Here, a detailed
description of the new additions is given. The system of differential equa-
tions was programmed in MATLAB and solved using MATLAB ODE
solvers. Time is defined in hours across thewholemodel. The concentration
of substances is defined in µM, and mass is defined in µg.

The pharmacokinetics of escitalopram after intraperitoneal injection
were modeled using a four-compartment model based on prior experi-
mental data and pharmacokinetic modeling with mice and rats38,39. The
compartment quantities included were the peritoneum (Q0), plasma (Q1),
brain (Q2), and periphery (Q3), which differential terms modeled as

dQ0

dt
¼ inj� k01Q0 ð1Þ

dQ1

dt
¼ k01Q0 � k10 þ k12 þ k13

� �
Q1 1� PB

� �
þ k21Q2 1� Pbrain

B

� �þ k31Q3

ð2Þ
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dQ2

dt
¼ k12Q1 1� PB

� �� k21Q2 1� Pbrain
B

� � ð3Þ

dQ3

dt
¼ k13Q1 1� PB

� �� k31Q3 ð4Þ

where k01 and k10 are the rate of diffusion from the peritoneum to plasma
and secretion from plasma, k12 and k21 are the rate between plasma and the
brain and k13 and k31 are the rate between plasma and the periphery, PB is
the ratio of escitalopram binding to protein in plasma and Pbrain

B represents
the percentage of escitalopramassumed to be bound toproteins in the brain.
The injection term (inj) represents the rate of increase of concentration in
the peritoneum as the injection is given (in µg−1), and follows the piecewise
function

inj ¼
0; t < tstart
q
tinj
; tstart < t < tstart þ tinj

0; t > tstart þ tinj

8><
>: ð5Þ

where tstart is the time at the start of the injection, tinj is the duration of the
injection (set as 1 s) and q is the effective quantity of the drug given (in µg),
which is dependent on the dose (mg kg−1), weight of mouse (mg) and
bioavailability

q ¼ dose � weight � bioavailability ð6Þ

The injection term q=tinj makes constant the rate of increase of
escitalopram in the peritoneum, so that at time tstart þ tinj, the total
quantity given is q. PB and P

brain
B were set to 0.56 and 0.15, respectively36.

Bioavailability of escitalopram after intraperitoneal injection has not
been measured experimentally and was set in the model to 0.80. The
assumption behind this value is that peritoneal bioavailability is lower
than that of intravenous injection (1.00) but expected to be no lower than
oral administration (0.80)37. Mouse weight was set to 20 g, a consensus
value between the C57BL/6J female mice weight (~15 g) and male mice
weight (~25 g) at 8–16 weeks of age. Escitalopram dose and volume of
injection modeled were dependent on mouse weight (doses: 1, 3, 10, and
30 mg kg−1; volume: 5 mL kg−1). Compartment volumes of peritoneum,
plasma, brain, and periphery of the mouse were set to 2, 2, 0.41, and
15 mL, respectively, based on the anatomy of C57BL/6J mice and
experimental notes102.

The simulated quantity of escitalopram in the brain was then used to
model the effects of the drug on SERT density and affinity (see below). The
quantity of escitalopram (µg) in the brain compartment was converted to
concentration ( ESCIT½ � in µM) using the volume of the compartment
(Vbrain) and molecular weight of escitalopram (Mr = 324.39 gmol−1) as
follows

I½ � ¼ 1000 � Q2

Vbrain �Mr
ð7Þ

Pharmacokinetics of (S) α-FMH were modeled using an analogous
four-compartmentmodel as the one given for escitalopram (see above). The
injection function and equation used to calculate the total quantity of FMH
given were also analogous. The bioavailability of FMH after intraperitoneal
injectionwas set in themodel to 0.95. Plasmaprotein binding (PB) andbrain
protein binding (Pbrain

B ) were set to 0.60 and 0.15, respectively. To our
knowledge and in contrast with escitalopram, quantitative pharmacokinetic
studies of α-FMH are limited103–106. As a consequence, rate constants of
transport between body compartments were estimated manually based on
experimental data. We iteratively changed rate constants to match our
simulated concentrations in compartments to those reported in studies
from103, which contains recordings of dose-dependent plasma and brain
concentration of FMH in rats and104, which contains dose-dependent

estimations of histamine synthesis inhibition in cell cultures. Rate constants
are tabulated in the Supplementary Information.

The simulated quantity of FMHwas converted to concentration using
the same formula as per escitalopram (see above) and the molecular weight
of FMH (Mr = 187.17 gmol−1).

The original pharmacokinetic model of escitalopram was built,
considering experimental data from anesthetized mice after an intra-
peritoneal injection. Clinically, escitalopram is taken orally with a
starting dose of 5–10 mg a day and can increase up to amaximumdose of
20 mg a day, independent of bodyweight. The dose is expected to change
based on the remission of depression symptoms and side effects107. The
clinical time regime of the dosage is designed to build a steady-state
concentration of escitalopram, since the interval between dosage (24 h)
is lower than the half-life of escitalopram in the plasma after oral
administration36. We translated this clinical regime to our model based
on animal experiments.

It is challenging to translate human doses to smaller animal doses.
Larger animals and humans commonly have lower metabolic rates and
lower doses are required to have analogous effects108. Because of this, it
is commonly understood that conversion of a dose simply by con-
sidering changes in body weight is not a good approximation and is
commonly unacceptable. Here, we used the recommended FDA gui-
dance for the conversion of doses between animal and human trials
using calculated correction factors for each species109. For the con-
version of doses between humans and mice, we used the following
equation

Dosemouse ¼ Dosehuman �
Khuman

m

Kmouse
m

ð8Þ

where Khuman
m is the correction factor for humans (calculated as 37), and

Kmouse
m is the correction factor for mice (calculated as 3). Dosehuman was

calculated to be 0.08, 0.17, and 0.33mg kg−1 by using a daily dose of 5, 10,
and 20mg, respectively, and the average global human weight of 60 kg110.
Using the equation, Dosemouse was calculated to be 1.02, 2.06, and
4.11mg kg−1, respectively. Additionally, since the dose is modeled to be
administered orally, we made modifications to the escitalopram pharma-
cokineticsmodel. The peritoneal compartmentwas changed to the digestive
tract compartment. The rate of transport between the digestive compart-
ment and plasma (k01) was decreased to 0.24 h−1, (40% of transport rate
betweenperitoneumandplasma) to reflect the slower adsorption rate of oral
administration.

To ensure a prolonged accumulation of escitalopram that mirrors the
dynamics of human chronic dosing, we tailored the timing between
administrations to align with clinical practices and accommodate the
inherent metabolic differences between the two species. To do this, we used
the drug accumulation index (RAC)111 given by

RAC ¼ 1

1� e
�ln 2ð Þ�tinterval

t1
2

ð9Þ

where tinterval is the time interval between administrations, and t1=2 is the
half-life of the drug. This parameter serves as a quantification of the drug’s
accumulation during chronic dosing.

For the clinical chronic regime of escitalopram (tinterval = 24 h and
t1=2 ≈ 30 h), the resulting RAC value is ~2.35. In our simulations for mice,
we opted for a tinterval = 8 hwith t1=2 ≈ 9.69 h, yielding a RACvalue of ~2.30,
which closely mimics the accumulation kinetics of clinical human dosing.
The steady-state concentration (Css) can then be approximated by the peak
concentration of a single administration (Csingle), given by

Css≈RAC � Csingle ð10Þ

Regarding FMH oral dosing, there are no standard treatments
described in the literature, since it has never been used clinically. In previous
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experiments, we administered twice the dose of that of escitalopram to
experimentally obtain a rapid acute effect of FMH in serotonin extracellular
levels21. Previous long-term experiments showed that at smaller
chronic doses, FMH have accumulative effects on histamine synthesis112,113.
In the model, we used an equivalent human dosing of 2.5 mg
(Dosemouse = 0.51mg kg−1) given every 8 h and modified the pharmacoki-
neticsmodel identically to that of escitalopram to reflect oral administration
(40% of k01). The bioavailability of oral dosing was set to 0.80. A full
description of the pharmacokineticmodel of escitalopram and FMH can be
found in Supplementary Notes 1 and 2.

Regarding serotonin and histamine co-modulation, we modeled
them via a simplified mathematical depiction of G-coupled protein
autoreceptors (5-HT1B and H3 for serotonin and histamine, respec-
tively) and activation of G-couple proteins which control the rate of
synthesis and release intracellularly. The full description of the
receptor signaling cascade modeling can be found in the original
publications43,101, and Supplementary Note 3, but a brief description is
given here. In the model, B5�HT and BHA represent the serotonin and
histamine bound to autoreceptors. G5HT and GHA represent the inactive
G-protein subunit, while G�

5HT and G�
HA represent the active protein

subunit, product of a serotonin or histamine molecule binding to their
respective receptor. Additionally, G-protein activity is limited by RGS
molecules which promote G-proteins to bind to the receptor complex43.
T5HT and THA represent the inactive RGS protein for serotonin and
histamine receptors, respectively, while T�

5HT and T�
HA represent the

active RGS protein. An increase in bound molecules stimulates the
conversion ofG toG�. At the same time,G� stimulates the conversion of
T toT�, andT� stimulates the deactivation ofG�. AsG� increases above a
equilibrium level (G�

0), a factor is calculated and multiplied to the
synthesis and firing rate of serotonin and histamine neurons. For the
serotonin neuron, the term for inhibition of synthesis is

inhibsyn5HTto5HT ¼ 1� 0:1 � G�
5HT � G�

5HT;0

� �
ð11Þ

while the inhibition of release is

inhibR5HTto5HT ¼ 1� 1:5 � G�
5HT � G�

5HT;0

� �
ð12Þ

For the histamine neuron, the term of inhibition of synthesis is

inhibsynHAtoHA ¼ 1� 0:1 � G�
HA � G�

HA;0

� �
ð13Þ

while the inhibition of release is

inhibRHAtoHA ¼ 1� 2 � G�
HA � G�

HA;0

� �
ð14Þ

Additionally, in earlier work we hypothesized mathematically that
serotonin and histamine modulate each other’s release via pre-synaptic
heteroreceptors based on experimental data6,43. Consequently, we
included terms for the activation of histamine by serotonin, and the
inhibition of serotonin by histamine. B05HT and B0HA represent the
serotonin and histamine bound to heteroreceptors in opposed terminals.
G05HT and G0HA represent the inactive G-protein subunit, while G0�5HT
andG0�HA represent the active protein subunit. For the serotonin neuron,
the term for inhibition of release produced by histamine binding to
heteroreceptors is

inhibRHAto5HT ¼ 1� 3 � G0�
HA � G0�

HA;0

� �
ð15Þ

while for the histamine neuron, the term for activation of release produced
by serotonin binding to heteroreceptors is

activR5HTtoHA ¼ 1þ 3 � G0�
5HT � G0�

5HT;0

� �
ð16Þ

The full mathematical description of the co-modulation mechanisms
and location of the factors in the equations is given in the Supplementary
Notes 3 and 4.

Regarding escitalopram pharmacodynamics, conventional orthosteric
inhibition of SERTswasmodeled usingMichaelis–Mentenenzymekinetics.
Escitalopram concentration in the brain is estimated using the pharmaco-
kinetic model described above. Reversible and competitive inhibition in
the presence of escitalopram was modeled by changing the
Michaelis–Menten constant (KM) of the serotonin transporter for an
apparent constant (Kapp

M ) dependent of the concentration of the competitive
inhibitor escitalopram as

Kapp
M ¼ KM 1þ ESCIT½ �

K i

� �
ð17Þ

where K i is escitalopram dissociation constant (see below). Additionally,
escitalopram is known to be able to bind allosterically (non-competitively)
to serotonin transporters and decrease the dissociation rate on the orthos-
teric site, although themechanism is not clearly defined23. Tomodel this, we
made Ki to decay exponentially as the concentration of escitalopram
increases in the brain following the expression

K i ¼ K i0 � e�4� ESCIT½ � þ K i;min ð18Þ

where K i0 is the initial escitalopram dissociation constant, set as 0.05 µM
according to in vivo studies114, and K i;min is the minimum dissociation
constant, for which we use the measured in vitro value115.

SERT surface density effects due to autoreceptor activation were
modeled using a bidirectional transport between the plasmatic membrane
and the vesicular pool of transporters, as previously described49,82. SERT
density in each location was modeled using a ratio with respect to an
equilibrium state. This is because SERT density is commonly reported in
relative units49,50,114, and there is no clear knowledge of SERT membrane
concentration in serotonin varicosities. Here, we model three different
locations, SERTs in the surface (SERTs), SERTs in the vesicular pool
(SERTp) and SERTs in an inactive state (SERTi). Additionally, and as
reported in the literature116,117, we model a subsection of membrane SERTs
that are phosphorylated (SERTpho

s ) and available for endocytosis but
maintain their reuptake function while on the membrane118,119.

The speed of transport from membrane to pool and vice versa is
dependent on the levels of g-coupled protein activated via serotonin binding
to autoreceptors. As activated g-coupled protein (G�

5HT) increases above an
equilibrium level (G�

5HT;0), the trafficking rate from pool to membrane also
increases, while the inverse rate decreases. The relationship between acti-
vated g-coupled protein and trafficking rate from the surface to the pool
(ksp) and vice versa (kps) were calculated as

ksp ¼ 10� 7:5 � G�
5HT � G�

5HT;0

� �
ð19Þ

kps ¼ 10þ 7:5 � G�
5HT � G�

5HT;0

� �
ð20Þ

and limited to the interval between 0 and 20.
Likewise, escitalopram effects on SERT density in the membrane are

modeled by a different co-located bidirectional transport between the
membrane and an inactive state of the transporters. The extracellular levels
of escitalopram increase the rate of trafficking between the membrane and
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the inactive state (ksi) following the expression

ksi ¼ 18:75 � ESCIT½ � ð21Þ

The effects of escitalopram on serotonin transporters are modeled as
reversible, so that SERTs in the inactive state move progressively to their
active state at a constant rate kis ¼ 0:75. These twomechanisms dictate the
dynamics of SERTdensity in the different locationswhichdifferential terms
are

dSERTpho
s

dt
¼ kps G�

5HT;G
�
5HT;0

� �
� SERTp � ksp G�

5HT;G
�
5HT;0

� �
� SERTpho

s

ð22Þ

dSERTs

dt
¼ dSERTpho

s

dt
þ kis � SERTi � ksi ESCIT½ �ð Þ � SERTs

ð23Þ

dSERTp

dt
¼ ksp G�

5HT;G
�
5HT;0

� �
� SERTpho

p � kps G�
5HT;G

�
5HT;0

� �
� SERTp

ð24Þ

dSERTi

dt
¼ ksi ESCIT½ �ð Þ � SERTs � kis � SERTi ð25Þ

Finally, the rate of reuptake of SERTs is then calculated based on the
density of transporters (SERTs) in the membrane and the apparent affinity
(Kapp

M )

VSERT ¼ 250 � e5HT
Kapp

M þ e5HT
� SERTs ð26Þ

In the present model, both the histamine and serotonin varicosities
possess a readily releasable pool (RRP) of vesicles that are secreted during
firing and a reserve of vesicles which replenishes the RRP when its dimin-
ished, as described theoretically120. This was modeled by a unidirectional
transport of vesicles from the reserve pool to the RRP when the RRP con-
centration levels change from an expected of equilibrium value. The rate of
trafficking between the serotonin reserve and the RRP was given by

V5HT
traff ¼ 15 � v5HT0 � v5HT

� � ð27Þ

While for histamine, this rate was given by

VHA
traff ¼ 15 � vHA0 � vHA

� � ð28Þ

and both were limited to the interval between 0 (no trafficking) and 100
(maximum trafficking). Additionally, the model was changed so that both
the reserve pool and RRP are reloaded with neurotransmitter molecules
from the cytosol by the monoamine transporter (see Supplementary
Notes 3 and 4).

Regarding neuroinflammatory processes, glial cellsweremodeled tobe
able to synthesize and passively release histamine (via membrane leaking),
in addition to being able to reuptake and metabolize histamine, included
previously101. As for the histamine neuron, we included in glia all the
mechanisms required to synthesizehistamine; ahistidine transporter,which
carries histidine from the bloodstream to the cytosol of glia, and histidine
carboxylase, which converts cytosolic histidine into histamine. In all cases,
the affinity of the enzymes was kept equal to the same enzyme in histamine
neurons,while the capacity (whichdependson thequantity of enzymes)was
modified to fit experimental data.

The histidine transporter in glia was set to have half the capacity
(Vmax = 2340 µMh−1) and the same affinity (KM ¼ 1000μM) of that in
histamine neurons (see Supplementary Note 4), so that the speed of

histidine transport follows the Michaelis–Menten rate of reaction

Vg
HTL ¼

2340 � bHT
bHTþ 1000

ð29Þ

whereVg
HTL is the speedof histidine transport frombloodhistidine (bHT) to

glia cytosolic histidine (gHT) in micromolar per hour. Histidine dec-
arboxylase in glia was modeled with Vmax = 61.42 µMh−1 and
KM ¼ 270μM, so that the speed of production of histamine in glia was

Vg
HTDC ¼ 61:42 � gHT

gHTþ 270
ð30Þ

Additionally, glia was modeled to also have a histidine pool just as
programmed for histamine neurons (see Supplementary Note 4).

Mast cell dynamics weremodeled in a similarmanner to glia, although
distinct based on knowledge of these two types of cells. Mast cells were
modeled to be able to obtain histidine from the bloodstream and synthesize
and metabolize histamine. The histidine transporter speed of histidine
transport to the mast cell cytosol is

VMC
HTL ¼

109:5 � bHT
bHTþ 1000

ð31Þ

Histidine decarboxylase capacity was set as Vmax = 877.50 µM h-1 and
affinityKM ¼ 270μM, so the speed of production of histamine inmast cells
was

VMC
HTDC ¼ 877:50 � cHTMC

cHTMC þ 270
ð32Þ

Histamine methyltransferase in mast cells was modeled with capacity
Vmax = 21.20 µM h-1 and affinityKM ¼ 4:2μM, so that the rate of histamine
metabolism was

VMC
HNMT ¼ 21:20 � cHAMC

cHAMC þ 4:2
ð33Þ

where cHAmc represents the cytosolic concentration of histamine in mast
cells. Additionally, mast cells were modeled to reuptake histamine from the
extracellular space via a histamine putative transporter with capacity
Vmax = 3375 µM h−1 and affinity KM ¼ 10μM, so that the rate of reuptake
was

VMC
HAT ¼ 3375 � eHA

eHAþ 10
ð34Þ

where eHA represents the extracellular concentration of histamine. Finally,
the vesicular monoamine transporter traffic from intracellular histamine to
vesicular histamine was modeled with a Vmax = 21104 µM h-1 and
KM ¼ 24μM, as well as a linear back-leak from vesicles to intracellular
histamine

VMC
MAT;HA ¼ 21104 � cHAMC

cHAMC þ 24
� 5 � cHAMC ð35Þ

Unlike glia, mast cells release of histamine was programmed to be
residual during control simulations (degranulation at 0.01% its maximum
capacity) and activate progressively following the sigmoid function

kinf ¼
1

1þ e�20� t�thð Þ ð36Þ
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with th being the time at which the function is at 50% of its maximum
capacity, given by

th ¼ tstart þ
ln 999ð Þ
20

ð37Þ

where tstart is the time at which the inflammation activity of mast cells starts
increasing from0.01%.Additionally, the synthesis of histaminebymast cells
and glia were also enhanced following the same sigmoid function during
neuroinflammation.

Regarding FMH pharmacodynamics, FMH is an irreversible inhi-
bitor of histidine decarboxylase, the main enzyme responsible for the
synthesis of histamine. Themechanismof inactivation of the enzyme has
been previously proposed121, and it is explained in detail in the original
publication. Here, just a general description of the process is given.
Briefly, FMH can inhibit histidine decarboxylase first by binding to the
enzyme (k1). This step results in the decarboxylation of FMH. After that,
FMH can lose a fluoride ion following a nucleophilic attack, forming a
highly reactive compound that binds covalently to the enzyme (k2). A
series of other hypothesized processes (e.g., transamination) could lead
to a non-reactive product, in which case the enzyme would not be
inactivated (k3). Assuming these three processes, the differential term of
active HTDC enzyme follows

dHTDCa

dt
¼ �kFMH FMH½ �ð Þ �HTDCa þHTDCin HTDCa

� � ð38Þ

kFMH ¼ k1 �
k2

k2 þ k3
� FMH½ �
Ki þ FMH½ � ð39Þ

where HTDCa is the ratio of active HTDC enzyme, FMH½ � is the con-
centration of FMH assumed from the pharmacokinetics model, Ki is the
dissociation constant of the FMH-HTDCcomplex (set to 8.3 µM) and kFMH
is the inactivation rate, derived the rate constants of the processes, the
dissociation constant and concentration of FMH. HTDCin is the rate of
replenishment of enzyme via synthesis of the protein. This replenishment
follows the function

HTDCin ¼ 0:55 � 1�HTDCa

� � ð40Þ

The estimated ratio of active HTDC enzyme is then multiplied to the
velocity of the enzyme in histamine neurons (VHTDC), glia (V

g
HTDC), and

mast cells (VMC
HTDC) (see equations in Supplementary Notes 4 and 5).

Statistics and reproducibility
Given that our work presented in the paper involves simulations of a
mathematical model rather than empirical data, it’s important to note that
statistical comparisons were not applied in this context.

Regarding the analysis of data, to compare simulations to FSCV
experimental signals, simulation of the model responses to firing stimula-
tion over 30 s were subtracted to have a zero baseline. This was achieved by
subtracting the average of the first 5 s (prior to the simulation of electrical
stimulation) to each time point in the 30 s trace.

All pharmacokinetic parameters were calculated using Python 3.11
and the NumPy and SciPy libraries. Maximum concentration (Cmax) of
escitalopram and extracellular serotonin in the brain were calculated,
extracting the maximum value from each simulation. Area under the curve
(AUC25h) of concentration of escitalopram and serotonin over time was
calculatedusing the Simpson’s rule andused as an estimation of overall drug
exposure. The area was calculated over 25 h of simulation. The half-life
(t1=2) was calculated fitting an exponential decay function fromCmax to the
end of the simulated concentration trace following

C tð Þ ¼ C0e
�λt ð41Þ

Where t1=2 was calculated from the decay rate constant (λ) as

t1=2 ¼
ln 2ð Þ
λ

ð42Þ

The fitting was performed using the Levenberg–Marquardt algo-
rithm. Regression lines were obtained using the linear least squares
method. Maximum amplitude (AmpMax) and half-life of evoked traces
was calculated following analogous methodology in a custom-designed
application122.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Due to the size of files, simulation data and other files are available upon
request. A subsection of the files can be found in zenodo (https://doi.org/10.
5281/zenodo.8406456)123. Additionally, available code (see below) can be
used to generate the data used in the study.

Code availability
Python files for the processing of selected signals, parametric analysis and
plotting is available in zenodo (https://doi.org/10.5281/zenodo.8406456)123.
Additionally, a full description of the systemof differential equations used to
model the signals is given in the Supplementary Information, and the code
used is provided in the zenodo repository above. Mathematical simulations
were run on MATLAB version 2023b. Data processing and figures were
obtained using Python version 3.11.
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