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Synopsis Gene regulatory networks, cellular biochemistry, tissue function, and whole body physiology are imbued with

myriad overlapping and interacting homeostatic mechanisms that ensure that many phenotypes are robust to genetic and

environmental variation. Animals also often have plastic responses to environmental variables, which means that many

different phenotypes can correspond to a single genotype. Since natural selection acts on phenotypes, this raises the

question of how selection can act on the genome if genotypes are decoupled from phenotypes by robustness and

plasticity mechanisms. The answer can be found in the systems biology of the homeostatic mechanisms themselves.

First, all such mechanisms operate over a limited range and outside that range the controlled variable changes rapidly

allowing natural selection to act. Second, mutations and environmental stressors can disrupt homeostatic mechanisms,

exposing cryptic genetic variation and allowing natural selection to act. We illustrate these ideas by examining the

systems biology of four specific examples. We show how it is possible to analyze and visualize the roles of specific genes

and specific polymorphisms in robustness in the context of large and realistic nonlinear systems. We also describe a new

method, system population models, that allows one to connect causal dynamics to the variable outcomes that one sees in

biological populations with large variation.

Introduction: robustness and plasticity

Animals are dynamically changing systems that oper-

ate in complex and variable environments. They are

composed of diverse physiological and biochemical

systems that provide a division of labor and compart-

mentation of various specialized function. All these

functions need to be integrated to allow the animal

to respond to daily and seasonally changing variables

in its environment, such as nutrition, temperature,

water availability, toxins in food (e.g., plant secondary

compounds), and pathogens that populations experi-

ence throughout their existence. In addition, these

functions and interactions must be designed so that

they operate without fail even in the face of a large

and diverse amount of individual genetic variation.

Biological systems have evolved a variety of homeo-

static mechanisms that stabilize the form and function

of their phenotypes against genetic and environmental

variation. Indeed, these mechanisms have evolved at

all levels of the organizational hierarchy from gene

regulatory and metabolic systems that operate in cells

tissues and organs, to physiological systems that op-

erate across the entire body. Collectively, these stabi-

lizing mechanisms convey phenotypic “robustness” so

that animals continue to operate reasonably normally

in the face of often exceptionally challenging genetic

and environmental conditions.

The concept of robustness was first developed by

Waddington (1942). It arose from a series of obser-

vations about genetics and development. Genetic

studies showed, for instance, that mutants were al-

most always more variable than wild types, and early

studies in development had shown that when a piece

of a tissue or organ is removed early in development

subsequent growth compensated and resulted in a

final structure without defect. Waddington postu-

lated that mechanisms have evolved that stabilize

the phenotype against both genetic and environmen-

tal perturbation. He called this “canalization” and

contrasted that with developmental “flexibility” in
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which a phenotype changes, adaptively, with a change

in environment (Waddington 1957). Today we call

these phenomena robustness and adaptive plasticity,

respectively.

There has been a long-standing interest in under-

standing the evolutionary causes and consequences

of robustness and plasticity, and also in understand-

ing the genetic and developmental mechanisms that

make phenotypes plastic, or make them insensitive

to genetic and environmental variation (Wagner

1996; Felix and Barkoulas 2015). Robustness and

plasticity pose interesting evolutionary problems

because both decouple genetic variation from pheno-

typic variation. Insofar as selection acts on pheno-

types, while only genes are transmitted from one

generation to another, if there is no correlation be-

tween genes and traits it was difficult to see how

robustness and plasticity could evolve.

Substantial theoretical work has been done to show

the conditions under which robustness and plasticity

can evolve. Much of this work is based on statistical

genetics (Via and Lande 1985; Wagner et al. 1997;

Rice 1998; Gibson and Wagner 2000; Kawecki 2000;

Lande 2009), or uses simulations with small networks

(Wagner 1996; Frank 1999; Becskei and Serrano 2000;

Omholt et al. 2000; Gibson 2002; Meir et al. 2002;

Flatt 2005; Ciliberti et al. 2007) to deduce general

conditions, like network topology, degree of modular-

ity, nonlinear interaction, fluctuating environment,

and variance–covariance structure, under which selec-

tion could lead to phenotypic stability or plasticity.

Mechanisms of robustness

Most research that has explicitly addressed mecha-

nisms and the systems biology of robustness and plas-

ticity has been done using small networks, or larger

networks with simple Boolean or linear mass-action

kinetics (Bolouri and Davidson 2003). Relatively little

work has been done with large systems using the real

kinetics by which the component parts interact.

There are several compelling reasons why many

system biologists have stayed away from working

with real biological systems: biological systems are

incredibly complex; most interactions within those

systems are non-linear; the structure or topology of

the systems are not fully known; the kinetics by

which the parts interact are not fully known; systems

are not static but dynamic and change over many

time scales; and, finally, interactions occur simultan-

eously between many levels of the biological hierarchy

from molecules to cells to tissues to organisms. All of

these features, and deficiencies in our knowledge,

make understanding how these systems operate, how

they evolve, and how they acquire robustness, excep-

tionally challenging.

The general mechanisms by which real systems

obtain robustness are understood, at least in prin-

ciple. Felix and Wagner (2006) distinguish between

distributed robustness and redundancy in signaling

and metabolic pathways. In distributed robustness

there are many pathways from A to B, each with

different properties and kinetics, and in redundancy

there are many identical parallel pathways between

A and B. Wagner (2000) earlier showed that in yeast

it was likely that robustness was primarily due to

reactions among unrelated genes and not due to

duplicated genes, suggesting that robustness is a dis-

tributed process and probably evolved in response to

stabilizing selection.

The actual mechanisms that provide robustness

are numerous and diverse. Feedback and feed for-

ward mechanisms in physiology and biochemistry

are probably the best known (Alon 2007). Barkai

and Leibler (1997) showed how feedback in simple

metabolic networks can lead to robustness of enzyme

activity around a setpoint, and that the setpoint can

be altered by changing the parameters of the system.

Parallel pathways are thought to convey robustness in

gene regulatory and biochemical networks (Wagner

2000), as are substrate inhibition mechanisms (Reed

et al. 2010). In development, lateral inhibition and

Turing-style reaction-diffusion mechanisms (Turing

1952; Meinhardt 1982; Meir et al. 2002; De

Joussineau et al. 2003; Salazar-Ciudad et al. 2003)

with short range autocatalysis and long range inhibition

produce bistable spatial patterns of high and low acti-

vator biosynthesis. The patterns produced by reaction-

diffusion mechanisms are, however, very sensitive to

parameter values and to the dimensions of the field

(Murray 1982), so their robustness is highly condi-

tional. Diffusion gradient-threshold mechanisms, with

a morphogen gradient between a source and a sink,

can produce stable and robust patterns that are insensi-

tive to the dimensions of the field (Wolpert 1969,

1994). The Drosophila segmentation and segment po-

larity systems are made up of a sequence of diffusion-

gradient-threshold steps which have been shown to

produce a robust spatial patterns (von Dassow et al.

2000; Houchmandzadeh et al. 2002; Eldar et al. 2004).

The bistable switch-like behavior of signaling cas-

cades (Ferrell 1996; Huang and Ferrell 1996) is a

form of robustness, where the system is insensitive

to variation in input at low input levels, followed by

a switch to high activity over a small range of inter-

mediate inputs, and stable again to variation in input

at high input levels. This kind of robustness emerges

simply from the kinetics of the mechanism and is
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characteristic of multi-step cascades (Ferrell 1996).

Dominance is also a kind of robustness in which

heterozygotes with only half the gene dosage, never-

theless, have a phenotype identical to one of the

homozygotes. Kacser and Burns (1981) showed that

dominance can be an emergent property of a system

with sequential enzymatic steps. Flux through such a

reaction chain becomes an increasingly non-linear

function of enzyme activity with increasing chain

length. Non-linear mechanisms also operate through-

out physiology and development (Omholt et al. 2000;

Gilchrist and Nijhout 2001), so dominance as a ro-

bustness mechanism is a systems property that is not

limited to biochemical systems but widespread, oper-

ating at all levels of the organizational hierarchy.

Most systems probably have multiple robustness

mechanisms operating to stabilize different aspects

of the phenotype against different kinds of genetic

and environmental perturbations. de Visser et al.

(2003) describe three general evolutionary causes of

genetic robustness: adaptation, when the robust

phenotype is more fit than the alternative; intrinsic,

when robustness is an inevitable consequence of a

particular biochemical or developmental mechanism;

and congruent, when it is a consequence of the evo-

lution of environmental robustness. Reaction-diffu-

sion, gradient-threshold, and the various non-linear

processes, outlined above, that produce robustness,

switch-like behavior, and dominance, may be exam-

ples of intrinsic causes of robustness, although it

would be hard to prove that they did not evolve

gradualistically, via adaptation. Some of the systems

we will outline below have robustness to both envir-

onmental and genetic perturbation and may be

examples of congruence.

Although selection favors phenotypes that are ro-

bust to genetic and environmental variation it must

also favor novel phenotypes that permit adaptation

to a changing or new environment. Phenotypes are

therefore said to “walk a tightrope” between the ap-

parently contradictory requirements of stability and

change (Padilla and Tsukimura 2014; Padilla et al.

2014). One form of flexibility is phenotypic plasticity

in which a phenotype changes when the environment

changes. The norm of reaction, which is a systematic

change in phenotype along an environmental gradi-

ent (Schlichting and Pigliucci 1998), is an example of

phenotypic plasticity, as is polyphenism, the develop-

ment of alternative phenotypes in response to envir-

onmental signals (Pfennig 1992; Nijhout 1999, 2003;

Abouheif and Wray 2002; Moczek and Nijhout 2003;

Simpson and Sword 2009).

Phenotypic stability in form and function is not

due to a fixed steady-state but is a dynamic systems

property that is actively maintained by opposing

mechanisms. For example, in many tissues there is

continual cell death and replacement, and this struc-

tural turnover occurs without change in morphology

or function. And in physiological systems stability is

maintained by the balance of competing mecha-

nisms. Homeostatic mechanisms also stabilize many

biochemical and metabolic functions in cells and

organs against variation in input and demand. All

homeostatic mechanisms operate successfully only

over a finite range of input values as illustrated in

Fig. 1. Within the homeostatic range of the genetic

variable, the phenotypic variable varies very little, but

outside that range the phenotypic variable changes

rapidly fueling natural selection with new variation.

We call this “escape from homeostasis” and give

many examples in Nijhout et al. (2014). As we will

see in Example 1, a change in environment can also

tip a flat homeostatic curve, and this also allows

natural selection to act.

Mathematical models of biological systems

Understanding homeostatic mechanisms, how they are

created and the ranges over which they operate, is

fundamental to understanding robustness in biological

systems. The properties of some regulatory mecha-

nisms, for example feedforward or feedback control,

are well-understood in isolation (Mangan and Alon

2003; Alon 2007), but in reality they operate within

large networks with many such overlapping mecha-

nisms. To study such large, non-linear systems, and

understand their properties, it is essential to build

mathematical models. Complex non-linear systems

simply cannot be understood by intuition.

There is a long tradition in physiology and bio-

chemistry of building ordinary differential equation

(ODE) models of a broad diversity of systems

(Guyton et al. 1972; Ten Tusscher et al. 2004;

Keener and Sneyd 2009). One of the challenges in

building a model that accurately simulates the prop-

erties of a biological system is that we often do not

know the entire network that might be relevant, nor

all the kinetics that link all the variables. So how

does one determine whether a model of a given sys-

tem is any good? The standard test is to determine if

the model accurately simulates data that were not

used in building the model in the first place. For

instance, does the model do both time-evolution

after a perturbation, and dose–responses to varying

inputs, correctly without having to fiddle with the

parameters? Can the model predict the outcome of a

new experiment? Does the model help resolve

contradictory experimental results in the literature?

As a model passes successive validation tests of this
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kind one’s confidence that it might be a reasonable

representation of a system increases.

The ultimate aim of a model should be to help us

obtain a deeper insight into how a system works.

Biological networks’ functions and models should

help us to understand the biology. If we are to

understand, mechanistically, the causes and conse-

quences of robustness in a complex non-linear bio-

logical system we need a good mathematical

representation of that system. There are relatively

few systems in which this can be done, largely be-

cause of a lack of diverse and accurate quantitative

data. Physiological systems and, in particular, bio-

chemical systems, are the exceptions, because those

disciplines have traditionally been the most quanti-

tative. Biochemical systems, and some physiological

systems, have the added advantage that they allow us

to directly bring genes into the model. This is be-

cause enzymes, transporters, and members of signal-

ing pathways are gene products and their activity,

expression level, and effect of mutations, can be em-

pirically measured and become explicit parts of the

model.

To overcome the lack of empirical and quantita-

tive data we study human health-related metabolic

systems, because a vast and unparalleled amount of

experimental data is available on network structure,

enzyme kinetics, and the specific effects of muta-

tions. Metabolic networks can be quite complicated

topologically. Many are not nice linear or branched

pathways but cycles, and sometimes cycles within

cycles. A large number of enzymes are activated or

inhibited by metabolites from elsewhere in the net-

work. A surprisingly large number of enzymes ex-

hibit substrate inhibition (Reed et al. 2010), which

adds to the nonlinearity. Transporters import and

recycle metabolites within and between cells, and

the circulatory system shuttles metabolites between

tissues and organs. We believe that our approach

can serve as an exemplar for the study of robustness

and homeostatic mechanisms in other biological sys-

tems (e.g., developmental biology) that involve

genes, gene products, signaling cascades, and envir-

onmental inputs.

Individual variation and system population models

Once one has determined the coefficients in an ODE

model, the steady state is determined, as is the re-

sponse to external influences. Such models implicitly

assume that they represent an “average” individual

or an “average” cell. But cells and individuals show

enormous biological variation in phenotype and it is

exactly this variation that allows natural selection to

operate. We introduced a method that we called,

“system population models,” for including biological

diversity in ODE models in Duncan et al. (2013).

Our ODE models contain many parameters, for ex-

ample Vmax values of enzymes that are proportional

to gene expression levels. All parameters have a

“normal” value for the “average” individual. We

choose a new value for each parameter by selecting

from a probability distribution with average value

equal to the mean. We then run the model to steady

state and record the parameter values, and all the

concentrations and velocities. That is one virtual in-

dividual. If we do this procedure a thousand times,

we then have a database of virtual individuals and

we can use the usual techniques of statistical analysis

to investigate the behavior of populations of individ-

uals that have the same structure of network top-

ology and dynamics but different parameters. Since

the population of virtual individuals is based on an

underlying deterministic model, when we find an

interesting statistical phenomenon, we can use the

underlying ODE model to determine the mechanistic

reason for the phenomenon. Other uses for system

population models of deterministic systems have

been described by Wagner (2015).

To illustrate why and how phenotypic robustness

and plasticity emerge naturally from homeostatic

Fig. 1 Homeostasis is revealed by chair-shaped graphs between

environment or genotype and a phenotype. (A) The homeostatic

plateau is the region over which active mechanisms are able to

stabilize the phenotype. (B) Mutations can destabilize homeo-

stasis and reduce the width of the homeostatic plateau. This

allows phenotypes to become responsive to environmental or

genetic variation, a phenomenon called “escape from

homeostasis.”
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systems, we discuss four specific examples where the

application of ODE population model approaches

provides insights into how system robustness is

achieved from plasticity in the underlying compo-

nents (e.g., enzyme activity) of biological systems.

We will discuss four examples of system robustness

and the use of system population models. Below, we

discuss robustness and cryptic genetic variation in

models of folate-mediated one-carbon (FMOC)

metabolism. We show how system population models

can give real information about the underlying physi-

ology in FMOC. We then show the use of system

population models to understand the meaning of

“predisposition” to disease using a model for dopa-

mine metabolism. Finally we use a model of serotonin

metabolism to show how system population models

allow one to identify subpopulations that have effica-

cious or deleterious reactions to drugs. We conclude

by showing why and how phenotypic plasticity

emerges naturally from homeostatic systems.

Robustness and cryptic genetic variation

FMOC metabolism is a complex metabolic network

made up of the folate cycle and the methionine cycle

and glutathione biosynthesis. Figure 2 illustrates a

portion of this reaction network and is shown here

primarily to illustrate the complexity of the topology:

the network is made up of several interlocking cycles

so that every enzyme and metabolite is both

upstream and downstream of all the others. FMOC

derives its name from the fact that it takes in several

amino acids and strips off one-carbons as methyl

groups that are carried by folate derivatives and are

then used in biosynthesis. For instance the AICART

and TS reactions are the early steps in the de novo

biosynthesis of nucleotides, and the TS reaction is

the rate limiting step for DNA synthesis. The system

also contains the DNA methylation reaction

(DNMT) and is therefore involved in epigenetic

modification. Defects in one carbon metabolism are

associated with birth defects like spina bifida, various

cancers especially colorectal cancer, cardiovascular

disease, and several psychiatric disorders. Our math-

ematical models for FMOC have revealed multiple

regulatory interactions (shown by the thick gray

arrows in Fig. 2), in which metabolites activate or

inhibit enzymes in the network. Our analysis has

shown that these regulatory interactions serve to sta-

bilize a few specific reactions in the system, namely:

the TS reaction which is the rate-limiting step for

DNA synthesis, the AICART reaction which is an

early step in the de novo synthesis of nucleotides,

the DNMT reaction which ensures correct methyla-

tion of newly replicated DNA, and also the synthesis

of glutathione (not shown) (Nijhout et al. 2004,

2006b; Reed et al. 2006, 2008). As amino acid input

into the system varies, for instance with meals, these

homeostatic mechanisms maintain stability of these

critical reactions. Thus robustness to environmental

Fig. 2 FMOC metabolism. Boxes indicate metabolites and ellipses are enzymes. Narrow black arrows indicate biochemical reactions

and the broad gray arrows indicate allosteric activation or inhibition or dimerization reactions. Names of acronyms used in this paper

are in the text, others can be found in Reed et al. (2008). Data on the structure of the mathematical model can also be found in Reed

et al. (2008).
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perturbations is conveyed by the system to a few

critical components, and this robustness is dynamic-

ally maintained, much in the way body temperature

is maintained by continual dynamic switching be-

tween heating and cooling systems.

It turns out that these regulatory interactions also

make the same four critical reactions robust against

genetic variation. We think of these as the pheno-

types of the FMOC system: the main outputs of the

system. This is illustrated in Fig. 3A, B for the

AICART reaction. This figure plots the rate of the

AICART reaction (the phenotype) as a function of

variation in the activities of two enzymes: methio-

nine synthase (MS) and methylenetetrahydrofolate

reductase (MTHFR). The largest spot marks the lo-

cation of the normal, wild-type activity of these two

enzymes. It has been surprising to find that in

human populations there are high-frequency big-

effect polymorphisms in genes for many of the

enzymes in FMOC (for tables and additional figures,

see Nijhout et al. [2015] and Nijhout and Reed

[2014]), including for MS and MTHFR. These muta-

tions drastically lower the activities of the gene prod-

ucts. It is notable that although the mutations have

large functional consequences, for instance, reducing

the activities of the enzymes to as little as 30–40% of

normal, nevertheless the rate of the DNMT reaction

does not vary very much. The phenotypic surface is

very nonlinear and both the wild-type and the muta-

tions lie on a relatively flat region of the surface.

The fact that the flat region of the phenotypic

landscape in Fig. 3A is orthogonal to the z-axis is

an indication of robustness to genetic variation, be-

cause genotypes on that plane have nearly the same

phenotypic value. The robustness mechanism

evolved such that the wild-type genotype is located

Fig. 3 (A) Phenotypic landscape showing the dependence of the AICART reaction on genetic variation in MS and MTHFR. The position

of the wild-type genotype is shown by the largest dot, and the positions of several common polymorphisms are shown by the smaller

white dots. All activities are scaled with respect to wild-type (¼100%). (B) The same landscape after inactivation of one of the

regulatory feedbacks is shown in Fig. 2. The landscape is tilted and the same polymorphisms now have a large phenotypic effect.

(C) Phenotypic landscape showing the dependence of the thymidylate synthase (TS) reaction on genetic variation in MS and MTHFR

showing the positions of the same polymorphisms as in A and B. (D) The same landscape in the presence of a vitamin B12 deficiency.

The landscape is tilted and the same polymorphisms now have a large phenotypic effect.
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near the center of the horizontal plane, and this is

why mutational variation around the wild-type has

little effect on the phenotype. These homeostatic

mechanisms thus allow for the accumulation of

cryptic genetic variation: variation that, although it

may be large at the functional level, is slight at the

phenotypic level.

The idea of cryptic genetic variation was originally

suggested by Waddington (1942) who noted that

mechanism of canalization could mask the effects

of mutations and thus allow for the accumulation of

genetic variation. Canalization, rather than limiting

evolution, could provide the substrate for future evo-

lution, what today we call evolvability (Waddington

1942, 1957; Wagner 2005, 2008). Genetic assimilation

and genetic accommodation both rely on the presence

of hidden genetic variation that can be exposed by

shifts in the genetic or environmental factors that sta-

bilize the phenotype (Waddington 1942, 1953; de

Visser et al. 2003). The relationships between robust-

ness, cryptic genetic variation, and evolvability have

been extensively studied and commented upon at

the theoretical level (Newman and Müller 2000;

Siegal and Bergman 2002; Gibson and Dworkin

2004; Flatt 2005; Gibson and Reed 2008; Le Rouzic

and Carlborg 2008; Schlichting 2008; Wagner 2008;

Kaneko 2009; Masel and Siegal 2009; Mcguigan and

Sgr�o 2009). Using well-validated models of metabolic

systems it is actually possible to empirically identify

specific genes whose effect is masked, and reveal the

actual mechanisms by which robustness is achieved.

The effects of the robustness mechanism can be

visualized by means of the phenotypic landscape. A

phenotypic landscape is a graph of the phenotype as a

function of the activities of genes products. A pheno-

typic landscape is a genotype–phenotype map. The

shape of a phenotypic landscape is a systems prop-

erty: it depends on all the variables and parameters of

the system. In other words, there is no unique asso-

ciation between the activity of a gene and the value of

a phenotype.

In the model we can introduce an environmental

shift in the form of a vitamin B12 deficiency, which is

a required cofactor for the enzyme MS. The result is

shown in Fig. 3C for normal level of B12 and Fig. 3D

for a reduced level of B12. Under a vitamin defi-

ciency the phenotypic landscape is tilted, and the

mutations that formerly had little phenotypic effect

now have a large one, and cryptic genetic variation is

now revealed. Reducing the activity of MS could also

occur through an additional mutation in the coding

region of the gene, or a mutation that reduces the

expression of the gene product. Thus genetic variation

by mutation, and environmental variation by a

vitamin deficiency have similar effects on the pheno-

type. The effect of environmental variation on a trait

is generally considered to represent phenotypic plas-

ticity, so we have a trait here that is robust to one

kind of environmental variation (amino acid input)

but not to another (vitamin B12 status).

Alternative stable systems

Many physiological and developmental systems have

more than one stable phenotype. In development we

have polyphenisms, such as the castes of social

insects and the alternative seasonal forms of many

insects that are controlled by shifts in hormone se-

cretion that direct development along alternative

pathways (Nijhout 2003). In reaction-diffusion sys-

tems in pattern formation there are typically two

alternative steady states (Meinhardt 1982). In physi-

ology, fever is due to a resetting of the temperature

homeostatic setpoint so body temperature is now

stably regulated at a higher level. In FOCM we found

an interesting switch. Two enzymes in the mitochon-

drial folate cycle are active during fetal development

but are inactive in adults, and re-activated in many

cancers. In the model, when we switch between the

alternative activity states of the enzymes there is an

alteration of flux in the pathway so that when the

enzymes are active flux favors nucleotide synthesis

and when they are inactive flux is redirected to favor

supplying energy metabolism (Nijhout et al. 2006a).

This makes functional sense in that the enzymes are

active in rapidly growing systems that require DNA

synthesis and inactive in systems that mostly require

energy metabolism. In spite of this altered flux pat-

tern, robustness of the system to variation in envir-

onmental and genetic variation is not altered.

Analysis of system population models
can reveal underlying robustness
mechanisms

In FMOC there is an interesting mechanism for ro-

bustness that stabilizes the level of homocysteine

(Hcy). Hcy is significant because numerous epi-

demiological studies have indicated that an increased

level of Hcy (hyperhomocysteinemia) is an import-

ant risk factor for cardiovascular disease (Lentz

2001). Homeostatic mechanisms in FMOC are

designed to keep Hcy at a low level while allowing

adaptive variation in the other reactions in the sys-

tem. Hcy is produced from methionine (Met) in the

methionine cycle by the removal of a methyl group

(see Fig. 2). Hcy can be remethylated to form Met by

MS, and can be converted to cystathionine by the

enzyme cystathionine-b-synthase (CBS), the first step
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in the transsulfuration pathway. Hcy is also exported

by cells into the extracellular space and the blood

(Fowler 2001).

In humans, Hcy is measured in the blood, of

course, and so it is a natural and important question

to ask what controls the Hcy concentration in the

blood. Since one-carbon metabolism occurs in all

cells this is not such an easy question. Traditionally

it has been assumed that the Hcy blood concentra-

tion is controlled by the liver since all amino acids

taken up from the gut go there first and the enzymes

that metabolize Hcy are more active in the liver than

anywhere else. In order to investigate this larger sys-

tems question, we took our model of the folate and

methionine cycles in the liver (Fig. 2) and modified

it so it was appropriate for other tissues where en-

zyme expression levels are different. We then created

a whole body ODE model with a liver compartment,

a tissue compartment, and a plasma compartment

through which the liver and tissues communicate

(Duncan et al. 2013). We took this deterministic

whole body ODE model and made a system popu-

lation model by the methods described above. The

virtual population showed distributions of tissue fol-

ate, plasma folate, and plasma Hcy nearly identical

to those seen in the National Health and Nutrition

Examination Survey (NHANES; https://www.cdc.

gov/nchs/nhanes/) studies, confirming that the

model is a reasonable representation of the under-

lying physiology (Duncan et al. 2013).

Figure 4 shows several scatterplots of HCY con-

centrations from the system population model.

Figure 4B shows that there is no correlation between

liver Hcy (L-Hcy) and P-Hcy. In contrast, Fig. 4A

shows that P-Hcy is highly, but nonlinearly, corre-

lated with tissue Hcy (T-Hcy). Analysis of L-Hcy and

T-Hcy levels (not shown) shows that they are uncor-

related. The advantage of a system population model

based on an underlying deterministic model is that

once one sees a phenomenon in the virtual popula-

tion one can go back to the deterministic model and

do computational experiments to determine the

causal reasons for the phenomenon. In this case,

the BHMT reaction that remethylates Hcy in the

liver is not present in tissue and CBS, which trans-

sulfurates Hcy, is only weakly expressed in most

non-liver tissues. Thus Hcy builds up in tissues

and is exported to the blood. From the blood, Hcy

is taken up by the liver. Since the combined volume

of body tissues is larger than the volume of the liver

and the blood, there is a large net flux of Hcy to the

liver. Hepatocytes express BHMT and CBS strongly,

so, in the liver the BHMT reaction uses Hcy to make

Met, and CBS turns Hcy into cystathionine and

sends it down the pathway that makes glutathione.

The basic outline of this story has been verified ex-

perimentally (Borne et al. 2009). Although this is a

simple example, it shows the usefulness of system

population models based on deterministic ODE

models. By following through on odd or surprising

features of the virtual population one can discover

new phenomena. In this case, stabilization or robust-

ness of Hcy requires the interactions of the FMOC

pathway between tissues and liver and is in effect a

higher systems-level property.

System populations models and
predisposition to disease

Perhaps the most important thing that robustness

mechanisms do is to provide protection from envir-

onmental factors and mutations that cause disease.

We will use our work on dopamine (DA) metabol-

ism (Best et al. 2009, 2010b; Reed et al. 2009) to

illustrate how system population models can give

meaning and mechanistic understanding to the

Fig. 4 Dependence of plasma levels of homocysteine (Hcy) on the levels of homocysteine in liver and tissue. These are data from a

population of virtual individuals with random variation in all enzymes in FOCM. (A) There is a tight but non-linear correlation between

plasma and tissue Hcy. (B) There is little or no correlation between plasma and liver Hcy.
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concept of “predisposition to disease,” which emerges

naturally from robustness mechanisms.

Dopamine and serotonin are unusual neurotrans-

mitters in that the system attempts to maintain a

constant concentration in the extracellular space, a

phenomenon known as volume transmission (Best

et al. 2009). If levels rise above or fall below a target

level, there is a change in the activity patterns of

downstream neurons associated with a change in

behavior. For instance, reduced levels of DA lead

to torpor, the loss of motor control, and tremors

characteristic of Parkinson’s disease, whereas ele-

vated levels lead to impulsive behavior and activate

the pleasure and reward system. Reduction in 5HT

levels is associated with depression and other affect-

ive disorders. DA and 5HT levels are maintained

by a balance between synthesis and breakdown by

monoamine oxidases (MAOs), and by a homeostatic

mechanism that involves two kinds of feedback. First,

DA and 5HT are continually released from synaptic

vesicles and then transported back into the presynap-

tic neuron by reuptake transporters. Second, these

neurotransmitters act on presynaptic receptors (autor-

eceptors) whose activity inhibits both their synthesis

and release. Thus when DA (or 5HT) levels in the

extracellular space rise, reuptake activity is increased

and synthesis and release are inhibited, and when the

levels fall the reverse responses take place.

Models of DA metabolism and regulation have

shown that these mechanisms stabilize extracellular

DA against mutational variation of the activities of

genes in this system (Best et al. 2009; Reed et al.

2009). This can be seen by drawing a graph of the

dependence of extracellular DA levels on the activ-

ities of tyrosine hydroxylase (TH) and the reuptake

transporter (DAT), shown in Fig. 5, graphed with

normal activity scaled to 100%. The surface is very

nonlinear with a large flat region where variation in

TH and DAT has little effect on the DA levels. The

large white dot on the surface is wild type and the

color coding is green for values considered “normal”

and other colors for excessively low or high values of

extracellular DA that are associated with symptoms

of neurological disorder. It turns out that in human

populations there are common genetic polymor-

phisms of TH and DAT, whose effect is shown by

the smaller dots in Fig. 5. These mutations have large

effects on the activities of these gene products, yet

they all lie on a relatively flat part of the plateau and

thus have little effect on the phenotype. This is another

example of cryptic genetic variation. Statistical associ-

ation studies in this system as well as FOCM have

Fig. 5 Dependence of extracellular dopamine (eDA) on the activities of tyrosine hydroxylase (TH) and the dopamine reuptake

transporter (DAT). The phenotypic landscape graph has a large homeostatic plateau, indicated by green, where there is little variation

in the level of eDA. The red dot indicates the position of the normal wild-type activities for TH and DAT (scaled to 100%). The white

dots are known polymorphisms for these two peptides (data in Nijhout et al. [2015]). Some of these are near the downward cliff of

low eDA and exhibit dystonias and symptoms of TH deficiency. The upward cliff is associated with anxiety disorders and hyperactivity.

Cocaine acts by blocking DATs and would thus move an individual up that slope. Bar graphs are frequency distributions of extracellular

DA levels of virtual populations centered at the locations indicated by the arrows. Color coding is as in the surface graph.
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shown some of these polymorphisms to be associated

with a “predisposition” to disease (Knappskog et al.

1995; Thomas et al. 2009).

Other mutations farther upstream can also cause a

reduction in TH activity and produce the so-called

TH deficiency syndrome (TDS). TDS is a spectrum

disorder, meaning that symptoms can range from

very mild to very severe (Furukawa and Kish

2014), presumably because there are additional con-

tributing factors that vary individually. We can study

these phenomena with a population model version

of dopamine metabolism in which we introduce in-

dividual variation in other components of the sys-

tem. In Fig. 5 we show, as bar graphs, population

distributions of extracellular DA centered on three

genotypes with normal, low, and high TH activity.

All individuals in a variable population, centered

on the wild type genotype, have normal extracellular

DA, indicated by the green color. This is the advan-

tage of having a wild type genotype that sits in the

middle of the homeostatic plateau. Despite substan-

tial variation in all parameters, everyone in the

population has normal DA. It can be seen that

even with populations centered near the upward or

downward cliffs, a large number of individuals still

fall with within the normal range of extracellular DA,

thanks to the homeostatic mechanism. However, a

substantial fraction of the population has excessively

low or high extracellular DA levels. Low DA levels

are associated with neurological disorders such as

Parkinson’s disease, and there is a hypothesis that

hyperactivity of dopamine transmission underlies

many of the symptoms of schizophrenia (Kegeles

et al. 2010). The fact that amphetamines, cocaine,

and other drugs that increase levels of extracellular

DA by blocking DAT cause similar symptoms to

schizophrenia supports this hypothesis.

We see that even with a genotype that puts one at

the edge of a disease cliff many individuals will still

be “normal.” We interpret this variation as indicative

of having a “predisposition” to disease, because

whether or not a disease will develop, and the degree

of its expression, depend on all the other factors in

the system. Predisposition to disease can thus be a

manifestation of living on the edge of robustness.

Subpopulations with special properties
can be identified

If predisposition to disease means living at the edge

of a homeostatic plateau, then it would be useful to

know if it is possible to identify the subpopulation of

individuals that are more at risk than others. In add-

ition, individuals in a genetically diverse population

often react differently to environmental factors or

drugs. Using system population models, we can

identify the characteristics of such subpopulations

and using the underlying mathematical model we

can determine the reasons why they react differently.

We will give an example from serotonin (5HT) me-

tabolism in the brain using an updated version of

the mathematical model introduced in Best et al.

(2010b). The general structure of the model is simi-

lar to the model of DA, except that 5HT is made

from tryptophan (instead of tyrosine), it is hydroxy-

lated by tryptophan hydroxylase (TPH), instead of

TH, and it is taken up from the extracellular space

by serotonin reuptake transports (SERTs), instead of

DATs. As in the case of DA, the concentration of

5HT in the extracellular space is stabilized against

polymorphisms in TPH and SERTs by the 5HT

autoreceptors (Best et al. 2010a, 2010b).

With this model we can study the differential

effects of different antidepressants. MAO inhibitors

are antidepressants that inhibit the enzyme that

catabolizes 5HT in the cytosol. The idea is that

this should raise the cytosolic concentration of

5HT and therefore also the vesicular concentration,

and more 5HT should be released per action poten-

tial. This should raise the concentration of 5HT in

the synapse. Selective serotonin reuptake inhibitors

(SSRIs), by contrast, are antidepressants that inhibit

the SERTs, thus slowing reuptake from the extracel-

lular space into the cytosol, and this should also raise

5HT in the extracellular space. There are lots of nat-

ural questions. Which type of antidepressant works

better? On which members of the population? What

happens if both are prescribed? Here, without giving

details, we’ll just show how one can get at these

questions using system population models.

We made a system population model of 300 indi-

viduals in which MAO activity and SERT varied

independently with a uniform distribution with

standard deviation 50% of the normal activity

(scaled to 1). Figure 6A shows the scatterplot of extra-

cellular 5HT (EHT) versus the activity of SERT. The

green dot is the normal steady state. The red dots are

those members of the population that have approxi-

mately normal SERT values (between 0.8 and 1.2)

and quite low MAO values (less than 0.4). As one

can see, inhibiting MAO does raise 5HT but not dra-

matically. In Panel B, the red dots are the members of

the population that have approximately normal MAO

(between 0.8 and 1.2) but quite low SERT activity

(less than 0.4). As one can see, these individuals

have significantly raised 5HT.

What would happen if both MAO and the SERTs

are inhibited, as might occur under treatment with
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both types of antidepressants? In Fig. 6C the red dots

are the members of the population who have rela-

tively low MAO (less than 0.6) and relatively low

SERT (less than 0.6). Now we see a dramatic average

rise in 5HT with many members of this cohort

showing 5HT increases by more than a factor of 4.

It is known that the MAO inhibitors can act syner-

gistically with SSRIs and produce dramatic (some-

times life-threatening) increases in 5HT, known as

serotonin syndrome (Izumi et al. 2006; Lane and

Baldwin 1997), and we see that effect here.

Finally, we examined the importance of the autor-

eceptors in stabilizing 5HT levels. We created a new

population with MAO and SERT varying, but with

the autoreceptors turned off. Figure 6D shows the

result. There is much more variance in the 5HT levels

in the populations and some individuals would show

serotonin syndrome even at relatively normal values

of SERT. And, one can see how low 5HT gets for

high SERT activities. This demonstrates the import-

ance of the autoreceptors in stabilizing 5HT levels.

The mechanisms by which antidepressants such as

SSRIs exert their therapeutic effect are not clear. A

given drug is only effective in a fraction of the

patients and its efficacy is variable (Jia et al. 2016).

We can use a system population model of 5HT

signaling to study how a population of virtual indi-

viduals with a broad range of variation in all param-

eters responds to an SSRI treatment. This may allow

one to determine what underlying factors control the

variability in the response.

Conclusions on systems plasticity and
robustness

Although homeostatic mechanisms can be very good,

they are never perfect. The region of parameter space

over which they work is limited, and the homeostatic

plateau is usually slightly tilted so that there is actu-

ally slight phenotypic variation due to genetic and

environmental factors. Thus robustness is not abso-

lute. But homeostatic mechanisms, by their very na-

ture, must also contain explicit mechanisms for

plasticity. This is because in order to keep a target

phenotype near its setpoint it is necessary to have

variables that counteract deviations from that set-

point, in both directions. In a dynamically stable

phenotype there are always factors that vary in order

to maintain stability. So, the overall system may

show stability or robustness in the face of perturb-

ation, even while the underlying components are

showing plasticity. The seeming paradox of both

Fig. 6 Dependence of extracellular 5HT (EHT) concentration on the activity of the serotonin reuptake transporter (SERT) and

monoamine oxidase (MAO) activity. In all panels the green marker indicates the normal wild type mean, and the red dots indicate 5HT

concentrations under the following conditions: (A) normal SERT and reduced MAO; (B) reduced SERT and normal MAO; (C) reduced

SERT and reduced MAO. In (D) we recreated the population varying SERT and MAO after removing the effect of the autoreceptors.

There is a much larger variance and many more individuals show very high extracellular 5HT.
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stability and plasticity in the regulatory system there-

fore stems in part from differences in the “level of

analysis” selected by the researcher.

Using mathematical models of metabolic systems it

is possible to explicitly understand actual mechanisms

of robustness that operate in specific networks, and

identify specific genes whose effect is buffered by that

mechanism and thus constitute cryptic genes.

We illustrate this with specific examples from

FMOC. One of the functions of the feedback mech-

anisms in FMOC (Fig. 2) is to stabilize several reac-

tions against genetic and environmental variation

(Nijhout et al. 2004, 2006b, 2008). These reactions

are thymidylate synthase (TS), the rate limiting step

in DNA synthesis, AICART, necessary for the de

novo synthesis of purines, and DNA methyltransfer-

ase (DNMT), necessary for timely methylation of

newly synthesized DNA. We showed using our

model for FMOC that when we introduce variation

in amino acid input, simulating daily meal patterns,

that many of the reactions fluctuate widely, some

even reversing direction, after and between meals.

At the same time, the three reactions mentioned

above remain quite stable. We also showed that inac-

tivating one or more of the feedback reactions in the

model can result in the destabilization of one or

more of the three critical reactions (Nijhout et al.

2014, 2015; Nijhout and Reed 2014).

The plastic reactions that respond to variation in

amino acid input are examples of plasticity in service

of robustness. These variable reactions also cause

their neighboring metabolites in the network to fluc-

tuate widely. Some of those metabolites act as allo-

steric activators or inhibitors of enzymes elsewhere

in the system (Fig. 2), and alter their activity. The

allosteric sites on those enzymes are due to particular

genetic sequences that can evolve, or can be trans-

located to other protein coding genes whose product

can then come under novel control. Presumably this

is how the complex of regulatory interactions illus-

trated in Fig. 2 originated during evolution.

Rather than focus on principles, we have used spe-

cific examples of metabolic systems related to human

health to illustrate mechanisms of robustness, plasti-

city, and cryptic genes. Many of the mechanisms

(e.g., feedback and parallel pathways) belong to cat-

egories that are well-known, others (e.g., substrate

inhibition) are not. Robustness is a systems property,

not a function of “robustness genes,” and thinking

about genes as enhancing or diminishing robustness

is unhelpful in understanding both the mechanisms

and evolution of robustness. A particular advantage

of our approach is that we can account for the roles

of specific genes in the mechanisms of robustness.

This could be a starting point for uncovering the

pathway by which these mechanisms evolved.
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