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Definition

Suppose that a system has m different chemicals, A1, . . . , Am, and define a complex to

be an m-vector of non-negative integers. A metabolic network is a directed graph, not

necessarily connected, whose vertices are complexes. There is an edge from complex C

to complex D if there exists a chemical reaction in which the chemicals in C with non-

zero components are changed into the chemicals in D with non-zero components. The

non-zero integer components represent how many molecules of each chemical are used

or produced in the reaction. Metabolic networks are also called biochemical networks.

Description.

Chemicals inside of cells are normally called substrates and the quantity of interest is

the concentration of the substrate that could be measured as mass per unit volume or,

more typically, number of molecules per unit volume. In Figure 3, below, the substrates

are indicated by rectangular boxes that contain their acronyms. A chemical reaction

changes one or more substrates into other substrates and the function that describes

how the rate of this process depends on substrate concentrations and other variables

is said to give the kinetics of the reaction. The simplest kind of kinetics is mass action

kinetics in which a unimolecular reaction (one substrate), A
k−→ B, proceeds at a rate

proportional to the concentration of the substrate, i.e. k[A], and a bimolecular reaction,

A+B
k−→ C proceeds at a rate proportional to the product of the concentrations of the

substrates, k[A][B], and so forth. Given a chemical reaction diagram, such as Figure 1,

the differential equations for the concentrations of the substrates simply state that the
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rate of change of each substrate concentration is equal to the sum of the rates of the

reactions that make it minus the rates of the reactions that use it. A simple reaction

diagram and corresponding differential equations are shown in Figure 1.

Figure 1. On the right are the differential equations corresponding to the reaction diagram if one

assumes mass-action kinetics.

Figure 2 shows the simplest reaction diagram for an enzymatic reaction in which

an enzyme, E, binds to a substrate, S, to form a complex, C. The complex then

dissociates into the product, P , and the enzyme that can be used again. One can write

down the four differential equations for the variables S,E,C, P but they can not be

solved in closed form. It is very useful to have closed form formula for the overall rate

of the reaction S −→ P because that formula can be compared to experiments and

the constants can be determined. Such an approximate formula was derived by Leonor

Michaelis and Maud Menten:

Figure 2. A simple enzymatic reaction and the Michaelis-Menten formula.

Here Etot is the total enzyme concentration, k2 is indicated in Figure 2, and Km is

the so-called Michaelis-Menten constant. The quantity k2Etot is called the Vmax of the

reaction because that is the maximum rate obtained as [S] → ∞. There is a substantial
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mathematical literature about when this approximation is a good one Segal [33]. For

further discussion of kinetics and references, see Keener and Sneyd [24].

The biological goal is to understand how large biochemical systems that accom-

plish particular tasks work, that is, how the behavior of the whole system depends on

the components and on small and large changes in inputs. So, for example, the folate

cycle in Figure 3 is central to cell division since it is involved in the production of

purines and pyrimidines necessary for copying DNA. Methotrexate, a chemotherapeu-

tic agent binds to the enzyme DHFR and slows down cell division. Why? And how

much methotrexate do you need to cut the rate of cell division in half? The enzyme

DNMT catalyzes the methylation of DNA. How does the rate of the DNMT reaction

depend on the folate status of the individual, that is, the total concentration of the six

folate substrates?

Difficulties.

It would seem from the description so far that the task of an applied mathematician

studying metabolism should be quite straightforward. A biologist sets the questions

to be answered. The mathematician writes down the differential equations for the

appropriate chemical reaction network. Using data bases or original literature, the

constants for each reaction, like Km and Vmax, are determined. Then the equations are

solved by machine computation and one has the answer. For many different reasons

the actual situation is much more difficult and much more interesting.

What’s the network? The metabolism of cells is an exceptionally large biochemical

network and it is not so easy to decide on the “correct” relatively small network that

corresponds to some particular cellular task. Typically the substrates in any small

network will also be produced and used up by other small networks and thus the

behavior in those other networks affects the one under study. How should one draw the
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boundaries of a relatively small network so that everything that is important for the

effect one is studying is included?

Enzyme properties. The rates of reactions depend on the properties of the enzymes

that catalyze them. Biochemists often purify these enzymes and study their properties

when they are combined with substrates in a test tube. These experiments are typically

highly reproducible. However, enzymes may behave very differently in the context of

real cells. They are affected by ph and by the presence or absence of many other

molecules that activate them or inhibit them. Thus their Km and Vmax may depend

on the context in which they are put. Many metabolic pathways are very ancient,

for example the folate cycle occurs in bacteria, and many different species have the

”same” enzymes. But, in reality, the enzymes may have different properties because of

differences in the genes that code for them.

Gene expression levels. Enzymes are proteins that are coded for by genes. The Vmax

is roughly proportional to the total enzyme concentration, which is itself dependent

on gene expression level and the rate of degradation of the enzyme. The expression

level of the gene that codes for the enzyme will depend on the cell type (liver cell

or epithelial cell) and on the context in which the cell finds itself. This expression

level will vary between different cells in the same individual, between individuals of

the same species, and between different species that have the same gene. Furthermore,

the expression level may depend on what other genes are turned on or the time of

day. Even more daunting is the fact that identical cells (same DNA) in exactly the

same environment often show a 30% variation in gene expression levels Sigal et al [36].

Thus, it is not surprising that theKm and Vmax values (that we thought the biochemists

would determine for us) vary sometimes by 2 or 3 orders of magnitude in public enzyme

databases.
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Is the mean field approximation valid? When we write down the differential

equations for the concentrations of substrates using mass-action, Michaelis-Menten, or

other kinetics, we are assuming that the cell can be treated as a well-mixed bag of

chemicals. There are two natural circumstances where this is not true. First the num-

ber of molecules of a given substrate may be very small; this is particularly true in

biochemical networks related to gene expression. In this case stochastic fluctuations

play an important role. Stochastic methods are discussed below. Secondly, some bio-

chemical reactions occur only in special locations, for example the cell membrane or

the endoplasmic reticulum. In this case there will clearly be gradients, the well-mixed

assumption is not valid, and partial differential equations will be required.

Are these systems at steady state? It is difficult to choose the right network and

determine enzyme constants. However, once that is done surely the traditional ap-

proach in applied mathematics to large non-linear systems of ODEs should work. First

one determines the steady-states and then one linearizes around the steady-states to

determine which ones are asymptotically stable. Unfortunately, many cellular systems

are not at or even near steady state. For example, amino acids concentrations in the

blood for the hours shortly after meals increase by a factor of 2 to 6. This means that

cells are subject to enormous fluctuations in the inputs of amino acids. The traditional

approach has value, of course, but new tools, both technical and conceptual, are needed

for studying these systems of ODEs.

Long-range interactions. Many biochemical reaction diagrams do not include the

fact that some substrates influence distant enzymes in the network. These are called

long-range interactions and several are indicated by red arrows in Figure 3. The sub-

strate SAM activates the enzyme CBS and inhibits the enzymes MTHFR and BHMT.

The substrate 5mTHF inhibits the enzyme GNMT. We note that ”long-range” does



7

not indicate distance in the cell; we are assuming the cell is well-mixed. ”Long-range”

refers to distance in the network. It used to be thought that it was easy to understand

the behavior of chemical networks by walking through the diagrams step by step. But

if there are long-range interactions this is no longer possible; one must do serious math-

ematics and/or extensive machine experimentation to determine the system properties

of the network.

But what do these long-range interactions do? In the cases indicated in Figure

3 this is understood. After meals the methionine input goes way up and the SAM

concentration rises dramatically. This activates CBS and inhibits BHMT, which means

that more mass is sent away from the methionine cycle via the CBS reaction and less

mass is recycled within the cycle via the BHMT reaction. So these two long-range

interaction roughly conserve mass in the methionine cycle. The other two long range

interactions keep the DNMT reaction running at almost a constant rate despite large

fluctuations in methionine input. Here’s a verbal description of how this works. If

SAM starts to go up, the enzyme MTHFR is more inhibited so there will be less of

the substrate 5mTHF. Since there’s less 5mTHF, the inhibition of GNMT is partly

relieved and the extra SAMs that are being produced are taken down the GNMT

pathway, leaving the rate of the DNMT reaction about constant Nijhout et al [28]. We

see that in both cases the long-range interactions have specific regulatory roles and

probably evolved for just those reasons. The existence of such long-range interactions

makes the study of chemical reaction networks much more difficult.
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Figure 3. Folate and methionine metabolism. The rectangular boxes represent substrates whose

acronyms are in the boxes. All the pink boxes are different forms of folate. Each arrow represents a

biochemical reaction. The acronyms for the enzymes that catalyze the reactions are in the blue ellipses.

The TS and AICART reactions are important steps in pyrimidine and purine synthesis, respectively.

The DNMT reaction methylates cytosines in DNA and is important for gene regulation.

Theoretical Approaches to Complex Metabolic Systems.

Cell metabolism is an extremely complex system and the large number of modeling

studies on particular parts of the system can not be summarized is a short review.

However, we can discuss several different theoretical approaches.

Metabolic Control Analysis (MCA). This theory, which goes back to the original

papers of Kacser and Burns [21],Kacser and Burns [22], enables one to calculate ”control

coefficiants” that give some information about the system properties of metabolic net-

works. Let x =< x1, x2, . . . > denote the substrate concentrations in a large metabolic

network and suppose that the network is at a steady state xs(c), where c denotes a

vector of constants that the steady state depends on. These constants may be kinetic

constants like Km or Vmax values, initial conditions, input rates, enzyme concentra-
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tions. etc.. If we assume that the constants are not at critical values where behavior

changes, then the mapping c −→ xs(c) will be smooth and we can compute its partial

derivatives. Since the kinetic formulas tell us how the fluxes along each pathway de-

pend on the substrate concentrtions, we can also compute the rates of change of the

fluxes as the parameters c are varied. These are called the “flux control coefficients.”

In practice, this can be done by hand only for very simple networks, and so is normally

done by machine computation. MCA gives information about system behavior very

close to a steady state. One of the major contributions of MCA was to emphasize that

local behavior, for example a flux, was a system property in that it depended on all

or many of the constants in c. So, for example, there is no single rate-limiting step for

the rate of production of a particular metabolite, but, instead, control is distributed

throughout the system.

Biochemical Systems Theory (BST). This theory, which goes back to Savageau

Savageau [32], replaces the diverse nonlinear kinetic formulas for different enzymes

with a common power-law formulation. So, the differential equation for each substrate

concentration looks like x′(t) =
∑

i αij

∏
j x

βij

ij −
∑

i γij
∏

j x
δij
ij In the first term the

sum over i represents all the different reactions that produce x and the product over

j gives the variables that influence each of those reactions. Similarly, the second sum

contains the reactions that use x. The powers, βij and δij, which can be fractional or

negative, are to be obtained by fitting the model to experimental data. The idea is

that one needs to know the network and the influences, but not the detailed kinetics.

A representation of the detailed kinetics will emerge from determining the powers by

fitting data. Note that the influences would naturally incude the long-range interactions

mentioned above. From a mathematical point of view there certainly will be such a

representation near a (non-critical) steady state if the variables represent deviations

from that steady state. One of the drawbacks of this method is that biological data is
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so variable (for the reasons discussed above) and therefore the right choice of data set

for fitting may not be clear. BST has also been used to simulate gene networks and

intracellular signaling networks Reinitz and Sharp [31],Sharp and Reinitz [34].

Metabolomics.With the advent of high-throughput studies in molecular biology there

has been much interest in applying concepts and techniques form bio-informatics to

understanding metabolic systems. The idea is that one measures the concentrations of

many metabolites at different times, in different tissues, or cells. Statistical analysis

reveals which variables seem to be correlated and one uses this informations to draw a

network of influences. Clusters of substrates the vary together could be expected to be

part of the same “function.” The resulting networks can be compared, between cells

or species, in an effort to understand how function arises from network properties; see

for example Pepin et al [29].

Graph theory. A related approach has been to study the directed graphs that corre-

spond to known metabolic (or gene) networks with the substrates (genes) as nodes and

the directed edges representing biochemical reactions (or influences). One is interested

in large scale properties of the networks, such as mean degree of nodes and the exis-

tence of large almost separated clusters. One is also interested in local properties, such

as a particular small connection pattern, that is repeated often in the whole graph.

It has been proposed by Alon [1] that such repeated “motifs” have specific biological

functions. From the biological point of view, the graph theoretic approaches have a

number of pitfalls. It is very natural to assume that graph properties must have bio-

logical function or significance. For example, to assume that a node with many edges

must be “important”, or clusters of highly connected nodes are all contributing to a

single “function.” Nevertheless, it is interesting to study the structure of the graphs in-
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dependent of the dynamics and to ask what influnce or significance the graph structure

has.

Deficiency zero systems. The study of graphs suggests a natural question about

the differential equations that represent metabolic systems. When are the qualitative

properties of the system independent of the local details? As discussed in Difficulties,

the details will vary considerably from species to species, from tissue to tissue, from cell

to cell, and even from time to time in the same cell. Yet large parts of cell metabolism

keep functioning in the same way. Thus, the biology tells us that many important

system properties are independent of the details of the dynamics. This must be reflected

in the mathematics. But how? A major step to understanding the answer to this

question was made by Marty Feinberg and colleagues, Feinberg [14].

Let m be the number of substrates. For each reaction in the network, we denote

by ν the m-component vector of integers that indicates how many molecules of different

substrates are used in the reaction; ν ′ indicates how many are produced by the reaction.

Each ν is called a complex and we denote the number of complexes by c. The span

of the set of vectors of the form ν − ν ′ is called the stoichiometric subspace and it

is invariant under the dynamics. We denote it’s dimension by s and let ℓ denote the

number of connected components of the graph. The deficiency of the network is defined

as δ = c− s− ℓ. The network is weakly reversible if whenever a sequence of reactions

allows us to go from complex ν1 to complex ν2 then there exists a sequence of reactions

from ν2 to complex ν1. Feinberg formulated the deficiency zero theorem which says

that a weakly reversible deficiency zero network with mass action kinetics has a unique

globally stable equilibrium in the interior of each stoichiometric compatibility class.

This is true independent of the choice of rate constants. Feinberg gave a proof in the

case that there are no boundary equilibria on the faces of the positive orthant. Since
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then, the proof has been extended to many cases that allow boundary equilibria Chavez

[9],Anderson [2],Shiu and Sturmfels [35].

Stochastic Models.

There are many sources of stochasticity in cellular networks. For example, the initial

conditions for a cell will be random due to the random assignment of resources at

cellular division, and the environment of the cell is random due to fluctuations in such

things as temperature and the chemical environment of the cell. If these were the only

sources of randomness, then one would only need to modify the coefficients and initial

conditions of the differential equation models to obtain reasonable models taking these

stochastic effects into account. But many cellular processes involve substrates and en-

zymes present in the system in very small numbers, and small (random) fluctuations

in these numbers may have significant effects on the behavior of the system. Conse-

quently, it is the discreteness of the system as much as its inherent stochasticity that

demands a modeling approach different from the classical differential equations.

Markov chain models. The idea of modeling a chemical reaction network as a dis-

crete stochastic process at the molecular level dates back at least to Delbrück [12] with

a rapid development beginning in the 1950s and 1960s. See, for example, Bartholo-

may [7, 8]; McQuarrie [27]. The simplest and most frequently used class of models are

continuous-time Markov chains. The state X(t) of the model at time t is a vector of

nonnegative integers giving the numbers of molecules of each species in the system at

that time. These models are specified by giving transition intensities (or propensities

in much of the reaction network literature) λl(x) which determine the infinitesimal

probabilities of seeing a particular change or transition X(t) → X(t+∆t) = X(t) + ζl

in the next small interval of time (t, t+∆t], that is,

P{X(t+∆t) = X(t) + ζl|X(t)} ≈ λl(X(t))∆t.
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In the chemical network setting, each type of transition corresponds to a reaction in

the network, and ζl = ν ′
l − νl, where νl is a vector giving the number of molecules of

each chemical species consumed in the lth reaction and ν ′
l is a vector giving the number

of molecules of each species produced in the reaction.

The intuitive notion of a transition intensity can be translated into a rigorous

specification of a model in a number of different ways. The most popular approach

in the chemical networks literature is through the master (or Kolmogorov forward)

equation

ṗy(t) =
∑
l

λl(y − ζl)py−ζl(t)− (
∑
l

λl(y))py(t), (1)

where py(t) = P{X(t) = y} and the sum is over the different reactions in the network.

Another useful approach is through a system of stochastic equations

X(t) = X(0) +
∑

ζlYl(

∫ t

0

λl(X(s))ds), (2)

where the Yl are independent unit Poisson processes. Note thatRl(t) = Yl(
∫ t

0
λl(X(s))ds)

simply counts the number of times that the transition taking the state x to the state

x+ ζl occurs by time t, that is, the number of times the lth reaction occurs. The master

equation and the stochastic equation determine the same models in the sense that if

X is a solution of the stochastic equation, py(t) = P{X(t) = y} is a solution of the

master equation, and any solution of the master equation can be obtained in this way.

See Anderson and Kurtz [4] for a survey of these models and additional references.

The stochastic law of mass action. The basic assumption of the simplest Markov

chain model is the same as that of the classical law of mass action: the system is

thoroughly mixed at all times. That assumption suggests that the intensity for a binary

reaction

A+B → C (3)
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should be proportional to the number of pairs consisting of one molecule of A and

one molecule of B, that is, λ(X(t)) = kXA(t)XB(t). The same intuition applied to the

binary reaction

2A → C (4)

would give an intensity

λ(X(t)) = κ

(
XA(t)

2

)
=

κ

2
XA(t)(XA(t)− 1) = kXA(t)(XA(t)− 1),

where we replace κ/2 by k.

For unary reactions, for example A → C, the assumption is that the molecules

behave independently and the intensity becomes λ(X(t)) = kXA(t).

Relationship to deterministic models. The larger the volume of the system the

less likely a particular pair of molecules is to come close enough together to react, so

it is natural to assume that intensities for binary reactions should vary inversely with

respect to some measure of the volume. If we take that measure N to be Avogadro’s

number times the volume in liters, then the intensity for (3) becomes

λ(X(t)) =
k

N
XA(t)XB(t) = Nk[A]t[B]t,

where [A]t = XA(t)/N is the concentration of A measured in moles per liter. The inten-

sity for (4) becomes λ(X(t)) = k[A]t([A]t − N−1) ≈ k[A]2t , assuming, as is likely, that

N is large and that XA(t) is of the same order of magnitude as N (which may not be

the case for cellular reactions). If we assume that our system consists of the single reac-

tion (3), the stochastic equation for species A, written in terms of the concentrations,

becomes

[A]t = [A]0 −
1

N
Y (N

∫ t

0

k[A]s[B]sds) ≈ [A]0 −
∫ t

0

k[A]s[B]sds,

where, again assuming that N is large, the validity of the approximation follows by

the fact that the law of large numbers for the Poisson process implies N−1Y (Nu) ≈ u.
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Analysis along these lines gives a derivation of the classical law of mass action starting

from the stochastic model. See, for example, Kurtz [25], Kurtz [26], or Ethier and Kurtz

[13], Chapter 10.

Simulation. Among the basic properties of a continuous time Markov chain (with

intensities that do not depend on time) is that the holding time in a state x is expo-

nentially distributed and is independent of the value of the next state occupied by the

chain. To be specific, the parameter of the holding time is

λ̄(x) =
∑
l

λl(x),

and the probability that the next state is x+ ζl is λl(x)/λ̄(x). This observation imme-

diately suggests a simulation algorithm known in the chemical literature as Gillespie’s

direct method or the stochastic simulation algorithm (SSA)Gillespie [16, 17]. Specif-

ically, given two independent uniform [0, 1] random variables U1 and U2 and noting

that − logU1 is exponentially distributed with mean 1, the length of time the process

remains in state x is simulated by ∆ = 1
λ̄(x)

(− logU1). Assuming that there are m

reactions indexed by 1 ≤ l ≤ m and defining ρ0(x) = 0 and ρl(x) = λ̄(x)−1
∑l

k=1 λk(x),

the new state is given by

x+
∑
l

ζl1(ρl−1(x),ρl(x)](U2),

that is, the new state is x+ ζl if ρl−1(x) < U2 ≤ ρl(x).

If one simulates the process by simulating the Poisson processes Yl and solving

the stochastic equation (2), one obtains the next reaction (next jump) method as

defined by Gibson and Bruck [15].

If we define an Euler-type approximation for (2), that is, for 0 = τ0 < τ1 < · · · ,

recursively define

X̂(τn) = X(0) +
∑
l

ζlYl

(
n−1∑
k=0

λl(X̂(τk))(τk+1 − τk)

)
,
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we obtain Gillespie’s τ -leap method, which provides a useful approximation to the

stochastic model in situations where λ̄(x) is large for values of the state x of interest

Gillespie [18]. See Anderson [3]; Anderson et al [5] for additional analysis and discussion.

Hybrid and multiscale models. A discrete model is essential if the chemical net-

work consists of species present in small numbers, but a typical biochemical network

may include some species present in small numbers that need to be modeled as discrete

variables and others species present in much larger numbers that would be natural to

model as continuous variables. This observation leads to hybrid or piecewise determin-

istic models (in the sense of Davis [11]) as considered in the chemical literature by

Crudu et al [10]; Haseltine and Rawlings [19]; Hensel et al [20]; Zeiser et al [39]. We

can obtain these models as solutions of systems of equations of the form

Xk(t) = Xk(0) +
∑
l∈Rd

ζlYl(

∫ t

0

λl(X(s))ds), k ∈ Sd,

Xk(t) = Xk(0) +
∑
l∈Rc

ζl

∫ t

0

λl(X(s))ds = Xk(0) +

∫ t

0

Fk(X(s))ds, k ∈ Sc,

where Rd and Sd are the indices of the reactions and the species that are modeled

discretely, Rc and Sc are the indices for the reactions and species modeled continuously,

and Fk(x) =
∑

l∈Rc
ζlλl(x).

Models of this form are in a sense “multiscale” since the numbers of molecules in

the system for the species modeled continuously are typically many orders of magnitude

larger than the numbers of molecules for the species modeled discretely. Many of the

stochastic models that have been considered in the biochemical literature are multiscale

for another reason in that the rate constants vary over several orders of magnitude as

well. (See, for example, Srivastava et al [38, 37].) The multiscale nature of the species

numbers and rate constants can be exploited to identify subnetworks that function

naturally on different time scales and to obtain reduced models for each of the time

scales. Motivated in part by Rao and Arkin [30] and Haseltine and Rawlings [19], a
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systematic approach to identifying the separated times scales and reduced models is

developed in Ball et al [6] and Kang and Kurtz [23].
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