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Abstract We investigate the propagation of random fluctuations through biochemical
networks in which the number of molecules of each species is large enough so that the
concentrations are well modeled by differential equations. We study the effect of network
topology on the emergent properties of the reaction system by characterizing the behavior
of variance as fluctuations propagate down chains and studying the effect of side chains
and feedback loops. We also investigate the asymptotic behavior of the system as one
reaction becomes fast relative to the others.
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1. Introduction

There are two different natural contexts in which stochastic dynamics arises in the study of
biochemical reaction networks. In the first, the stochastic chemical dynamics arises from
the randomness inherent in molecular interactions and in the formation and breaking of
chemical bonds. This “intrinsic stochasticity” is particularly relevant when the numbers
of molecules are small such as in gene transcription and small gene regulatory networks
where the mean concentrations no longer faithfully model the chemical dynamics. There
is a large literature in this field beginning with Delbruck (1940), including Gans (1960),
Kurtz (1972), Gillespie (1976), and recently exemplified by Gadgil et al. (2005) and Ball
et al. (2006). In this setting, the chemical species are modeled by discrete random vari-
ables and the chemical reactions by Poisson processes. This is the randomness present
in the Gillespie algorithm (Gillespie, 1976). If one scales up the volume and number of
molecules while keeping the initial concentrations constant, then this intrinsic stochastic-
ity becomes negligible on the scale of concentrations and the dynamical system reduces
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to a collection of deterministic, coupled ordinary differential equations for the concentra-
tions of the species (Kurtz, 1972). The second type of stochasticity arises naturally in this
scaling limit.

In this second context, which is our focus here, one wants to investigate the response
to external excitation of a large biochemical system (which is well described by differ-
ential equations for the concentrations). It is natural and theoretically useful to consider
stochastic excitations and to study the emergent properties of the network as the random
fluctuations propagate through the system. Here the randomness is a tool used to study
the out-of-equilibrium dynamics of the biochemical system. Typically, we are interested
in perturbing randomly a single (or small number of) input(s). Hence the object of study
is a set of differential equations that is forced by a continuous stochastic process in one
or a small number of components. We study how the stochastic fluctuations spread to the
other components and, in particular, how the spreading depends on the topology of the
biochemical network.

The central biological goal driving our work is to understand the behavior of biochem-
ical systems in cells, which in vivo are exceptionally large and complicated. A metabolite
can be the substrate for many different enzymes and participate in apparently unrelated
reactions. Individual reactions usually have nonlinear kinetics catalyzed by enzymes that
are themselves inhibited or excited by products or distant substrates in the network. Cells
and tissues differ because the genes that code for certain enzymes have tissue specific ex-
pression patterns and biochemical substrates themselves also influence gene expression.
Further, each cell’s environment, its inputs and outputs, and its internal state (e.g. stage of
cell cycle) are not constant but vary in time. This continual variation affects both the con-
centrations of substrates and the expression of genes whose products catalyze particular
reactions. Thus, the gene-biochemical system should not be viewed as a fixed object but
as one that is continuously changing.

For each signal, either external or internal, that causes a particular cell to dramatically
change its operation, there are two natural questions. First, how does the gene-biochemical
system respond to accomplish the change? Second, how does the system enable the cell
to maintain homeostasis in all its other operations despite the change? One would like to
understand the structural and kinetic principles that allow the system to accomplish both
tasks simultaneously. We take two distinct approaches to this biological goal. First, we
study how fluctuations propagate through relatively simple systems. We are interested in
proving theorems about how different network geometries magnify or suppress fluctua-
tions since this may give clues as to why biochemical networks are structured as they
are. Secondly, we apply fluctuations to in silico representations of specific, biological net-
works. By observing how fluctuations propagate we can identify reactions or subsystems
that are buffered against such fluctuations, i.e., are homeostatic. Then, through in silico
experimentation (e.g. removing particular reactions), we can take the system apart piece
by piece to discover the regulatory mechanisms that give rise to the homeostasis. This
paper takes the first approach; for an example of the second approach, see Nijhout et al.
(2004, 20064, 2006b), and Reed et al. (2004, 2006).

In this paper we study chemical reaction systems such that each chemical reaction
converts one substrate into one product and we assume that the kinetics are mass action.
Therefore, the corresponding differential equations are linear, so the technical difficulties
involved in studying the associated stochastic processes are minimized. Thus, these sys-
tems are an excellent arena for investigating the effects of network geometry on the prop-
agation, magnification, and suppression of fluctuations. The principles discovered then
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become the natural goal for generalization to nonlinear settings (Anderson and Mattingly,
2007).
To see the kinds of questions we want to ask, consider a nonreversible chain with a side

branch. The chemical species are X1, ..., X,, Xsiqe; the corresponding concentrations are
denoted by xi, ..., X, Xside-
I+&(1) ki ka k3 kn
X X5 X3 e Xy ——
ks T\L L
Xside

The chain has a constant input /, which is perturbed by some random process, &(¢). If
the input is fluctuating, then each of the concentrations will fluctuate as will the fluxes,
kix;. Suppose the side chain is absent. Then, will the variations of the fluxes increase,
decrease, or stay the same as we move down the chain? Does the answer depend on the
rate constants k; ? If the side chain is present, does it affect the variances of the fluxes on
the chain? If so, what is the effect of the size of L.

The chemical reaction diagram corresponds to a set of differential equations for the
concentrations and, similarly, the diagram with stochastic forcing corresponds to a system
of stochastic differential equations (SDEs):

X1 =1—kix; +§£@),
Xo =kix; — Lxy — koxo + kg 2 Xside,

X3 =koxy — k3xs,

These SDEs in turn give rise to a stochastic process on the state space R"*!. We prove that
this stochastic process has a unique stationary measure. Intuitively, this means that at large
times the joint distribution of values of the concentrations becomes independent of the
initial condition and independent of time. That is, the statistics converge to an equilibrium
distribution. The variances of the concentrations referred to above are the variances of the
marginal distributions of this measure. We prove the existence of the stationary measure
in Section 2.2.

The natural assumptions for the stochastic perturbation, £(¢), of an input 7, are that
they are continuous, mean zero, finite variance, stationary, and satisfy £(¢) > —1I. This last
assumption guarantees that the input always remains positive and hence the concentration
of each species remains nonnegative. In Section 3 we prove that the variances of the
fluxes strictly decrease down a nonreversible reaction chain when the input is perturbed
by such a &(¢). Since the mean of each flux is I, the coefficients of variation and the
Fano factors of the fluxes also strictly decrease down the chain. This result is interesting
from a biological point of view because it says that one way to stabilize the flux out of
a chain (i.e., small variance) is to have many intervening biochemical steps between the
varying input and the output. In Section 5 we show, using a comparison argument, that
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side reaction systems and positive feedback loops always lower the variance of the flux
out of the species to which the side reaction or feedback loop is attached. Using the results
of Section 3, one can then see that the upper bound for the variances downstream from the
attachment point are automatically decreased. This shows that the added complexity of a
side reaction system or feedback loop buffers the output of a chain against fluctuations to
the input.

The results of Sections 3 and 5 are very general in that they do not depend on detailed
knowledge of the perturbations £(¢). In order to investigate how the magnitude of the de-
crease in variance above depends on the rate constants and the geometry of the network,
we study in Sections 4 and 6 the special case where the perturbation is white noise. Of
course, white noise does not satisfy the hypotheses on &£(¢) above and the concentrations
in systems perturbed by white noise can occasionally become negative. Nevertheless, per-
turbing the system by white noise makes the entire system Gaussian and enables us to
make explicit calculations. In Section 4 we compute an explicit formula for the variances
of each species and each flux. Using this formula we are able to show how the decrease in
variance depends on the rate constants under a variety of different scenarios. In Section 6,
we study a system in which one rate constant, L, for a reaction using a substrate X, is
large compared to all other rate constants. We show that Var(x) ~ 0(%), as L — oo, so
the variances of the fluxes of all other reactions utilizing X go to zero at the same rate.

It is important to note that our goals, methods and results are different from those in
classical biochemical control theory (Kacser and Burns, 1973; Crabtree and Newsholme,
1985; Heinrich and Rapoport, 1974; Westerhoff and Chen, 1984). In that theory one takes
a system at a fixed steady state, makes a small perturbation in a parameter (perhaps an in-
put), and allows the system to relax to a new steady state. By comparing the new value of
a variable (a concentration or flux) to the old value, one computes the percentage change
of the variable per unit percentage change in the parameter. Technically, one is comput-
ing a partial derivative. This kind of sensitivity analysis gives good information about
local, linearized behavior near the initial steady state. By contrast, we are concerned with
responses to continuous large scale fluctuations in inputs. Technically, this means com-
puting properties of the distribution of each concentration or flux from properties of the
stationary measure.

It is true that the classical biochemical control theory can be made “stochastic” in the
following way. Suppose that the system has input / and is at steady state. Consider the
same system with input / + 1, where 7 is a random variable drawn from some density. For
each 1 we let the system relax to steady state and measure the value v, of some concentra-
tion or flux. v is a random variable and comparing its variance to the variance of n gives
information about how much the steady state value of v changes as n changes. However,
this modified biochemical control theory often gives completely different answers from
the fluctuation theory that we are developing and the differences are biologically signif-
icant. Consider the chain (without the side chain) in the example above. If the input is
I + n, then, at steady state, the flux k,x, must equal / + n, so Var(k,x,) = Var(n); thus
the variance remains constant down the chain. However, as noted above, we will prove
that if the input is continuously and stochastically perturbed (so the system never remains
at equilibrium), then the variances of the fluxes decrease as one proceeds down the chain.
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2. SSC networks and the stationary measure

In this section we introduce the class of chemical reaction systems that we will study and
prove the existence of a stationary measure.

2.1. SSC systems with mass actions kinetics

In this paper we study chemical reactions networks such that each chemical reaction con-
verts one substrate into one product. We call these SSC networks for reasons given below.
Corresponding to the chemical reaction network is a directed graph where each node cor-
responds to a chemical substrate and a directed edge from X; to X; indicates that there is
a chemical reaction converting X; to X ;. Let m be the number of nodes. We assume that
the graph is connected and we say that the graph is weakly reversible if whenever there is
a directed path from X; to X ;, then there is a directed path from X ; to X;. We assume that
the rate of conversion of X; to X is proportional to the concentration of X; (mass action
kinetics) with constant of proportionality b;; > 0 where equality holds if and only if there
is no directed edge from X; to X;. Let B be the m x m matrix {b;;} where the diagonal
coefficients are defined by b;; = — ) i b;;. We assume each substrate X; leaves the sys-
tem at a rate proportional to its concentration with constant of proportionality r;; > 0 and
is added to the system at a constant rate of I; > 0. A system with nonzero input is called
weakly reversible if it is weakly reversible in the sense stated above and if there is at least
one nonzero output. Let R be the diagonal matrix with diagonal entries r;; and I be the
vector with entries /;. Then the concentrations of the substrates are governed by the linear
differential equation

X()=Ax@)+1, (D

where A=B — R is called the matrix of rate constants for the system.

In the notation of Horn and Jackson (1972) and Feinberg (1979) our systems are de-
fined by the following properties: They are weakly reversible, the kinetics is mass action,
there is a single linkage class, and each complex is a single substrate. It is because of
the final property that we call our networks single species complex (SSC). The following
Lemma follows from the deficiency zero theorem (Feinberg, 1979, 1987).

Lemma 2.1. If a linear SSC system with m substrates and at least one nonzero input is
weakly reversible then

(a) The differential equations (1) have a unique equilibrium which is globally asymptoti-
cally stable and contained in RZ,).

(b) The eigenvalues of the matrix of rate constants, A, have strictly negative real parts.

(c) For all vectors v € RZ, we have ety ej>0forall j.

Proof: Itis simple to show that an SSC network for which there is at least one input and at
least one output has the following two properties: Its deficiency is zero and the dimension
of the stoichiometric compatibility class is m. Part (a) then follows directly from the
deficiency zero theorem. Since A is the Jacobian at the equilibrium point, (b) follows
from (a) and linearity. To prove (c), consider the differential equation y(¢) = Ay(t). The

only negative term in the equation governing y; contains y;. Thus, RY, is invariant under
the flow e, which is an equivalent statement to (c). O
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2.2. The stationary measure

Consider the following weakly reversible SSC system with mass action kinetics, matrix
of rate constants A, and nonzero input vector / perturbed by a mean zero, finite variance,
stationary stochastic process £(¢) such that for all # > 0 and each i, &;(t) > —I;:

t(t)=A +1+8(@),
:xo x(1) E(D) -
x(0) = xq.
Theorem 2.2. The process x*(t) = x*(t, &) defined by
x*(t, €) =/ eA<'*S>1ds+/ eAE(s) ds 3)

is a stationary solution to (2). Furthermore given any initial condition xo, if x(t, xo, &)
is a solution to (2) then x(t,xo,&) converges exponentially to x*(t,&) as t — o0 in
that

E|x(t, xo, €) —x*(t,é)!2 -0, ast— oo.

Proof: Observe that for any 7, 7 € R,

t+t t+t
X*(l +T) :/ eA(t+T7S)IdS +/ eA(erfx)%.(s) ds

oo —00

t t
= / A0 ds + / eAUE (s + 1) ds.
—00 —00
This can be written succinctly as

(6:x") (1, 6) = x" (1, 6:€) “4)

where the shift 6; is defined by (6; f)(s) = f(t +s) for all 5, ¢t € R and functions f on R.
Hence forany t; <--- <t,,

(@ H+0,8), X (T +1,8) = (511, 0:8), ..., X" (10, 0:8)).

Since £ is a stationary process, the distribution of the right-hand side is independent of t
which proves that x* is stationary. Clearly, x* (¢, £) is a solution in that x (¢, x*(0, §), &) =
x*(t,§).

We now turn to convergence. It follows from Lemma 2.1(b) that there are con-
stants &, M > 0 such that [|le?|| < Me™® for all ¢ > 0. Subtracting the solution of (2),

t t
x(t,x0, &) = e xg +/ eI ds —I—/ eAE(s) ds, 5)
0

0
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from x*(¢), squaring, and taking expected values gives,
N 2
E[x(, x0.6) = x*(t.8)|
2

0 2 0
§3||eA’||2|x0|2+3E‘/ A ds +3E’/ A VE(s) ds
o -

o0
3IM?|I)?
< 3M2|X0|2€_2M 4 2| | e—Zat
o
0 0 5
w3 ( [ Jeas) (1o as)
3IMP|I? 3IM?
< 3M2|x0|2672at + 2| | 672051 + > e*2Dtt Var(s)
o o
Thus, E|x(z, x9, £) — x*(t, &)|> > 0 as t — o0. O

Remark. If one takes expectations on both sides of (3) and (5), one sees immediately that
the model is consistent in the mean. That is, the mean of the perturbed problem is equal
to the solution of the unperturbed problem.

Since x*(t) is stationary, the distribution of x*(¢) is independent of ¢. More precisely,
defining the measure w(A) = P(x*(0) € A) for all measurable A C R”, we see that u
characterizes the longtime behavior of the solution in that the distribution of x(, x¢, §)
converges to j as t — oo. This follows from E|x (¢, xo, &) — x*(¢, £)|> — 0 and the fact
that u(A) =P(x*(¢) € A) for all .

Thus u contains information about the average, long-term behavior of fluxes and con-
centrations. It will be u, therefore, which we shall probe in order to gain an understanding
of how different graphical structures and asymptotic limits of biochemical reaction sys-
tems increase, decrease, and otherwise modify the exogenous fluctuations of biochemical
reaction systems. Throughout the rest of this paper, it is understood that each mean or
variance is computed with respect to this stationary measure.

3. Reaction chains

In order to study reaction chains, we begin by proving a simple general bound for the
variance of the concentration of any species in an SSC system in terms of the variance of
the input fluctuations. We consider the special case in which only one component of / is
nonzero and the fluctuations £(#) are nonzero only in this same component. Without loss
of generality, we take this component to be the first. Abusing notation slightly, we also
call this nonzero scalar input / and its scalar perturbation £(¢). An analogous proof works
in the more general case where there are inputs to more than one species and any number
of the inputs undergo independent fluctuations.

Consider the stationary solution to system (2). By taking the expected value in (3) and
using that £(¢) has mean zero one sees that

t
m; = I/ e Ve e; ds (6)

o0

is the mean of the ith species.
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Theorem 3.1. Let x*(t) be the stationary solution of an SSC system with one input, I , that
is perturbed by a non-constant stationary stochastic process, &(t), with finite variance,
mean zero, and &(t) > —1. Then for each i,

2
Var(xi*) < (%) Var ().
Proof: Using Lemma 2.1(c) and the Cauchy—Schwarz inequality gives

2

Var x (t) IE( £(5)er e, - e; ds)
2
= < 5(s) A(tfs)el _ei)1/2(eA(tfs)el 'ei)l/zds>

</ £(5)2eA Ve, - ¢ ds) </1 A e, e ds)
: —0
= Var(§) </ A e, e ds)
mi\? B
= (Tl) Var(§).

The inequality is strict because £(¢) is not a constant. ([l

We now consider nonreversible chains with mass action kinetics:
1 ky ko km—2 km—1 k
— X — X, =5 -5 X, 5 X, . @)
Theorem 3.1 allows us to see that variances of the fluxes of the stationary solution de-
crease as one proceeds down the chain.

Theorem 3.2. Let the input, 1, of a nonreversible chain with mass action kinetics be
perturbed by a non-constant stationary stochastic process, & (t), with finite variance, mean
zero, and £(t) > —1. Let x*(t) denote the stationary solution for the chain. Then, for all
i, Var(k;x}) < Var(§) and

Var(k;1x7,,) < Var(kix). (8)

Proof: From the remark following Theorem 2.2, we know that the mean, m;, of x;(¢) is

the equilibrium value of x; for the unperturbed problem. This implies that m; = k’ , so the

bound Var(k; x") < Var(§) follows immediately from Theorem 3.1. To prove (8) note that
the input to X is
kixf@t)=1+ (kle(t) — I)

and k;x{(t) — I is a stationary stochastic process of mean zero, finite variance, and values
> —[. Thus, by Theorem 3.1,

Var(kzx;‘) < Var(klxik — I) = Var(kle).

The input to X3 is k»xJ (¢), so repeating this argument down the chain proves (8). O
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Remark. Notice that the variances of the fluxes and the variances of the concentrations
behave differently. The variances of the fluxes strictly decrease as one moves down the
chain while the mean of each flux is the constant value /. Thus the coefficients of vari-
ation (standard deviation divided by the mean) and the Fano factors (variance divided
by the mean) of the fluxes also strictly decrease as one moves down the chain. Because
Var(k;x;) = k? Var(x;) and Ex; = é one can easily check that: (1) the absolute variances
of the concentrations do not necessarily decrease down the chain, (2) the coefficients of
variation of the concentrations do necessarily decrease down the chain, and (3) the Fano
factors of the concentrations do not necessarily decrease down the chain.

4. Chains with white noise

The next natural question is how much do the variances decrease down the chain? This
cannot be answered without more detailed information about £(¢). To investigate it, we
will perturb the input I by white noise, o d B(t), which will allow us to use the It6 calculus
and thereby make explicit calculations. We note that perturbing inputs with white noise
causes the concentrations to occasionally go negative and these parts of the solutions are
unphysical. However, the calculations shed light on the reasons for and magnitude of the
decrease in variance down reaction chains.

By perturbing the inputs to a system with independent white noise processes, we arrive
at the following system of It6 stochastic differential equations:

)

dx(t) = (Ax(t) + I)dt + X dB(1),
x(0) = xo,

where ¥ € R™*? and B(t) is standard p-dimensional Brownian motion. The following
theorem is proved in the same manner as Theorem 2.2.

Theorem 4.1. The process x*(t) = x*(t, B) defined by

t t
x*(t,B):/ eA(’_s)Ids—i-/ eI 2 dB(s) (10)

(o] —00

is a stationary solution to (9). Furthermore given any xq, if x(t, xo, B) is a solution to (9)
then x(t, xo, B) converges exponentially to x*(t, B) as t — o0 in that

IE|x(t,x0, B) — x*(t, B)|2 —0, ast— oo.

Proof: The proof is identical to that of Theorem 2.2, except that the 1t6 isometry (Ok-
sendal, 2003) is used to control the expected value of the square of the It6 integral term. [

Theorem 4.2. Let x*(t) be the stationary solution of the linear chain (7) where the input
is perturbed by white noise. Then for each i,

Var(kiy1x},,) < Var(k;x}"). an
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Further, if we assume that the rate constants, k;, are distinct. Then

i
. 1
Var(xi):(fzj;;l’ijpirm’ 12)
where
i-1 i

kn (kn_k) 5 lZ,]!
| () /(1)

0, i<j.

Proof: The proof of inequality (11) is identical to that in Theorem 3.2. To prove (12), we
note that the matrix of rate constants, A, is given by

k0 ... 0

ki —ky ... 0

A=| . . .
0 .. kuoy —kn

Let P = {p;;}. A straightforward calculation shows that the jth column of P is the eigen-
vector of A corresponding to eigenvalue —k;. Thus, D = P~' AP is diagonal. In addition,
P takes the vector (1, 1,...,1)7 to the vector (1,0,...,0)7. Using these facts, the for-
mula (10) for x*(¢), and the 1t6 isometry,

t 2 t
Var(xl.*) = O’ZE</ eAe, e st> =02/ (PeD(’f‘)Pflel ~e,~)2ds
—00 —00

1 2 e—kit=s)

' t
—00 1 - e*km (t—s)

2

' i 2 i
= 02/ (Z Pijekj(ts)> ds=0") " pijpir k—l :
0\ j=1 j=1r=1 itk O
We assumed that the k;’s were distinct so that the explicit formulas above make sense.
It can be shown that the variances of the concentrations are continuous functions of the
rate constants (Anderson, 2005). This fact, together with the bound given by (8) allows
us to conclude that formula (12) has finite limits as various subsets of the k;’s become
identical.
We can use the explicit formula (12) to answer several natural questions.

Example 4.3 (Magnitude of decrease). Theorem 3.2 shows that variances of fluxes are
strictly decreasing as one moves down a chain. To investigate how much they decrease,
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consider the chain (7) where m =2 and the input is perturbed by white noise. Using (12)

2 2
we see that Var(k,x}) = % and Var(k,x3) = 2((Ik1k41r]1(é) . Thus,

Var(kzxj) i k2
Var(k1x¥) ki +k

This simple example shows that the ratio of successive variances can be any number
between zero and one.

Example 4.4 (Long chains). Assume that k; = k for some fixed & > 0 and all i. Taking
the limit of (12) is difficult. Instead, since all the k;’s are equal, an induction proof shows
that

I ki—l t i1 k)
* — _ i—1 —k(t—s
X0 = +o—(i Ty /_m(t s) e dB(s).

Using the It6 isometry, it follows that

| — !
,)zazul_
’ G-k

Using Stirling’s formula, we see that

Thus the variances decrease to zero in a regular fashion if all of the rate constants are the
same.

Example 4.5 (A small rate constant). Suppose that one rate constant, k;, in a chain is very
small. Using the explicit formula (12), one can easily compute that

1
Var(k;x;') ~ UZEk,- + 0(k7), ask; —0,
1
Var(ij;.‘) ~ aziki + O(kiz), ask; — 0, for j > i.
Notice that the small rate constant has the effect of significantly decreasing the variances
of the ith and all subsequent fluxes while the means of the fluxes remain unchanged.

Therefore a small rate constant is not “rate limiting” but instead is “variance limiting.”

Example 4.6 (A large rate constant). Suppose that one rate constant, k;, in a chain is very
large. Again, using (12), one can compute that

Var(k;x;') — Var(ki_ix;_,), ask; — oc.
Furthermore, for all j > i,

Var(ij;) — Var(k_,»)?}‘), as k; — oo,
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where X; is from the process arising from the following system:

I4+0dB(1) ko = ki—y kit
_—

~ k ~ ~
X — X2 = o Xo— X -5

This shows that in the asymptotic limit where k; — oo one can replace the original
chain by the chain with the substrate X; removed. Here we implicitly use the fact that
since the kinetics are linear, and hence the concentrations are Gaussian, the statistics are
determined by the means and variances.

We now prove a comparison result that allows us to generalize the asymptotic behavior
seen in Example 4.4. Combining Theorem 4.7 with Example 4.4 shows that if the rate
constants of a chain are bounded away from infinity and bounded away from zero, then
there exist m and M so that, for all i,

% < Var(k:x?) < % (14)

Theorem 4.7 (Bounding variances). Let k; be a sequence of rate constants of a reaction
chain that satisfy

O<m=<ki<M <.

Let x* be the stationary solution to the chain with rate constants k;, and let x*™, x*M pe
the stationary solutions to the chains with all rate constants equal to m, M, respectively.
Then for all i,

Var(mx") < Var(k;x) < Var(Mxi*'M).

i

Proof: The crux of the proof is to prove that the variance of each flux is a strictly
monotone increasing function of the rate constants earlier in the chain. The theorem then
follows directly from this fact. The ODE governing the concentration of X; is:

Xi (1) =1 —kix; (1) + £(1), 15)

where £(t) = k;_;x;_; — I. Through a change of variables it can be shown that

Var(k;x;) = E(k,—x,—(t) - 1)2 = /w/ooef'“”IE[S (t — let)E(t — klv>i| dudv.
o Jo i i

By Proposition 3.6.4 and the proof of Proposition 3.1.1 in (Anderson, 2005), there is a
strictly positive, strictly monotone decreasing function f : R-y — R. such that for all
t,s e R, E[&(t)E(s)] = f(|t — s]). Therefore,

Var(kix;) = E(kixi (1) — 1) = /m/ooe*“*"fcu - vl ) du dv. (16)
0 0 i

1

Thus,

B
ok Var(k;x;) > 0.
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The formula for Var(k;x;) obtained by multiplying (12) by k? is symmetric in the k;’s for

j€ll,...,i]. Therefore, % Var(k;x;) = ()% Var(k; x;) for each j < i and so
i J

ad
— Var(k;x;) > 0,
ok;

which was the desired result. O

5. Side reaction systems and feedback loops

A side reaction system on a chain is any SSC system that gets its input from a species on
the chain and has output that flows back into the same species; see Fig. 1 below.

Note that there must be a species within the side reaction system whose output flows
to X; with some rate constant, k3. Define Y to be that species and let y(¢) denote its
concentration. The differential equation governing the behavior of x, (¢) is then

d
Exl(t):]_klxl(t)_kle(t)+k3y(t)+5(t)o a7

If x, is the solution to the above system when there is no side reaction system (i.e.
k2 = k3 = O), then

d
Eil(t)zl — kX1 (1) +§(1). (18)

For the theorems in this section we assume that the covariance of the perturbation is
strictly positive and decays as the difference in time increases.

Assumption 5.1. For s < ¢, E£(¢)€(s) > 0 and E£(¢)&(s) is an increasing function in s.

Theorem 5.2 (Side reactions lower variance). Let x} and X} be the stationary solutions
to (17) and (18), respectively, where £(t) is a finite variance, mean zero, non-constant
stationary stochastic process that satisfies Assumption 5.1 and such that £(t) > —1 for all
t > 0. Then,

Var(kle) < Var(klif).

I+£(t2 X, ky X,
kgukg

Side Reaction System

Fig. 1 A side reaction on a linear chain.
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Proof: By (17), (kix(¢t) — I)? satisfies the differential equation

d
Tl = 1)} = =2k (ki () = 1) 4 2k (ki () = 1) (kay () = ks ()
+ 2k (kyx1 (1) — T)&(0).

Integrating, taking expected values and differentiating with respect to ¢ gives:

d
TE(kn(0) — 1) = =2k E(kyxi (1) — 1)’ + 2 B[ (kyx1 (1) — 1) (ks y (1) — kaxi (1)) ]
+ 2k, E[ (k1x1 (1) — 1)E(0)].

Thus, by the stationarity of x| (¢) and £(¢),

E(kix}(t) — 1)2 =E[(kix{ @) = I)(ksy* (1) — kax{ (1)) ] + ki Ex} ()& (0). (19)

By a similar argument, Var(k,X}) = E(k, %} (t) — I)? satisfies
— 2 s
(k& (1) — 1)’ = kB ()& (). (20)

The remainder of the proof consists of showing E[(kx{(¢) — I)(k3y*(t) — kox{(£))] <0
and Exy (t)&(t) < Exj(t)&(t), which, combined with (19) and (20), prove the result.
Because SSC systems are consistent in the mean, Ex{ () = I/k; and

Eksy*(t) = Ekoxj (1). (21)

Equation (21) together with Theorem 3.1 yields E(k3 y*(¢))* < Ifﬂ(kz)ci‘(t))2 and so by the
Cauchy—Schwarz inequality

12

|E (kox (ks y* ()| < (BI2x; (1)%) 2 (BR2y* (1)) < BAGxt (1), (22)

Combining (21) and (22) gives the desired result:
E[(kixt () = 1) (ksy* (1) — kax} ()] = E[kiksx (0)y* (1) — kikoxt (1)?]
= Z—;E[kzxi‘(t)lqy*(t) —Bx; ()] <0,
In order to show that Ex{(1)&(1) < Ex{(¢)é(¢) we will first show that for all s <1,
E&(¢)x] (s) is an increasing function in s. Let A be the matrix of rate constants for the

system consisting of X; and the side reaction where the first row of A represents the rate
constants defining the rate of change for the concentration of species X . Then for any s

x{(s) = If e ey ey dr +/ E(r)etS e, - ey dr. (23)
—0Q —0o0

Lett > sand 0 < A <t —s. Multiplying (23) by &(¢), taking expected values, and apply-
ing Assumption 5.1 and Lemma 2.1(c) gives
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s

E£(1)x?(s) = / E[£(1)E ()] C ey - 1 dr

(o8]

= /wE[E(t)S(s —u)|e*er - erdu
0

< /OO]E[E(t)S(s +A—u)]e™e - e du
0

s+A
= / E[£(0)E(r)]e* T4 e, - ey dr = EE()x] (s + A).
—00
Therefore, for all s < ¢, E &(¢)x] (s) is an increasing function in s.
Solving (17) and (18) with integrating factors gives:

I t t
=+ / (ksy* () = kax (s))e ™10 ds + f E(s)e ™M) ds
1 — —00

o0
I t
) = o +/ E(s)e M=) g,
1 —00

Therefore,

t

E[£(t)(ksy*(s) — kox}(5))]e 107 ds+/ E(£(0)E(s))e ™ ) ds

—00

Exi (&) = /

—00

t

:/ E[£(1) (k3y*(s) — kax(5)) ]e 179 ds + EX} (D)E(®).
—00

Thus, to complete the proof it is sufficient to show that for all s < ¢, the following in-

equality holds:

E[£(0) (ksy*(5) — kax} ()] <0, 24

Consider the side reaction system as its own reaction system with input kyxj(t) =
Y (t) + kp 1/ ki and output k3y*(¢), where ¥/ (¢) is a stationary, mean zero, finite variance,
stochastic process such that {(t) > —k,1/k;. Let B be the matrix of rate constants that
governs just the side reaction. We may now solve for y*(s) by looking at this subsystem
and conclude that for some integer j,

kol ) $
yi(s) = 2 / eB6 ey e ds +/ Y(r)eP e, -e;ds.
ke oo oo

1
Because the solutions are consistent in the mean, we must have Ek3; y*(s) = k> /k;. Thus,

[’ €% e - e;ds =1/k;. Combining this with Proposition 2.1(c) and the fact that for
r <t,E&(t)x](r) is an increasing function of r gives

s

k3E S(t)y*(s) = k3 / E[g(;)w(r)]eB(x—r)el “e; dr

—00

k[ E[&(z)(kzxi‘(r) - "lj—f)]e%—”el erdr
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= koks /S E[g(l)xik(r)]eB(s—r)el -ej dr

]

s

< kkE[E@®)x](5)] / eB6 ey e dr

—00

= kE £@)x](s).
This is equivalent to (24) and so the proof is complete. O

Remark. Theorem 5.2 still holds if instead of &£(¢) the perturbation is assumed to be white
noise. The proof in the white noise case is simpler than that given above because one gets
martingales (which become zero when expected values are taken) instead of the x; (¢)&(¢)
terms in the above proof (Anderson, 2005).

We now turn our attention to feedback loops on chains. A feedback loop on a chain is
an SSC system together with an input from one species on the chain, X,,, and an output to
an earlier species, X; see Fig. 2. As in the case of side reactions, the following theorem
also holds if the perturbations are white noise.

Theorem 5.3 (Feedback loops lower variance). Let X(t) be the vector of species concen-
trations for the chain (7) and let x (t) be the vector of species concentrations for the chain
with feedback loop (Fig. 2), where £(t) is a finite variance, mean zero, non-constant sta-
tionary stochastic process that satisfies Assumption 5.1 and such that £(t) > —1 for all
t > 0. Then,

Var(k,x,}) < Var(k, ;).

Proof: Let {V;} be the substrates and B be the matrix of rate constants of the SSC sub-
system in Fig. 2. We suppose that V; is the species which gives input to X; with rate
constant «. Then the input to X; from the feedback loop is

t
fi(t) =aePv(0) - ¢; +OlC/ X, (5)eB Ve e ds,
0

which depends explicitly only on x,,. If we let R(t) = k,_;x,—,(¢) then the differential
equation for x,,(¢) is X, (r) = R(t) — cx,, () — kyx,,(2).

LrEl) kR ke
h (t)\ ,/C
Subsystem

Fig. 2 A chain with a feedback loop.
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I+ &(t k Fon— Ky,
6( ) Xl 41> ....... 41> Xn _
& knfl
Subsystem Y, Y, R

Ji(t) k1 ks

Fig. 3 A chain with a side reaction system derived from a feedback system.

Consider the chain with side reaction system given in Fig. 3 where the subsystem
is the same as in Fig. 2 and the flux to Y; comes from V; with rate constant . Let
Q(t) =ky_1x,—1(t) and P(t) = k,_1y,—1(¢) be the inputs to X, in Fig. 3. Since the input
to the Y-chain is fj(¢) and the rate constants for the two chains are the same, R(t) =
Q(t) + P(¢) because the differential equations are linear. Thus, the differential equation
governing x, () in Fig. 2 is the same as the differential equation governing x, (¢) in Fig. 3.
Since the system in Fig. 3 is a chain with a side reaction system, the result follows from
Theorem 5.2. (|

Remark. Similarly to Theorem 3.2, Theorems 5.2 and 5.3 can be reformulated to state the
same results in terms of Fano factors and coefficients of variations.
6. The effect of one large rate constant

We now consider a general weakly reversible SSC system with input perturbed by white
noise. Our goal is to characterize the effect of one large rate constant.

Theorem 6.1. Suppose that independent white noise processes perturb the inputs to a
weakly reversible SSC system with m substrates. Let X, be a particular substrate and
suppose that the rate constant L for one flux out of X, is large. Then,

1
Var(x}) ~ O(Z)’ as L — oo. (25)

Proof: 'We will assume that one of the perturbed inputs goes directly to X,. The proof of
the general case is similar. The stochastic differential equation governing x,(¢) is given
by

dx,(t) = (c +) exi(t) = (L+ K)xg (r)) dt + o dB(1), (26)

i=1
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where L + K > 0 is equal to the sum of all the rate constants for reactions leaving X,
C > 0 is the input flux to X,, 0 > 0, and ¢; > 0 is the rate constant associated with the
reaction X; — X,. Solving (26) for x in terms of the x; and using the It6 isometry, one
can easily bound Var(x}),

+p Z c; Var(x*)

Var(x}) < L1 K2

= 2L+K) +K)

for some constant 8. To complete the proof we will show that Var(x) < O(L).
Let A be the matrix of rate constants for the SSC system. Using the formula (10) for
the stationary solution and the It6 isometry, one easily calculates:

t
Var(xl.*) = 02/ (eA(“‘Y)e . ei)zds, 27)

for some vector e. By Lemma 2.1(b) we know that the real parts of the eigenvalues of A,
{X;}, are strictly negative; let A = inf {|A;|}. There exist positive constants ¢ and M so that
forall t — s > 0, we have ||e?“™|| < ce~*¢=9_Using this inequality in (27), we have

a?c?le| 1
2M A

Var(x}) <
In Appendix we prove that A > O(1/L), so Var(x/) < O(L), which concludes the
proof. O

Example 6.2 (A side chain with a large rate constant). To illustrate the theorem, we con-
sider the linear chain with a side reaction given in the diagram in the Introduction. If the
input is perturbed by white noise, then, as the rate constant L becomes large, Theorem 6.1
tells us that Var(x3) < O(1/L). Therefore the flux out of X, down the chain has variance
Var(k,x3}) < O(1/L). By Theorem 3.1,

Var(kixi*) < Var(kzx;‘) <O(1/L) foralli>2.

Thus, for all i > 2, the means of the fluxes remain equal to I, while the variances of the
fluxes go to zero as L — oo.

7. Discussion

We have developed a theory of propagation of fluctuations in biochemical systems for
the special case of linear SSC networks and proved theorems relating variances to net-
work structure. Variances (Fano factors, coefficients of variation) of fluxes decrease down
a chain and the presence of side reactions and feedback loops always lowers the upper
bound of the variances further down the chain. These results are very general. As shown in
Sections 2, 3, and 5, they hold, independent of the choice of rate constants, for linear SSC
networks whose inputs are perturbed by quite arbitrary continuous stochastic processes,
£(1), that satisfy mild assumptions (such as £(¢) > —1, so concentrations remain nonneg-
ative). These results also hold if the inputs are perturbed by white noise, which enables us
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to use the Itd calculus to make explicit calculations and comparison estimates (Sections 4
and 6). Some of these results generalize to cases in which the kinetics are nonlinear and
reactions can have more than one substrate (Anderson and Mattingly, 2007). It is tempt-
ing to speculate that biochemical systems evolved to be as complicated as they are partly
because of the homeostasis of exit fluxes achieved by having many intermediate steps,
side reactions, or feedback loops.

In cell metabolism, networks are exceptionally complicated and the kinetics are highly
nonlinear. In addition, substrates often inhibit or activate the enzymes that catalyze distant
reactions in the network (see, e.g., Nijhout et al. 2006a, 2006b; Reed et al. 2004, 2006).
It is unlikely that one can prove general theorems that apply to such a wide range of dy-
namical systems, although theorems about special subclasses may be possible. However,
these systems can be investigated using the ideas of fluctuation theory by numerical com-
putation. By running Monte Carlo simulations, one can compute numerically the station-
ary measure (if it exists) and thus compute the variances of the substrate concentrations
and fluxes that are of interest, for example, finding fluxes that are exceptionally stable in
the face of (possibly large) input fluctuations. By removing individual reactions or alter-
ing other biochemical influences, one can investigate the structural and kinetic reasons
that give rise to the observed emergent behavior. This is the program carried out in Ni-
jhout et al. (2006a) where we investigate the long range interactions in the methionine
and folate cycles that stabilize the flux of the reaction by which methyl groups from S-
adenosylmethionine (SAM) are attached to DNA. Large swings in methionine input cause
even larger swings in SAM concentration, but the DNA methylation rate has exceptionally
small variance.

For simplicity of exposition, we have discussed the special case where a single input
to a biochemical system is varied. The same ideas can be used to introduce fluctuations in
a concentration, a flux, or in several places, and then study how the fluctuations propagate
throughout the system. Understanding the consequences of fluctuations in kinetic para-
meters is also important because kinetic parameters depend on enzyme concentrations
and other properties that are variable and themselves dependent on time-varying genetic
regulation. Analyzing this case requires some technical extensions of this work.

In the Introduction we contrasted two contexts in which stochastic dynamics occurs
naturally in the study of biochemical systems. In the first, the stochastic behavior arises
from the making and breaking of chemical bonds and plays a fundamental role for bio-
chemical systems with relatively small numbers of molecules. In the second, considered
in this paper, the stochastic behavior comes from random external forcing at the scale of
concentrations. There are, however, intermediate models in which both kinds of stochastic
behavior play a role. Consider a linear chain with pseudospecies input:

ko ky ko k
X, 2 ox, Aox, o ox,

We denote by N; the number of molecules of species X;; Ny is held fixed. The rate con-
stant k; is the probability per unit time that a given X; molecule becomes an X;;; mole-
cule. Gadgil et al. (2005) show that the steady state distribution of each N; is Poisson
with mean koNy/k;. Thus the variance of the ith flux is Var(k; N;) = kizE[Ni] = kikoNj.
Therefore, in this (context 1) model, the variances of the fluxes can increase or decrease
down a chain depending on the rate constants.
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Now suppose that the number of molecules of the pseudospecies is fluctuating in time
at the scale of its concentration. That is, we replace Ny by Ny + V£&(t), where V is the
volume. We now scale the system as in Kurtz (1972) letting both Ny and V get large
with the ratio fixed. In this limit the system is well described by differential equations for
the concentrations N;/V and the part of the variance due to the making and breaking of
chemical bonds becomes negligible. The stochastic external forcing £(¢) remains, and so
we are left with the type of (context 2) dynamical system considered in this paper, for
which we have proven that the variances of the fluxes decrease down the chain.

Clearly, there exists an intermediate regime where both kinds of stochasticity play an
important role. In this intermediate regime, whether the variances of the fluxes decrease
down the chain will depend on the rate constants and on the balance between the two types
of stochasticity. Understanding and characterizing this phenomenon is an interesting and
important mathematical and biological goal that would build on the foundations in Gans
(1960), Gadgil et al. (2005), Ball et al. (2006), and the present paper.
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Appendix

We derive the bound used in Theorem 6.1. There are two cases which need consideration:

1. The flux out of X, with rate constant L goes to another species. This case is handled
in Theorem A.1 below.

2. The flux out of X, with rate constant L leaves the system. The proof of the result in
this case is similar to the proof of the theorem below and so the details are omitted.

Theorem A.1. Let A ={a;;} be an n x n matrix with the following properties:

1. Foreachi,a;; <0 and |a;;| > Z'}#i laji.
2. ayy = —L 4+ ay; and ay; = L + ayy for some a1 < 0 and o) € R,
3. Forevery L > 0, the real parts of the eigenvalues of A are all strictly negative.

Denote the eigenvalues of A by {A;} and let . = inf {|Re(};)|}. Then
A>=0(/L), asL— oo.

Proof: Let B= %A. The eigenvalues of B are {%e,» . ¢; is an eigenvalue of A}. We will
use the characteristic polynomials of A and B to show that the magnitude of the real parts
of the eigenvalues of B are no smaller than O (1/L?), which implies our result.

Because L only appears in the first column of A, all O(1) terms of B occur in the first
column. Expanding the determinant of B by cofactor expansion along the first column
then shows that det(B) must be of order O (1/L") or O(1/L"~"). Similarly, the cofactors
of B must be of order O(1/L"™") or O(1/L"~?). Therefore, computing the inverse of B



Propagation of Fluctuations in Biochemical Systems, I: Linear SSC

(which exists by assumption (3) above) by cofactors, we see that the possible order of the
entries of B~! are 1, L, and L?. Therefore, |B~'|| < O(L?).

One may view B as a 1/L matrix perturbation of the matrix C = {¢;;}, where ¢;; = —1,
¢21 = 1, and ¢;; = O for all other entries. Therefore, each eigenvalue, p, of B is an analytic
functions of 1/L:

1 1 1
= — — o| — Al
p=pt TPt 3ot <L3), (A.D)
where py is —1 or 0. If py = —1 there is nothing to prove; so we assume py = 0. If

p1 = p =0then p = O(1/L?). However, this would imply that O(1/p) = O(L?). Since
1/p is an eigenvalue of B~!, this would contradict the norm bound for B~!, above. Thus
p1 and p, can not both be zero. It remains to be shown that the leading order term in (A.1)
can not be purely imaginary. We will do this through asymptotic matching.

Consider two different formulations for the characteristic polynomial of A, p4(x):

pa(x) =det(xl, — A) (A2)
=x"+ Lu(x) +v(x) (A.3)
=x"+c1 -1 Lx" '+ co,,,,lx"fl 4+ c|,2Lx2 + 00,2x2

+C1’1Lx+C0,1)C+C1,0L+C()~(), (A4)

where u(x) and v(x) are polynomials of degree n — 1 that are independent of L, and
cij€Rfori=1,2and j=1,...,n—1 (i gives the power of L and j gives the power
of x for the term ¢; jLi x7). We note that we can not have c1,0 = co,0 = 0, for then there
would be a zero eigenvalue, which would contradict assumption (3).

To show that the leading order term in (A.1) is not purely imaginary we will consider
two cases: p; = 0 and p; # 0. We begin by supposing p; =0 and p, # 0. Then p =
O(1/L?) and there is a solution to (A.4) which is O(1/L). Putting x = p,/L into (A.4)
and setting the equation equal to zero gives us:

1 ClL2p3  Co2p3 Co,102
0(E>+ I + 12 +C1,1p2+T+61,0L+C0,0:0.

Matching like terms in L tells us that ¢; o =0, co,0 # 0, and ¢;,; # 0. Solving for p, gives
us po = —cp.0/c1.1 € R. Therefore, p, has a nonzero real part.

We now suppose that p; # 0. Because finding an O (1/L) solution to (A.1) is equiva-
lent to finding an O (1) solution to (A.3), p; must satisfy u(p;) =0. Let D(x) =x1, — A.
Then u(x) = D(x)11 + D(x)1, where D(x);; is the i, j'™ cofactor of D(x). D(x);; and
D(x),; differ only in the first row, so we may combine the determinants by adding the
first two rows. We conclude that

—ap —ap+Xx —ap—d3 —aia—dy ... —dy —dy
—dasz —azy +x —as4 . —asz,
u(x) = —dayg —ayg3 —dg+x ... —day

—dp2 —dp3 —dn4 v —0pp +x



D.E. Anderson et al.

Solving u(x) = 0 for nonzero solutions is therefore equivalent to finding the nonzero
eigenvalues of the matrix

apn+tap aztaxp astan ... aptay
asp ass as4 Aasp
A= as as Qg4 Q4
ap anp3 apg Anp

By assumption (1), the diagonal entries of A are nonpositive and have magnitudes that are
greater than or equal to the sums of the magnitudes of all the other terms in that column.
Therefore, Gershgorin’s theorem says that the nonzero eigenvalues of A, and hence the
nonzero solutions of u(x) = 0, have strictly negative real part. Thus, Re(p;) # 0. This
completes the proof. o

If the flux out of X, with rate constant L leaves the system, the only change in the
statement of the above theorem is that a,; is independent of L. The proof is identical
except that u(x) = D(x);; and so we no longer have to add two determinants together to
simplify u(x).
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