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Abstract

Folate-mediated one-carbon metabolism is an unusually complex metabolic

network, consisting of several interlocking cycles, and compartmentation

between cytosol and mitochondria. The cycles have diverse functions, the

primary being thymidylate synthesis (the rate limiting step in DNA synthesis),

the initial steps in purine synthesis, glutathione synthesis, and a host of methyl

transfer reactions that include DNA and histone methylation. Regulation within

the network is accomplished by numerous allosteric interactions in which
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46 H. F. Nijhout et al.
metabolites in one part of the network affect the activity of enzymes elsewhere

in the network. Although a large body of experimental work has elucidated the

details of the mechanisms in every part of the network, the multitude of

complex and non-linear interactions within the network makes it difficult to

deduce how the network as a whole operates. Understanding the operation of

this network is further complicated by the fact that human populations maintain

functional polymorphisms for several enzymes in the network, and that the

network is subject to continual short and long-term fluctuations in its inputs as

well as in demands on its various outputs. Understanding how such a complex

system operates is possible only by means of mathematical models that take

account of all the reactions and interactions. Simulations with such models can

be used as an adjunct to laboratory experimentation to test ideas and alterna-

tive hypotheses and interpretations quickly and inexpensively. A number of

mathematical models have been developed over the years, largely motivated

by the need to understand the complex mechanisms by which anticancer drugs

like methotrexate inhibit nucleotide synthesis and thus limit the ability of cells

to divide. More recently, mathematical models have been used to investigate

the regulatory and homeostatic mechanisms that allow the system to accom-

modate large fluctuations in one part of the network without affecting critical

functions elsewhere in the network. � 2008 Elsevier Inc.
I. Introduction

The origin of ourmathematical modeling work stems from an interest in
understanding how genes and the environment interact in the biochemistry of
cells. This led us to study folate andmethioninemetabolismbecause this part of
cellmetabolism is linked to a diversity of human diseases that have both genetic
and environmental contributing factors. Folate and other B vitamins play
critical roles in the biochemical reactions of one-carbon metabolism that are
related to amino acid metabolism, nucleotide synthesis, and numerous
methyl-transferase reactions, including DNA and protein methylation.

Defects in folate-mediated one-carbon metabolism (FOCM; Table 2.1
lists the acronyms and abbreviation used in this chapter), either due to
mutations in the genes that code for enzymes in the pathway or to deficien-
cies in vitamin cofactors, are associated with megaloblastic anemia, spina
bifida and other neural tube defects, cardiovascular disease, increased sensi-
tivity to oxidative stress, and a variety of neuropsychiatric disorders. FOCM
is also involved in the etiology of colorectal and other types of cancer, and
chemotherapeutic agents, such as methotrexate and 5-fluorouracil, target
FOCM and play a central role in cancer treatment. FOCM is highly com-
plex. It consists of a set of interlocked biochemical cycles (Fig. 2.1) whose
enzymes are subject to complex allosteric regulations. The function of this
complex network is further complicated by the fact that there are genetic
polymorphisms for many of the enzymes in the network, and the functions
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of the network are sensitive to the input of various amino acids (glycine,
serine, methionine, and cysteine), B vitamins (folic acid, B6 and B12), and is
affected by environmental factors such as alcohol intake in intricate ways that
alter the normal operation of the network and the risk of disease.

Considerable research over the past 40 years has identifiedmost if not all of
the important details of FOCM. However, a limiting factor of these critical
studies is that they have primarily focused on single reactions and on small
portions of the pathway, and thus provide no means for understanding the
overall functioning of the system.Themultiple cycles and pathways of FOCM
together are part of a complex nonlinear system, which is difficult to capture
using purely experimental methods. Mathematical modeling is an approach
that has been particularly useful in the study of complex biological systems
(Edelstein-Keshet, 1988; Murray, 1989). Below we will review how mathe-
matical modeling has been able to confirm key hypotheses about the operation
of various portions of FOCM, and howmodeling has provided novel insights
into the properties and consequences of various regulatory mechanisms that
stabilize portions of the network against environmental perturbations.
Table 2.1 Abbreviations and acronyms used in the text and figures

Acronym Name

10f-THF 10-Formyltetrahydrofolate

10f0DHF 10-Formyldihydrofolate

5fTHF 5-Formyltetrahydrofolate (leucovorin)

5mTHF 5-Methyltetrahydrofolate

AICAR P-ribosyl-5-amino-4-imidazole carboxamide

AICART Aminoimidazolecarboxamide ribonucleotide transferase

BET, Bet Betaine

BHMT Betaine-homocysteine methyltransferase

CBS Cystathionine b-synthase
CH:NHTHF 5-Formiminotetrahydrofolate

CH¼THF 5–10-Methenyltetrahydrofolate

CH2-THF 5–10-Methylenetetrahydrofolate

CTGL g-Cystathionase
Cys Cysteine

Cyst Cystathionine

DHF Dihydrofolate

DHFR Dihydrofolate reductase

DHFS Dihydrofolate synthase

DHPR Dihydropteridine reductase

DMG Dimethylglycine

DMGD Dimethylglycine dehydrogenase

DNMT DNA-methyltransferase

(continued)



Table 2.1 (continued)

Acronym Name

dTMP Deoxythymidine monophophate

dUMP Deoxyuridine monophophate

FOCM Folate-mediated one-carbon metabolism

FR-RFC Folate receptor – reduced folate carrier

FTD 10-Formyltetrahydrofolate dehydrogenase

FTD 10-Formyltetrahydrofolate dehydrogenase

FTS 10-Formyltetrahydrofolate synthase

GAR Glycinamide ribonucleotide

GCS g-Glutamylcysteine synthetase

GDC Glycine decarboxylase (glycine cleavage system)

Glut Glutamate

Glut-Cys Glutamyl-cysteine

Gly Glycine

GNMT Glycine N-methyltransferase

GPX Glutathione peroxidase

GR Glutathione reductase

GS Glutathione synthetase

GSH Reduced glutathione

GSSG Oxidized glutathione disulfide

H2C¼O Formaldehyde

H2O2 Hydrogen peroxide

HCOOH Formate

Hcy Homocysteine

MAT-I Methionine adenosyl transferase I

MAT-II Methionine adenosyl transferase II

MAT-III Methionine adenosyl transferase III

Met Methionine

MS Methionine synthase

MTCH 5,10-Methenyltetrahydrofolate cyclohydrolase

MTD 5,10-Methylenetetrahydrofolate dehydrogenase

MTHFR 5,10-Methylenetetrahydrofolate reductase

MTS 5,10-Methenyltetrahydrofolate synthetase

NADPH Nicotinamide adenine dinucleotide phosphate

NE non-enzymatic conversion

PGT Phosphoribosyl glycinamidetransformylase

SAH S-adenosylhomocysteine

SAHH S-adenosylhomocysteine hydrolase

SAM S-adenosylmethionine

Sarc Sarcosine

SDH Sarcosine dehydrogenase

Ser Serine

SHMT Serinehydroxymethyltransferase

TS Thymidylate synthase

THF Tetrahydrofolate

48 H. F. Nijhout et al.
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Figure 2.1 Diagram of mammalian hepatic folate-mediated one-carbon metabolism.
This pathway includes the mitochondrial compartmentation, reduced glutathione
synthesis, and transport of some metabolites from the blood. Metabolites that are
variables in the model are enclosed in boxes, and enzymes are in ellipses. Full names
of the acronyms of enzymes and metabolites are given in Table 2.1.
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II. Structure and Function of the Cycles

FOCM consists of three functional modules: the folate cycle, the
methionine cycle, and the glutathione synthesis pathway. In this chapter,
we do not consider the role of the polyamine synthesis pathway which has
recently been modeled by Rodriguez-Caso et al. (2006).

The function of FOCM is to pick up carbons from amino acids, primarily
serine, but also glycine and methionine, and deliver them (as methyl groups)
for the synthesis of purines and pyrimidines and for a variety of methylation
reactions (e.g., DNA, tRNA, and histones) (Clarke andBanfield, 2001;Cook,
2001; Shane, 1995; Wagner, 1995). Serine enters the reactions as a substrate
for SHMT which transfers one carbon to THF, yielding glycine and CH2-
THF. The glycine can enter the mitochondria where it is processed by the
glycine cleavage system, transferring one of its carbons to CH2-THF in the
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mitochondrial folate cycle. The mitochondrial cycle then releases its carbons
to the cytosol as formate (HCOOH in Fig. 2.1). Glycine is also used in the
synthesis of sarcosine by GNMT. Sarcosine, in turn, also enters themitochon-
dria and eventually yields all but one of its carbons to the mitochondrial folate
cycle. Serine is also used by the CBS reaction which complexes it with
homocysteine to yield cystathionine, which, in turn, is used for the synthesis
of cysteine and glutathione. The one-carbon units held by CH2-THF have
three fates: they can be passed to 5mTHF byMTHFR and subsequently to the
methionine cycle where they are used in a great diversity of methylation
reactions; they can also be passed to 10f-THF and subsequently used for
purine synthesis; finally they can be passed to TS and used to synthesize
dTMP from dUMP. Thus, FOCMplays a critical role in nucleotide synthesis,
and the TS reaction is the rate-limiting step in DNA synthesis (Fukushima
et al., 2003). The cytosolic and mitochondrial SHMT reactions are reversible.
In the forward direction they use serine, and in the backward direction they
use glycine and one-carbon units from the mitochondrial folate cycle to
synthesize serine,which can serve as the basis for gluconeogenesis.Methionine
enters the methionine cycle and is adenosylated by MAT-I and MAT-III
(in the liver; MAT-II is the adenosyl transferase used in other tissues).
S-adenosyl methionine (SAM) serves as the general methyl donor for the
majority of methylation reactions in the cell. About half of the mass of
methionine that enters the methionine cycle leaves via the transulfuration
pathway to cystathionine and cysteine (Finkelstein, 1990; Finkelstein and
Martin, 1986), and the other half is remethylated to methionine by MS and
BHMT, using methyl groups from 5mTHF and betaine, respectively.

If the reactions illustrated in Fig. 2.1 were the only pertinent ones, this
would be a case of complicated but standard biochemistry. However, many
of the metabolites in this system are allosteric activators or inhibitors of
enzymes at some distance in the network. For example, SAM inhibits
BHMT and MTHFR and activates CBS; DHF inhibits MTD, MTCH,
and MTHFR; 5mTHF inhibits GNMT and SHMT (Finkelstein, 2003;
Finkelstein and Martin, 1984; Finkelstein et al., 1972; Jencks and Matthews,
1987; Kluijtmans et al., 1996; Ou et al., 2007; Yamada et al., 2001; Yeo and
Wagner, 1992). Many reactions also depend strongly on the cellular status
for folate and vitamins B6 and B12. In addition, the velocities of many
reactions depend on the concentrations of the substrates that are controlled
by dietary inputs of glycine, serine, glutamate, cysteine and methionine.
These inputs naturally undergo enormous fluctuations so the system is often
far away from steady state (Nijhout et al., 2007b).

It is a significant challenge to understand the biological reasons for the
complicated interlocking cycles, the compartmentalization to themitochon-
dria, and the multiple reactions by which one substrate can be transformed
into another. Since many parts of the network of FOCM share enzymes and
metabolites, there must be mechanisms that ensure that large variation in a
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particular region of the network does not compromise the function in other
regions. Furthermore, the many critical reactions in the network must be
buffered against large and irregular hourly and daily fluctuations in inputs of
amino acids. The overall network is too complex to understand these
regulatory functions by inspection of the reaction diagram alone, or to
deduce the integration of its various functions with any degree of certainty.
The system is well-enough understood that it is possible to develop a
mathematical description of the kinetics of the various individual reactions,
and couple these together into a single mathematical simulation model that
can be used to explore questions about structure and function.

Over the past 5 years, we have developed mathematical models for the
pathways shown in Fig. 2.1, which represents mammalian hepatic one-
carbon metabolism. Hepatic FOCM is what we might call the ‘‘complete’’
pathway, in that all known enzymes and reactions operate in the liver. This
is not true for most other tissues. While most FOCM enzymes are also
expressed in the kidney, most other tissues in the body express only a subset
of the enzymes and thus operate on what we might called ‘‘reduced’’
FOCM. FOCM is an ancient pathway and we have recently developed
a model for the structure and kinetics of folate metabolism in bacteria
(Leduc et al., 2007 and Fig. 2.6).
III. Why Mathematical Modeling?

We view a mathematical model as an experimental tool, much like
electrophoresis or PCR or gene knockout. Like all experimental tools,
models have their own particular strengths and limitations and these should
be understood if the tool is used to address a particular problem. A model is a
mathematical description of a specific system. One of the particular
strengths of a model is that it is completely explicit about what is in the
system and what is not. In addition, a model is explicit about all
the assumptions that are made about the properties of the components of
the system and about their interactions.

The mathematical models we are dealing with here are not theoretical
models in the sense that they attempt to discover necessary and sufficient
conditions for the behavior of a particular system, or attempt to estimate
parameter values for the system. Rather, they are strict quantitative descrip-
tions of properties that have been determined experimentally by investiga-
tors. Ideally, a model represents the state of our understanding of the
properties and interactions among the component parts of a system, and
allows one to examine the behavior of the ensemble, and the consequences
for the system as a whole of various assumptions one makes about how the
components behave and interact. The model is ‘‘tested’’ against as much
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experimental data as possible. Ideally, the model reproduces the results of a
broad diversity of experiments both qualitatively and quantitatively.

If it does, then it can be used as an experimental tool to ask questions and
do ‘‘experiments’’ that would be difficult, or expensive, or unethical to do
in a real living system. In particular, a model provides a means to rapidly and
inexpensively test the effects of specific perturbations and of alternative
experimental strategies before committing time and resources to potentially
expensive, and possibly inconclusive laboratory experiments. In its most
useful guise, simulations with a model should interact with laboratory
experimentation in a mutually illuminating exploration of FOCM.

A modeling approach is useful when the system one wishes to study is
large and complex, with nonlinear interactions. Nonlinear systems produce
context-dependent and nonintuitive responses to perturbations, and a sim-
ple examination of the connectivity diagram is seldom able to reveal
anything useful about the dynamics of the system, nor its response to
perturbation. FOCM is such a large, complex, and nonlinear system, con-
sisting of several interlocking cycles with multiple inputs and outputs
(Fig. 2.1). In addition, many of the enzymes in this system are subject to
complex allosteric regulation by metabolites that are many steps removed in
the network. These long-range regulatory interactions provide important
homeostatic functions (see Section VII), which can only be evaluated by
simulation studies.
A. Previous modeling efforts

A number of investigators have developed mathematical modes for various
parts of FOCM (Harvey and Dev, 1975; Jackson and Harrap, 1973;
Morrison and Allegra, 1989; Seither et al., 1989; Vorontzov et al., 1980;
Werkheiser et al., 1973) and the methionine cycle (Martinov et al., 2000;
Prudova et al., 2005). Perhaps the best known among these are the extensive
studies of R. C. Jackson and his associates ( Jackson, 1980, 1984, 1986,
1993, 1995; Jackson and Harrap, 1973, 1979).

Almost without exception the models of folate metabolism have been
aimed at understanding the mechanism of action and the kinetics of anti-
cancer drugs, particularly methotrexate and 5-fluorouracil. In most cases the
models focused on the portions of the system that were most relevant for
their investigations. Jackson (1980, 1986; Jackson and Harrap, 1979) devel-
oped what is probably the most extensive model for folate metabolism
(Fig. 2.2A), consisting of more than 60 reactions that also included the
kinetics of membrane transport of folate and methotrexate, and more
detailed reactions for the synthesis of purines, pyrimidines, RNA, and
DNA. This model made specific predictions about the rates of DNA
synthesis and the amount of time required to replicate all the DNA in a
cell, and was thus able to estimate the maximal rate of cell division under
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Figure 2.2 Diagrams of two early models of folate metabolism. A, the model of
Jackson (1980) . This model also includes synthesis of nucleotides, RNA and DNA, as
well as the transport of folates and methotrexate into the cell, not shown in this
diagram. B, the model of Morrison and Allegra (1989) . Full names of the acronyms
of enzymes and metabolites for this and other figures, and the text, are given in
Table 2.1. Redrawn from Jackson (1980) and Morrison and Allegra (1989).

Mathematical Models of Folate-Mediated One-Carbon Metabolism 53
various methotrexate treatment regimes. The simulated results closely
matched experimentally observed data on the inhibition of cell division
by various methotrexate treatments. The Morrison and Allegra model
(1989), shown in Fig. 2.2B, dealt specifically with the kinetics of folate
metabolism in the MCF-7 breast cancer cell line, and included the effects of
methotrexate polyglutamation and the consequent improved cellular reten-
tion of methotrexate. In spite of the fact that these models typically dealt
only with subsections of one-carbon metabolism, and did not include any of
the allosteric interactions that regulate and stabilize metabolite and fluxes,
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they were generally able to simulate the correct pool sizes of several of the
metabolites, and the time course of inhibition of nucleotide synthesis rates
by treatment with antifolate cancer drugs.
B. Why modeling?

The traditional negative view of mathematical modeling is the following.
If the biology and biochemistry are well understood, then there is no reason
for models. On the other hand, if the biology or biochemistry is not well
understood then there is not enough information to make an accurate
model. Therefore, in either case, mathematical modeling is useless. And,
of course, this negative view is reinforced by poor modeling or modelers
who do not want deal with the full complexity of biological systems. In fact,
many biological systems are ‘‘partly understood’’ in the sense that there is
good information about many of the components of the systems but
incomplete information about how the components work together to
give rise to functional system properties. This is exactly the case with
FOCMwhere a great deal of information is available on individual reactions
but there is not much understanding of how the whole system works
together. It is in this intermediate ‘‘partly understood’’ situation that a
mathematical model can be a valuable, indeed necessary, investigative
tool. To illustrate this point, it is helpful to face how difficult it really is to
‘‘understand’’ FOCM.

It is possible to understand a moderately sized traditional biochemical
reaction diagram by walking the diagram. If substrate A goes up then, since
A makes B, we expect B to go up and so forth. However, the existence of
allosteric interactions by which substrates in one part of the network activate
or inhibit enzymes in other parts makes this type of simple reasoning
impossible or at best inconclusive. For example, SAM activates the enzyme
CBS and inhibits the enzyme MTHFR. So, if we moderately increase the
methionine input to the system, will the homocysteine concentration go up
or down? Well, we would expect more mass in all the methionine cycle
metabolites, so [Hcy] should go up. On the other hand, when methionine
input goes up SAM rises appreciably and this will activate CBS, which will
draw down [Hcy]. But since SAM is up, it will inhibit MTHFR, which
will lower [5mTHF]. Since [5mTHF] is lower, the MS reaction will run
more slowly and thus [Hcy] is not used as rapidly and thus should go up. So
what will happen to [Hcy]? It is clear that no amount of verbal reasoning is
going to answer this question, especially since the reactions and the allosteric
interactions are nonlinear. One has to make calculations (and experiments)
about the relative strengths of the competing influences on [Hcy]. Two
other issues make the question even more daunting. First, the ‘‘answer’’
may depend on the overall context of the rest of FOCM (see below).
Second, the allosteric activation of CBS and inhibition of MTHFR may
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have evolved to stabilize [Hcy] concentration in the face of moderate
changes in methionine input, in which case the answer to the question of
whether [Hcy] goes up or down is ‘‘neither: it doesn’t change much.’’

It is now well understood that gene expression is a stochastic process that
leads to phenotypic protein differences even among ‘‘identical cells’’
(Elowitz et al., 2002; Sigal et al., 2006). Not only do the protein levels
vary by as much as 15–30% from the mean from cell to cell, but also the
levels vary over time even in individual cells. This variation has conse-
quences for the ‘‘understanding’’ of FOCM. First, it does not make sense to
ask for the exact value of a given parameter (a Vmax, a Km, or a Ki). Those
values will vary substantially from cell to cell and from time to time in any
given cell. Second, specific questions like ‘‘Does [Hcy] go up or down?’’
may have answers that depend on the context of all the other enzymes in the
system. Third, some of the most important properties of FOCM (or indeed
of all of cell metabolism) are regulations, not obvious from the standard
biochemical reaction diagram, that allow the system to function despite
these large variations. The allosteric interactions mentioned above are
examples of such regulations. Thus, FOCM should not be thought of as a
single fixed system but a whole family of systems with large variations in
important parameters. It is difficult to see how one could understand
‘‘function’’ in the face of such variation without mathematical modeling.

In Nijhout et al. (2007b), we show how many of the concentrations and
reaction velocities of hepatic FOCM react to the daily inputs of amino acids
due to meals. Some concentrations and velocities fluctuate wildly while
others are protected by regulatory mechanisms. More recent calculations
with the full model depicted in Fig. 2.1 (see Fig. 2.10) show the same
behavior. This is the reason, of course, that many experimental and clinical
measurements are done in the ‘‘fasting state.’’ Because of the difficulty of
making many simultaneous measurements of concentrations and velocities
as functions of time in living cells it is difficult to see how such dynamic
fluctuating behavior could be investigated experimentally. Thus, mathe-
matical modeling has a central role in elucidating the regulatory mechanisms
that allow cells to adapt to such dramatic changes in inputs.
C. Difficult issues in modeling

Suppose that one wants to investigate a particular phenomenon in FOCM
seen experimentally or clinically, for example, the behavior of homocyste-
ine under methionine loading or the stability of the glutathione pool in the
face of daily meals. Which variables and interactions should be included?
If the model is too small, one may have excluded (or rather held constant)
just those variables and interactions that are crucial to understanding the
phenomenon. If the model is too large it may be too unwieldy to experi-
ment with and the ‘‘noise’’ from all the approximations that one makes may
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obscure the phenomenon that one wants to study. So, how large should a
model be? This is always a difficult question (though usually not admitted by
modelers), and every modeling attempt answers it explicitly by what is
included and what is excluded. Since our goal is not only to reproduce
experimental or clinical results but also to use the model to understand how
and why they arise, our philosophy is to start with smaller models and
expand to larger models when the smaller ones are well understood and the
expansion to more variables is necessary. Thus, as we outline below in
Section IV, we began with a model of methionine metabolism that had only
four variables (Reed et al., 2004). Then we made a model of the folate cycle
(Nijhout et al., 2004) so we could study the inhibition of DHFR by
methotrexate and the allosteric binding of folates to folate enzymes. Then
we made a larger model combining to two smaller ones so that we could
study the effects of the inhibition of MTHFR by SAM and the inhibition of
GNMT by 5mTHF (Nijhout et al., 2006). There has been a long discussion
in the literature or the role of the folate cycle in mitochondria (Appling,
1991; Christensen and MacKenzie, 2005) so to investigate these questions
we added compartmentation and the mitochondrial reactions (Nijhout
et al., 2007a). At each stage we had to make difficult (imperfect) decisions
about which variables and interactions to include in the models.

We note that this difficulty of knowing where to draw the boundaries is
also a difficulty for the interpretation of laboratory experiments or clinical
observations. In an experiment one changes the system by, say, knocking
out a gene or introducing a chemical that binds to a particular enzyme. One
then measures the changes in a few variables (the ‘‘results’’ of the experi-
ment) and then makes conclusions about how the system functions. Implic-
itly, one is assuming that everything else besides what one measures is the
same (or can be considered the same), that the knocked out gene did not
affect other genes or that the inhibitor has no other effects but the intended
one. The interpretation of the experiment typically involves implicitly
drawing the boundaries of a ‘‘model’’ (in the experimenter’s head) of
which variables are allowed to be included in the interpretation. Thus,
the interpretation of experimental results must always face and answer
(albeit implicitly) the same difficult question of boundaries faced explicitly
in modeling.

The next difficulty is deciding what level of detail to include for individ-
ual reactions in FOCM. An enormous amount of information is available
about enzymes, their genes and conformations and the way that they bind to
substrates. How much of this detail should be included? Our approach is to
use simple Michaelis-Menten kinetics and simple kinetic forms for activa-
tions and inhibitions unless we have good reason to believe that a more
detailed treatment is necessary for important biological functions of FOCM.
For example, we could havemodeled the synthesis of SAM frommethionine
in liver cells by a simple Michaelis-Menten formula. But we knew from the
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experiments of Finkelstein et al. (1982) and Finkelstein and Martin (1984,
1986) that the methionine levels are fairly stable under methionine loading
whereas SAM increases enormously, and that Corrales et al. (2002) had
suggested that this is a result of the different kinetics of the two isoforms
MAT-I and MAT-III. Because we believe that the stabilization of methio-
nine and the many regulations by SAM are biologically important, we
decided to include the rather complicated special kinetics of MAT-I and
MAT-III in the model. Subsequently, we were able to show (unpublished)
that the suggestion of Corrales et al. (2002) was completely correct.

Finally, of course, one must choose Vmax, Km, and Ki values. This is not
such an easy matter since there are few measurements ofVmax values and the
reported measurements of Vmax, Km, and Ki values show large variation.
Given the stochastic variation in gene expression discussed above and the
dependence of protein conformation and function on the in vivo context,
this variation is not surprising. We try to choose Km, and Ki values within
reasonable experimental ranges and adjust the Vmax values so that the values
of the metabolite concentrations are in the experimental ranges. It is always
a question whether the results of in silico experiments would have been
different if we had chosen different parameters. We have found that most of
our qualitative results are quite insensitive to variations in parameter values.
In some sense, it has to be that way because FOCMmust have evolved to be
able to continue to function in the face of the stochastic variation in
gene expression discussed above. Nevertheless, all three difficulties that
we have discussed necessarily temper the confidence that one has (that we
have!) in model results.
D. Advantages of mathematical models

Although models have difficulties and limitations, they also have advantages
and it is worthwhile to state them explicitly. First, to formulate a model one
has to be explicit about one’s assumptions. If A inhibits B one must say how
much B is inhibited at different concentrations of A and how this may
or may not depend on other variables in the system. Secondly, once one has
a model, in silico experimentation is cheap, fast, and easy. One does not need
animals, IRB protocols, or technicians. Third, and most important, when
the model behaves in the same way as interesting experimental results, one
can take the model apart and put it back together (by removing reactions or
inhibitions, for example) until one understands the causal chain of events
that gives rise to the observed behavior. Thus, experiments with the model
can give real biological understanding of the phenomena under study.
Finally, in the model, one can follow the time course of all concentrations
and velocities and determine how the system reacts to outside influences
or changes in internal parameters. This is impossible to do by in vivo
experimentation.
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Every experimental scientist is a modeler because every hypothesis is
based on a conceptual model of how a system ought to behave. A mathe-
matical model is simply a way of making a conceptual model explicit by
describing and connecting all the underlying knowledge and assumptions.
If a mathematical model does not reproduce the known behavior of a
system then, obviously, the model is wrong. But if the model is based on
all known data, then the ancillary conclusion is that the knowledge of the
system must be inadequate. Thus, a model can reveal the inadequacy of
current data or concepts. The model can then be used to test hypotheses
about what kind of additional (or different) information can yield the
correct behavior, and this can stimulate research to verify those predictions.

Another important use of a model is to test hypotheses about mechan-
isms that are difficult to study experimentally. We will give two examples
from FOCM. The first comes from a series of studies by Finkelstein and
Martin (1984, 1986) and Finkelstein (1990, 2001) who studied the allosteric
effect of SAM on the CBS and BHMT. They suggested that the concen-
tration of SAM rose with methionine input and that the allosteric stimula-
tion of CBS and inhibition of BHMT by SAM would result in an increased
transsulfuration of homocysteine, which removes the excess methionine
from the system. Thus, the allosteric regulations by SAM constitute a
homeostatic mechanism that stabilizes the mass in the methionine cycle.
Our simulations with a model of the methionine cycle ( Reed et al., 2004)
show that variation in methionine input is completely absorbed by variation
in the concentration of SAM. The model also shows that the allosteric
regulation of BHMT and CBS by SAM increases the transsulfuration rate in
such a way that total mass in the methionine cycle, and the flux around the
methionine cycle, remain stable in the face fluctuating methionine input, as
first hypothesized by Finkelstein and Martin (1984).

The second example involves the role of the mitochondrial bifunctional
enzyme. In the mitochondria, the MTD þ MTCH reactions are catalyzed
by a single bifunctional enzyme ( Mejia and MacKenzie, 1986; Peri et al.,
1989). This enzyme is not normally expressed in adult cells; it is expressed
only during embryonic development and in cancer cells (Di Pietro et al.,
2004; Smith et al., 1990), so its expression appears to be restricted to cells
undergoing high rates of cell division. On the basis of interpretation of a
series of radiotracer and gene knockout experiments, Christensen and
MacKenzie (2005) hypothesized that the bifunctional enzyme provides a
‘‘metabolic switch that controls the flow of one-carbon units to determine,
for example, the degree to which mitochondria produce formate and/or
convert glycine to serine.’’ This hypothesis was confirmed by our mathe-
matical model (Nijhout et al., 2007a). Elimination of the mitochondrial
bifunctional enzyme in the model did not show a runaway accumulation of
CH2-THF, as might be expected. Instead, the GDC reaction slowed down,
the production and export of formate stopped entirely, and most
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importantly, the mitochondrial SHMT reaction reversed direction and now
ran toward serine synthesis. Thus, in the presence of the bifunctional
enzyme, a situation typical of embryonic and cancer cells, the mitochondria
export large quantities of formate that are directed to purine and TS in the
cytosol. When the bifunctional enzyme is not expressed, as in adult cells that
do not divide, the mitochondrial reactions become strong producers of
serine, which is exported to the cytosol and where it is directed toward
gluconeogenesis and other reactions. The bifunctional enzyme switch in
effect transforms the mitochondria from formate factories into serine fac-
tories, and may thus be an adaptation to the very different metabolic and
biosynthetic needs of rapidly growing embryonic cells and more quiescent
adult cells, as suggested by Christensen and MacKenzie (2005).
E. Kinetics, parameter values, and model structure

The reported diversity of parameter values for the same enzyme can be due
to various reasons: (1) the orthologous enzymes from different species can
have different kinetic properties; (2) enzyme expression differs in different
tissues, in particular some enzymes are up-or downregulated in cancers as
well as in tissues of animals undergoing chronic nutrient or vitamin depri-
vation or excess; (3) different semipurified enzyme preparations may con-
tain different, and unknown, concentrations of allosteric activators or
inhibitors; (4) enzyme preparations made at different times of day can
contain different concentrations of metabolites and allosteric effectors;
(5) in bimolecular reactions the values of the Kms depend on the concen-
tration of both substrates (Segel, 1975), but it is common to maintain one of
the substrates constant, resulting in the measurement of an apparent Km that
can differ depending on the preparation used.

Our approach to modeling the kinetics of one-carbon metabolism is to
restrict our use of reported kinetics to those measured in mammals, prefera-
bly humans, and we differentiate between parameters measured in different
tissues by building different models that specifically deal with hepatic
one-carbon metabolism and epithelial one-carbon metabolism (Figs. 2.3
and 2.5). Although measures of kinetic parameter values can vary signifi-
cantly, fortunately metabolite concentrations can be measured with great
accuracy and consistency, and the actual flux through a particular reaction,
or the relative dimensions of the fluxes through different portions of the
pathway are sometimes known. We start our modeling by choosing a value
of each Km and Ki roughly in the middle of the reported range, and vary the
Vmax to obtain the reported metabolite concentrations and fluxes. We have
found experimental Vmax values to be largely not useful for modeling
purpose since they are typically reported in units of rate/mg protein,
without stating how protein was determined. We use values of the kcat in
those few cases where in vivo enzyme concentrations are known. We have
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found that the choices of Vmax values are often constrained by the require-
ment that the model produce the right combination of known metabolite
concentrations, relative flux rates, half-lives, and time-dependent responses
to perturbations in the experimental literature.

When the kinetic mechanism of an enzyme is known we use the
conventional equations for the relevant uni- or bimolecular reaction as
described by Segel (1975). Allosteric activation or inhibition of enzymes
often does not admit to one of the conventional equations. In such cases, we
do a nonlinear regression on the published experimental data and use that as
the empirical equation. In these, as in all, cases, we ensure that the model
operates within the limits of the experimental data. Our models assume that
certain substrates (dUMP, GAR) and energetic metabolites (ATP, NADP,
and NADPH) are constant, so that their effect is absorbed by the Vmax for
the reaction.

At present the model does not contain terms for polyglutamation and
deglutamation. The model also does not contain a nuclear compartment,
although it is known that nuclear compartmentation is important (Appling,
1991; Woeller et al., 2007). We set the total folate level in the cell by
defining the overall size of the folate pool. If we start the simulation with all
folates in one form (e.g., THF or 5mTHF), the reaction kinetics rapidly
redistribute the folates, and the system comes to equilibrium for the differ-
ent folate species in �5–6 h. The half-life for folate in the body is about 90
days, and the mean residence time for folate is 124–212 days (Gregory and
Quinlivan, 2002; Gregory et al., 1998), so for short-term studies like the
ones we do, the assumption of a constant intracellular folate pool seems
reasonable.
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The model then, consists of a set of kinetic formulas, one for each
enzyme, that describe the velocity of the reaction as a function of the
concentrations of substrates, products and allosteric regulators, plus a set of
differential equations, one for each variable metabolite, that contain the
kinetic formulas for its synthesis and degradation. In addition, we have
transport functions for amino acids into and out of the cell, and or amino
acids and formate into and out of the mitochondria. The overall system is
solved by numerical integration using a stiff ode solver (because different
quantities tend to vary at very different rates), implemented in MatLab
(The MathWorks). The program allows us to vary inputs of amino acids
and vitamins over time and follow the time-dependent responses of all
metabolites and reaction rates. In addition, the model allows us to simulate
the effects of mutations and of vitamin deficiency (or excess). We have
modeled mutations primarily by altering the Vmax values of the relevant
enzymes. This would correspond to mutations that affect the amount of
active enzyme present (e.g., mutations that affect enzyme expression or
activation). Likewise, we model the effects of variation in non-folate vita-
min cofactors, such as B12 and B6, by altering the Vmax of the corresponding
enzyme(s), assuming in effect that the activity of the enzyme is a function of
the amount of cofactor available.
IV. Model Development

Previous models of folate metabolism, outlined above, were devel-
oped in the 1970s and 1980s. Much new information and understanding
have become available in the intervening 25 years, which have guided our
approach. We began by first developing a model for the methionine cycle
(Reed et al., 2004). This model built on the prior work of Martinov et al.
(2000) who had studied the properties of a model for a portion of the
methionine cycle that did not include the MS, BHMT, and CBS reactions
and used simplifying assumptions about inputs into the cycle. Our model
closed the cycle and added the CBS reaction and several allosteric effects of
SAM. This model was able to reproduce the observed dependence of the
transsulfuration reaction on the concentration of SAM described by
Finkelstein and Martin (1984), and the effects of variation in CBS and MS
activity on homocysteine, methionine, and SAM (Finkelstein, 1990;
Finkelstein et al., 1974; Janosik et al., 2001; Pogribna et al., 2001;
Rosenblatt, 2001). Perhaps the most interesting finding with this model
was that SAM acts as a buffer for methionine input: that is, variation in
methionine input has little effect on the methionine and homocysteine
concentrations but is mostly absorbed by variation in the concentration of
SAM. Furthermore the allosteric effect of SAM on CBS provides a
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mechanism for stabilizing mass in the methionine cycle so that the flux out
of the methionine cycle via CBS matches the rate of methionine input into
the cycle without much change in the homocysteine concentration. If it
were not for the allosteric effect of SAM, the homocysteine concentration
would have to rise to drive the CBS reaction.

Our next step was to develop a model for the folate cycle that
contained what at the time we understood to be the important reactions
of that metabolic network (Nijhout et al., 2004). This model incorporated
the finding that folates bind to and inhibit many of the enzymes in the
folate cycle. This binding was believed to provide a reservoir of folates. The
model allowed us to resolve the puzzle as to why enzymes of the folate
cycle should be inhibited by allosteric binding of folates. The model shows
that this nonenzymatic binding greatly reduces the sensitivity of the system
to folate deficiency, because as the total pool of folate diminishes, more
enzyme is released from inhibition, and the reaction velocities are main-
tained because of the increased enzyme activity (Nijhout et al., 2004).
We next modeled the allosteric interactions between the folate and methi-
onine cycles (Fig. 2.11) in order to test the hypothesis of Wagner et al.
(1985) that these interactions serve to stabilize the DNA methylation
reaction rates (Nijhout et al., 2006). Some results of these experiments are
outlined in Section VII below. We subsequently merged our models for the
folate and methionine cycles (Fig. 2.3) to produce an integrated model of
one-carbon metabolism (Reed et al., 2006). This model also incorporated
allosteric interactions between the folate and methionine cycles (inhibition
of MTHFR by SAM and SAH, and inhibition of GNMT by 5mTHF) and
added the ability to vary the rate of input of betaine. We used this model to
simulate the interaction between folate deficiency and the MTHFRC677T
polymorphism and the interaction between folate and vitamin B12 deficien-
cies. Experimentation with this model showed that the inverse relationship
between folate status and homocysteine level is strongest at low folate levels
and disappears at high folate levels. Furthermore, the model shows that as
folate levels in the cell rise, the reactions of the folate cycle slow down. This
is due to the allosteric inhibition of enzymes in the folate cycle by folate
metabolites. This is a consequence of the homeostatic mechanism described
by Nijhout et al. (2004). This mechanism stabilizes the folate cycle at low
and intermediate folate levels, but also predicts that as folate levels rise, the
reaction rates in the folate cycle will slow down. Thus, a prediction of the
model is that a high intracellular folate level can have the same effect as a
folate deficiency. This prediction of the model is now supported by a variety
of clinical and experimental data that show that high doses of folate can have
detrimental effects (Akoglu et al., 2001; Czeizel, 2004; Morris et al., 2005;
Sunder-Plassman et al., 2000; Troen et al., 2006).

We then expanded the model of Reed et al. (2006) to include com-
partmentation of the folate cycle between cytosol and mitochondria
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(Nijhout et al., 2007a ). This model included terms for the glycine cleavage
system and the metabolism of sarcosine and dimethylglycine in the mito-
chondria, mechanisms for transport of serine and glycine into the cell and
between the cytosol and mitochondria, and terms for the transport of
formate between cytosol and mitochondria (Fig. 2.4). As discussed above,
we discovered that in rapidly dividing cells mitochondria act primarily to
supply formate to the cytosol for purine and pyrimidine synthesis, whereas
in adult cells the mitochondria export no formate but are excess producers
of serine, targeted for gluconeogenesis. We also found that the rate of export
of formate from the mitochondria to the cytosol is remarkably insensitive to
fluctuations in serine and glycine input. This is because both mitochondrial
and cytosolic SHMT reactions are reversible and the rates at which they run
are highly responsive to the relative concentrations of glycine and serine.
The model was used to investigate the effect of varying the relative inputs of
glycine and serine on the rate and direction of the mitochondrial and
cytosolic SHMT reactions, and showed that both SHMT reactions can
reverse and run in the serine synthesis direction when external glycine is
increased replicating the results of Kastanos et al. (1997). This model was
also used to successfully simulate the experiments of MacFarlane et al. (2005)
and Herbig et al. (2002) on the effect of SHMT expression and glycine
availability on SAM.

To investigate the characteristics of FOCM in nonhepatic tissues we
developed a model for epithelial FOCM, which is representative of most
tissues except liver and kidney. Extrahepatic tissues do not express all
enzymes of FOCM, and some enzymes are active at much lower levels
than in the liver (dashed arrows in Fig. 2.5 ). Epithelia thus run on a reduced
version of the network. This model also includes a term for export of
homocysteine, which is typically exported from extrahepatic tissues for
remethylation in the liver. With this model we have explored the interac-
tion of multiple genetic polymorphisms and the interaction of genetic
and environmental variation on the level of homocysteine, the rates of
methylation, and purine and pyrimidine synthesis (Ulrich et al ., 2008).
We have also created a model (Fig. 2.1) that includes the synthesis of
reduced glutathione and exchange of substrates with the blood (Reed
et al., 2008).

FOCM is an ancient pathway and occurs, with variations, in animals,
plants, fungi, and bacteria. Recently, we have developed a model of bacte-
rial FOCM for Rhodobacter capsulatus (Leduc et al., 2007), motivated by the
discovery of a novel flavin-dependent thymidylate synthase (ThyX) that
produces THF rather than DHF upon methylation of dUMP (Fig. 2.6).
This model was used to examine the relative roles of ThyA (TS), ThyX, and
FolA (DHFR) in the mechanism of resistance to antifolates such as
trimethoprim.
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V. Blood Versus Intracellular Metabolite

Concentrations

The models we have developed are for intracellular metabolism, and
thus deal with intracellular concentration and pool sizes. However, almost all
of our understanding of the relationships between folate status and disease is
based onmeasurements of the concentrations of folate, homocysteine, SAM,
SAH, and methionine in the blood, plasma, or red blood cells. Red blood
cell measurements are believed to reflect the metabolite status at the time the
red blood cells differentiated: in a mixed-age population of cells this pre-
sumably represents an average or long-term metabolic status. Blood and
plasma concentrations may be in equilibrium with overall cellular cytosolic
concentrations, though it is more likely that they result from the interaction
between uptake from the digestive system, export by some tissues (like
epithelial cells, kidneys, muscle, and nervous system), import by others
(like the liver), and excretion by the kidneys. Whether these processes are
ever a steady state is an open question. The half-life of folate in the body is
about 90 days, and about 500 days are required for folate levels to come to a
new steady state (Gregory et al., 1998). Methionine loading experiments
shows that the methionine and homocysteine levels in the blood require
12–24 h to return to steady state after a perturbation (Bianchi et al., 2000;
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Silberberg and Dudman, 2001). In our models, the time required for differ-
ent components of the system to relax to equilibrium is in the order of hours
to days (Fig. 2.7). Given that variation in input into the system is in the order
of hours, it is unlikely that the system is ever at steady state and may actually
exist far from equilibrium most of the time (Nijhout et al., 2007b).

Thus, bloodmeasurements represent some average of what is going on in
different cell types, and one would therefore expect a variable and context-
dependent correlation between blood components (particularly for meta-
bolites that are used in many processes) and the state of a given organ or
cellular metabolic system. Our current intracellular models accurately simu-
late intracellular responses to experimental or clinical intervention, and it is
obviously desirable for a model to also simulate how the levels of commonly
measured bloodmetabolites will respond.We are beginning to approach this
difficult question of whole body modeling of folate metabolism by allowing
our cytosolic models for hepatic and epithelial FOCM to communicate with
a blood compartment that is subject to dietary input and excretory output.
VI. Modeling Gene–Gene and Gene–Environment

Interactions

One advantage of models is that they can be used to investigate the
effects of simultaneous variation of many variables. In the case of FOCM,
the models can be used to study the effect of simultaneous genetic
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polymorphisms, or the interaction between a polymorphism and an envi-
ronmental variable such as an amino acid, vitamin B12, or folate. For
instance, the interaction of the MTHFR C677T polymorphism with low
folate status is shown in Fig. 2.8. The T/T genotype is known to diminish
the risk of colon cancer under high folate, but it enhances risk for cardio-
vascular disease (Curtin et al., 2004; Frosst et al., 1995). In the model, the T/
T genotype lowers the concentration of SAM and the DNMT reaction rate
but raises homocysteine levels and both thymidylate and purine synthesis
rates. Folate deficiency enhances the effects of the T allele on most biomar-
kers, with the exception that it reverses the effect on thymidylate and purine
synthesis. Although these simulated changes in biomarkers correspond to
those observed in practice, it is not yet clear how these metabolic effects
translate into differential risks for colon cancer and cardiovascular disease.

The interaction between variation in the Vmax of MS and of MTHFR is
illustrated in Fig. 2.9. The variation along the MS axis in Fig. 2.9 can be
interpreted in several ways. It can represent variation in the expression level
of MS which could be due to a regulatory mutation (e.g., in the promoter
region of the MS gene), or it could be due to mutations in a structural gene
that affects the kcat. Variation could also be due to variation in the level of
vitamin B12, which is a cofactor for MS. In the first two cases variation is
genetic, and in the latter case the variation is environmental (e.g., due to a
vitamin B12 deficiency). Allowing parameters to vary continuously makes it
possible to explore a broad range of possibilities (corresponding to a range of
alleles with minor effects, or a range of environmental exposures) around
the normal or wild type, indicated by the open circles in Fig. 2.9. The shape



Figure 2.9 Bivariate graphs showing the interaction of various enzymes in FOCM on
selected traits (Z axes). X and Y axes show variation in the Vmax of the respective
enzymes. This variation could be due to allelic variation or, in the case ofMS, to variation
in vitamin B12. The circle shows the location of the normal or wild-type phenotype.
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of the interaction relationship is clearly nonlinear, so the effect of variation
in MS depends on the exact value of MTHFR activity, and vice versa.

The effects of the interaction of MS and SHMT activity on purine
synthesis and homocysteine concentration are shown in Fig. 2.9. These
relationships are also nonlinear, as indeed are all relationships between
variables within FOCM. In many cases, such as the ones illustrated here,
the wild-type values lie on a relatively flat and ‘‘horizontal’’ region of the
phenotypic surface. This indicates that the wild type is relatively insensitive
to variation in parameter values, because modest variation of the variables or
parameter values (x and y axes) has little effect on the phenotype (z axis).
As the parameter values move far away from the normal, or wild type, the
effect of their variation increases dramatically.

The finding that many wild-type phenotypes lie in regions of the
phenotypic surface that are relatively flat and horizontal, implies that the
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system is relatively insensitive to the exact values of those parameters. From
an evolutionary perspective one would therefore not expect strong selection
to maintain those parameter values within close tolerances, because moder-
ate variation has little effect on the phenotype. This observation may help
explain why reports on parameter values from different preparations are
often inconsistent. Although differences in protocols and experimental
errors surely play a role, it is not unreasonable to assume that some of this
variation may be real. It is possible that many genes accumulate small-effect
mutations in their regulatory region, or their coding region, that would be
neutral to selection. Indeed, human genes exhibit abundant single nucleo-
tide polymorphism (SNP) variation. The HapMap Project has uncovered a
polymorphic SNP on average every 825 base pairs, and on the average
2 nonsynonymous SNPs per gene (International HapMap Consortium,
2007; McVean et al., 2005). In addition, there is a large amount of regu-
latory variation in the promoter region of genes that leads to variation in the
level of expression (Rockman and Wray, 2002; Yan et al., 2002). A survey
of naturally occurring polymorphisms in the promoter regions of 107
human genes showed that 60% caused more than a twofold difference in
expression, and 11% caused more than a tenfold difference in expression
(Rockman and Wray, 2002). Finally, within a genetically identical popula-
tion of cells the concentration of a given protein can vary by as much as 30%
from cell to cell and from time to time (Elowitz et al., 2002; Sigal et al., 2006).

Thus, there is far more individual genetic variation and individual
variation in gene expression than is typically assumed. This, together with
the fact that the metabolites and allosteric effectors involved in FOCM vary
among individuals and from time to time (e.g., Fig. 2.10), suggests that
much of this variation is without significant effect on fitness, and is therefore
not under selection, and may therefore explain some of the observed
interindividual variability.

VII. Modeling and Simulation have Revealed

Novel Homeostatic Mechanisms

FOCM has many functions that must continue to operate normally in
face of variation in the demand on specific reactions and variation in the
input of metabolites. For instance, the expression levels of TS and DHFR
are upregulated more than 100-fold during the S-phase of the cell cycle,
when there is an increased demand for nucleotide synthesis (Bjarnason et al.,
2001; Obama et al., 2002; Slansky et al., 1993; Wade et al., 1995). At the
same time there will be an increased demand for DNA methylation to
maintain the correct methylation pattern of the newly synthesized DNA
strands. FOCM is also subject to great hourly and daily variation in amino
acid input, which varies with meals and nutrition. The amino acids serine
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and glycine are the primary methyl donors for FOCM, and methionine is
both a methyl donor and an essential amino acid linking the folate and
methionine cycles. An interesting question is whether and how the stability
of critical reactions in the cycle are maintained when there are large
localized changes in demand, or large localized changes in input.

Perhaps the best way to illustrate the relative stability of some reactions
in the face of variation in inputs is by simulating a day in the life of FOCM.
After each meal with protein, the human body experiences a pulse of amino
acids that lasts about 3 h. We simulated this by pulsing the four amino acids
that serve as inputs for the model (Fig. 2.10). It is evident from the
simulations shown in Fig. 2.10 that some variables change dramatically
with each meal, while others are almost unaffected. The TS and DHFR
reactions are quite stable as are the DNMT rate and the rate of export of
formate from the mitochondria. By contrast, the SHMT reactions fluctuate
greatly as do the concentrations of SAM and homocysteine.

As discussed above (Section III.D), the stability of formate export from
the mitochondria arises from the dynamical interplay between the mito-
chondrial and cytosolic SHMT reactions, whose magnitude and direction
vary with serine and glycine input. The fluctuations in SHMT velocity are a
dynamic homeostatic mechanism that dampens the effects of fluctuations in
glycine and serine input (Nijhout et al., 2007a).

Themethylation of DNA is an important function of FOCM, and it seems
reasonable to stabilize these reactions against a variable and often unpredictable
input of methyl groups. Simulations with our models show that the DNMT
reaction is extraordinarily stable against variation in input, and that this stability
arises from two allosteric interactions between the folate cycle and the methi-
onine cycle: SAM inhibits MTHFR and 5mTHF inhibits GNMT (see
Fig. 2.11).Wagner et al. (1985), andWagner (1995) suggested that the purpose
of these interactions might be to stabilize the rate of DNA methylation. The
general idea of how this mechanism works is easy to understand. If the
concentration of SAM goes up, then MTHFR is inhibited, which causes the
concentration of 5mTHF to fall. When 5mTHF is lower, the inhibition of
GNMT is released causing the rate of the GNMT reaction to go up, utilizing
the extra SAM and allowing the DNMT rate to remain stable. The reverse
scenario explains what happens if SAM goes down.

We experimented with the model shown in Fig. 2.11 by adding and
removing the long-range allosteric regulations in various combinations.
Figure 2.12 shows how the [SAM]/[SAH] ratio and the DNMT reaction
rate vary as a function of methionine input under two scenarios: with all
allosteric interaction present, and with all allosteric interactions absent. It is
clear that the allosteric interactions stabilize the SAM/SAH ratio and the
DNMT reaction rate against variation in methionine input, and that the
effect is most pronounced at lowmethionine input. This is because under an
optimal supply of methionine the DNMT reaction runs close to saturation,
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so the main benefit of these regulations appears to be to protect the DNMT
reaction against periods of protein starvation.

Finally, as noted above, the expression of TS and DHFR vary a 100-fold
or more with various stages of the cell cycle, and we have shown, by
simulation, that this variation has little or no effect on the reaction velocities
and metabolite concentrations elsewhere in the folate and methionine
cycles (Nijhout et al., 2004). An implication of this funding is that FOCM
should be relatively insensitive to inhibition of TS and DHFR by chemo-
therapeutic drugs such as methotrexate (which inhibits DHFR) and
5-fluoro-uracil (which inhibits TS). This is indeed the case. When the
Vmax of DHFR is lowered (corresponding, e.g., to treatment with metho-
trexate) the velocity of the DHFR reaction remains virtually constant until
there is almost no free enzyme left. The reason for this remarkable stability
of the DHFR reaction is that the normal concentration of its substrate,
DHF, is exceptionally low, typically 0.02 mM out of a total folate pool of
20 mM. Thus, the concentration of DHF can rise more than a 100-fold
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(and drive the DHFR reaction by substrate accumulation) without substan-
tially depleting the folate pool and disrupting the reaction rates elsewhere in
FOCM. The inhibition of DHFR by methotrexate in effect creates a DHF
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trap. The rate at which this DHF trap develops is determined by the rate of
the TS reaction. In a rapidly dividing cancer cell, where TS is highly up-
regulated, the DHF trap will develop rapidly, whereas in a non-cancerous,
non-dividing cell it will develop very slowly if at all.
VIII. Steady States and Fluctuations

The mathematical models allow us to calculate how long it takes for
FOCM to return to steady state after a perturbation. The interlocking cycles
of FOCM are complex and different reactions return to steady state at
different rates. An example is shown in Fig. 2.7 where we show the
simulated response to fasting. It takes 6–10 h for some reactions to go to
steady state while others take more than 2 days. Given a normal pattern of
eating, these findings imply that FOCM is never at steady state (Nijhout
et al., 2007b). Indeed many reaction rates and metabolite concentrations are
likely to always be far from steady state (Fig. 2.10).

This calls into question the utility of standard metabolic control analysis
to understand the operation of this system. In metabolic control analysis one
typically lets the system come to steady state, then perturbs it by changing
one parameter by a small amount, and lets the system come to the new
steady state (Fell, 1992). The fractional change in the reaction velocities and
metabolite concentrations at this new steady state is then taken to be a
measure of the sensitivity of each component of the system to the parameter
that was changed. This method is used to deduce how control is distributed
among the reactions of a system, and the relative control any given enzyme
has over the operation of the system. Metabolic control analysis is, in effect,
a sensitivity analysis preformed by perturbing the steady state. When a
system normally operates far from steady state, and its reaction velocities
and metabolite concentrations are continually changing, a steady-state
sensitivity analysis is not a useful way of obtaining insight into the operation
of the system.

Instead, it is more natural to see how the system responds to large scale
fluctuations. We have been using such fluctuations in different ways. First,
we have been using fluctuations to make quantitative statements about the
effects of particular homeostatic regulatory mechanisms. For example, in
Nijhout et al. (2006) we added to the normal methionine input (100 mM/h)
a continuous stochastic fluctuation with standard deviation 30 mM/h. The
standard deviation in the velocity of the DNA methylation reaction was
exceptionally small, because of the long-range allosteric interactions dis-
cussed above. We then removed allosteric interactions one by one to see
which ones and which combinations had the greatest effects. When all four
are removed, the standard deviation of the velocity of the DNMT reaction
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goes up by a large factor. We have also used such fluctuation analysis to
show that it is the unusual kinetics of MAT-I and MAT-III that stabilizes
the methionine concentration at the expense of large fluctuations in SAM
(unpublished). In Nijhout et al. (2007), we applied stochastic fluctuations to
the serine and glycine inputs and showed that the production of formate by
the mitochondria remains remarkably stable. This stability is caused by the
parallel SHMT reactions in the cytosol and the mitochondria that make
glycine from serine and vice versa.

Secondly, we often use external stochastic fluctuations as a probe of
system behavior. It is very interesting to fluctuate an input or a Vmax

(corresponding to gene up- and downregulation) and then observe which
concentrations and velocities fluctuate a lot, a moderate amount, or hardly
at all. Our experience is that when a concentration or velocity hardly
fluctuates at all, there is usually a good biological reason why this is so.
We can then take the system apart to discover the mechanisms that cause the
homeostatic behavior. Usually, some other concentrations and velocities
change a lot so that the homeostatic ones can remain stable.

Finally, we have been conducting a mathematical analysis of the way
in which general fluctuations propagate through biochemical networks.
In Anderson et al. (2007), we showed that the variances of reactions
velocities are always strictly decreasing down linear chains. The biological
significance of this result is that if it is important to stabilize the output of a
chain of biochemical reactions against fluctuations in the input, then the
chain should be long. It was also shown that side reaction systems and
feedback loops decrease the variations of the velocities in downstream
reactions. In Anderson and Mattingly (2008), many of these results are
proven in the case of Michaelis-Menten chains. Efforts are underway to
prove how more complicated network geometries and different kinds of
kinetics affect the ways in which fluctuations propagate.

Finally, we note that metabolic networks do not arise fully formed. They
evolve over time by the addition and elimination of reactions and by
changes in the kinetics of existing reactions. In evolutionary biology, it is
typically assumed that natural selection acts to maximize flux through a
pathway (e.g., Hartl et al., 1985; Wagner, 2005), in effect making reactions
more ‘‘efficient’’ in some way. But if a system normally experiences con-
tinual and large fluctuations of input, and continuous and large changes in
the demand for many different synthetic reactions, then a more likely target
for natural selection would be those reactions or connections that stabilize
certain parts of the system against the effects of those changes. That is,
evolution would not necessarily favor faster and more efficient pathways,
but rather would favor pathways that operate stably and reliably under
variation. Eating imposes enormous hourly and daily fluctuations, as well
as unpredictable long-term deficiencies in specific nutrients, and normal
daily and seasonal activities impose large variation in demand. This is true of



Mathematical Models of Folate-Mediated One-Carbon Metabolism 77
FOCM, and it must be true of most if not all of metabolism. The key
regulatory features of metabolic systems are thus those that stabilize func-
tion, and those that prevent local perturbations from propagating through
the system. As is the case in FOCM, these regulatory mechanisms are not
the emergent properties of large networks, but are evolved adaptations for
specific functions.
IX. Conclusions

FOCM is one of the best studied metabolic systems: all or almost all
enzymes and metabolites in the system are known, as is the structure of
the reaction network. This network is complex and consists of several
intersecting cycles and a large number of complex allosteric regulatory
interactions between metabolites and enzymes. The reactions in this system
are nonlinear, which makes it exceptionally difficult to deduce the proper-
ties of the overall system, the way it is regulated, and the effects of mutations
and nutrient and vitamin deficiencies from the connectivity diagram alone.

The most direct way to understand the function of different parts of a
complex system like FOCM is through computer simulation with a mathe-
matical model. Because FOCM has been so well studied, it has been
possible to construct models that accurately simulate metabolite pools and
reaction velocities, as well as the effects of mutations and vitamin deficien-
cies on markers like homocysteine, TS and methylation capacities.

A mathematical model is an experimental tool that can be used as a
complement to laboratory experimentation or clinical investigation to do
pilot experiments and test hypotheses quickly and inexpensively. When a
new interaction is discovered, or suspected, it can be incorporated into a
preexisting model to determine its effect. We expect that our mathematical
models will evolve in three ways: first by progressive improvement of the
accuracy of the existing models by incorporating details like polyglutamation,
substrate channeling, and compartmentalization; second, by extending the
models to include other related aspects of metabolism, like insulin signaling;
third, by developing additional tissue-specificmodels, for instance, for the brain
and transport across the blood–brain barrier, and by linkingmodels formultiple
organ systems together through the circulatory system.

One important purpose of studying FOCM is to understand the rela-
tionship between genetic and environmental variables and disease out-
comes. There are two large steps necessary for this understanding. First,
one needs to understand how genetic and the environmental perturbations
affect the system behavior of FOCM. Second, one needs to understand how
the system changes in FOCM lead to the various disease states. Both are
very difficult questions. Most of our work outlined above has been
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dedicated to understanding the regulatory system properties of FOCM and
how the behavior of FOCM changes in the presence of genetic polymorph-
isms and changes in environmental input. It remains a formidable challenge
to understand the pathway by which inadequacies or malfunctions of the
processes regulated by FOCM contribute to the development of such
diverse diseases as colon cancer, psychiatric disorders, cardiovascular disease,
and neural tube defects.
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