
Propagation of fluctuations in biochemical systems,
II: nonlinear chains

D.F. Anderson and J.C. Mattingly

Abstract: We consider biochemical reaction chains and investigate how random external fluctu-
ations, as characterised by variance and coefficient of variation, propagate down the chains. We
perform such a study under the assumption that the number of molecules is high enough so that
the behaviour of the concentrations of the system is well approximated by differential equations.
We conclude that the variances and coefficients of variation of the fluxes will decrease as one
moves down the chain and, through an example, show that there is no corresponding result for
the variances of the concentrations of the chemical species. We also prove that the fluctuations
of the fluxes as characterised by their time averages decrease down reaction chains. The results
presented give insight into how biochemical reaction systems are buffered against external
perturbations solely by their underlying graphical structure and point out the benefits of studying
the out-of-equilibrium dynamics of systems.

1 Introduction

In [1, 2] we began a study of biochemical reaction systems
subjected to random, external forcing. The question we con-
sidered, and continue with here, is the following: if we add
random, external forcing to the input of a biochemical reac-
tion system, how do those fluctuations (characterised by
their variance and coefficient of variation) propagate
through the entire system? The broader aims of this paper
are to gain a better understanding of how the network top-
ology of biochemical reaction systems suppresses or other-
wise alters the behaviour of fluctuations in reaction systems
and to point out the benefits of studying the out-of-
equilibrium dynamics of biochemical systems.
In [2], we studied systems under the two simplifying

assumptions that the kinetics were all mass action and that
each reaction involved turning precisely one species into
another species. Therefore each complex consisted of a
single species [3, 4]. Thus, we allowed reactions of the
form A ! B, but not Aþ B ! C. These two assumptions
caused the differential equations governing the concen-
trations of the species to be linear and so we referred to
them as linear SSC (single species complex) systems.
Considering linear SSC systems decreased some of the tech-
nical difficulties of the analysis while still allowing us to
probe how different network structures affect the propa-
gation of fluctuations. Under these assumptions we proved
that the variances of fluxes decrease down reaction chains
and that side reaction systems and feedback loops lower
the variance of the flux out of reaction chains. A natural
question is whether or not these results from [2] hold
when we drop one or both of the simplifying assumptions.

The main purpose of this paper is to demonstrate a biologi-
cally significant result from [2] that does hold when we drop
both the SSC and mass action assumptions: the variances
and coefficients of variation of fluxes decrease as one
moves down a non-reversible reaction chain.
For an example of a reaction chain, consider the follow-

ing biochemical system: a species, S, enters the system at a
constant rate, I . 0. This species then combines with an
enzyme, E, to form ES, which is then degraded to some
product species P plus the original enzyme. Finally, the
product P leaves the system. If the concentration of the
enzyme is taken to be so large as to be assumed constant
and the reactions are non-reversible then the following
graph faithfully models our system

"!I S"!
F1

ES"!
F2

P"!
F3

(1)

where F1, F2 and F3 are functions that give the rates of the
respective reactions. Let s, es and p be the concentrations of
S, ES and P, respectively. Then, if the kinetic functions F1,
F2 and F3 are functions of the reactant species only, the
differential equations governing the temporal evolution of
the concentrations are

_s(t) ¼ I " F1(s(t))

_es(t) ¼ F1(s(t))" F2(es(t))

_p(t) ¼ F2(es(t))" F3(p(t))

(2)

If the functions Fi are differentiable, monotone increasing,
and satisfy Fi(0) , I , limx!1 Fi(x), then it is easily
seen that, independent of initial conditions, the system (2)
will converge to the steady state (!s, !es, !p) ¼ (F"1

1 (I),
F"1
2 (I),F"1

3 (I)). However, if the input to the system (1) is
allowed to fluctuate in time, then each concentration will
fluctuate, and, hence, each flux, Fi, will also fluctuate. If
the fluctuations are random, we can ask what the variance
or coefficient of variation of each flux is with respect to
that randomness, and how they relate. It is the goal of this
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paper to prove

Var(F1(s(t))) . Var(F2(es(t))) . Var(F3(p(t))) (3)

CV (F1(s(t))) . CV (F2(es(t))) . CV (F3(p(t))) (4)

where Var(.) and CV(.) represents variance and coefficient of
variation, respectively. (Notice that the inequalities are strict.)
The reaction chain given in (1) is an example of an SSC

chain because each node of the network graph consists of a
single species. In general, a reaction chain is any biochemi-
cal system of the following form

"!I C1 "!
F1

C2 "!
F2 $ $ $ "!

Fn"1
Cn "!

Fn
(5)

where I [ R.0 is the constant input to the system, the com-
plexes, Ci, are linear combinations of the species, and
Fi: R

mi

%0 ! R%0 are the reaction kinetics (where mi is the
number of distinct species composing complex Ci). In
[2], we showed that if the constant input I is replaced by
the fluctuating in time random process Iþ j(t, v), where
j(t, v) is either white noise or a mean zero, finite variance,
stationary stochastic process such that j(t, v) % 2I, and if
the system (5) is a linear SSC chain, then for all i % 1,
Var(Fi) . Var(Fiþ1), where the variance is computed
according to the unique stationary measure to which the dis-
tribution of the species converges. In this paper, we prove
that this result still holds when we drop the assumption
that the kinetics are mass action and the assumption that
each complex consists of a single species. The main
assumption on the kinetics in this paper will be that they
are monotone increasing in each of their dependent vari-
ables (so, for example, we may consider Michaelis–
Menten kinetics). We will also show that the result still
holds when the complexes are composed of multiple
species so long as each species appears in precisely one
complex. Throughout, we will refer to systems for which
complexes can by composed of multiple species yet each
species appears in a single complex as MSC (multiple
species complexes) systems.
We will show that if I is the average input to a reaction

chain, then (once the system has reached its statistical
equilibrium) the mean of each flux is also equal to I.
Therefore saying that the variances of the fluxes decrease
down a reaction chain is equivalent to saying that the coef-
ficients of variation of the fluxes decrease down a reaction
chain. That is, (3) is equivalent to (4). Because of this
equivalence between the magnitudes of variances and the
magnitudes of coefficients of variation, each result in this
paper is stated in terms of variance alone and it is under-
stood that each result is still valid if Var(.) is replaced
with CV(.).
Throughout, we allow external perturbations to be white

noise processes or mean zero, finite variance, stationary sto-
chastic processes. Considering white noise processes is
useful because it allows one to make use of the Itô
Calculus with which stronger results (i.e. fewer restrictions
on the rate functions, Fi) can be proved than if you solely
consider arbitrary perturbations. Also, if the input flux to
a reaction system is perturbed by white noise, then all
other fluxes are perturbed by mean zero, finite variance,
stationary continuous processes. Therefore one may con-
struct continuous, stationary perturbations from white
noise processes by allowing a pseudo-species to be per-
turbed by white noise and considering the output from the
pseudo-species as the input to the reaction system of inter-
est. In doing so, one is allowed to use the stronger white
noise results as opposed to the stationary noise results.
Thus, allowing both types of perturbations is quite

natural. However, we point out that we do not feel the
choice of external forcing is critical because the broader
aim of this paper is to study the out-of-equilibrium
dynamics of biochemical systems and both choices of per-
turbation achieve this aim.
The layout of the paper is as follows. In Section 2, we

consider SSC chains. In Section 3, we consider MSC
chains. Complementing the main results are two important
examples. In Section 2, Example 2.3 is a nonlinear chain
perturbed by white noise for which the variance (and CV)
of the concentrations of the species increase down the
chain. Hence, there is no corresponding ‘decreasing fluctu-
ation’ result for the concentrations of reaction chains. In
Section 3, Example 3.8 demonstrates that the assumption
that each species is in precisely one complex is a necessary
one. In both examples, we use a Monte Carlo simulation to
arrive at our conclusions. The proofs of all the results in this
paper are found in Section 7.
This paper is part of a larger research project in which

the main biological goal is to understand how network top-
ology affects how biochemical systems react to large-scale,
random perturbations to their inputs. There are two distinct
approaches we take in trying to achieve this goal. In the
first, we apply random fluctuations to in silico represen-
tations of specific biological systems. We can then identify
reactions, concentrations or whole subsystems that are buf-
fered against the fluctuations, i.e. are homeostatic. We can
then take the system apart piece by piece through in silico
experimentation to discover the regulatory mechanisms
that give rise to the homeostasis. In the second, we
prove theorems about how random fluctuations propagate
through relatively simple, but biologically relevant,
systems. We are interested in how these systems
magnify or suppress fluctuations as this may give clues
as to why these systems are structured as they are. In
this second approach it is the out-of-equilibrium dynamics
that is being probed in order to give information on the
emergent properties of the system. This paper, like [1]
and [2], takes the second approach; for an example of
the first, see [5].
Owing to the inherent randomness in themaking and break-

ing of chemical bonds, biochemical reaction systems are, at
their most fundamental level, modelled as jump Markov pro-
cesses [6–10]. However, if one scales up the volume and
number ofmolecules in a systemwhile keeping the initial con-
centrations constant, then this intrinsic randomness becomes
negligible at the scale of concentrations. One is then able to
faithfully model the concentrations of the species by a
system of differential equations [11]. As in [1, 2], we consider
systems in this scaling limit. Thus, the random external forcing
in this paper is on the scale of concentrations (and not of
individual molecules) and the concentrations of the species
are modelled by differential equations. For a more detailed
comparison between the randomness in this paper and the
inherent randomness of biochemical systems, see [2].

2 SSC chains with random perturbations

2.1 The model

A non-reversible SSC chain with a constant input is a bio-
chemical reaction system with the following graphical
structure

"!I X1 "!
F1

X2 "!
F2 $ $ $ "!

Fn"1
Xn "!

Fn
(6)

where I . 0 is the constant input to the system, Xi are the
species (and complexes) of the system and Fi: R%0 ! R%0

IET Syst. Biol., Vol. 1, No. 6, November 2007314

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on June 16, 2009 at 10:10 from IEEE Xplore.  Restrictions apply.



are the reaction kinetics. For each i, let xi represent the
concentration of species Xi. The temporal evolution of x(t)
is governed by the following differential equation

_x1 ¼ I " F1(x1)

_x2 ¼ F1(x1)" F2(x2)

..

.

_xn ¼ Fn"1(xn"1)" Fn(xn)

(7)

In the sequel, we make the following standing assumptions
on the functions Fi.

Assumption 2.1: Each Fi is a real valued C1 function of
[0, 1) with the following properties:

(a) Fi(0) ¼ 0.
(b) For all x [ R.0, Fi

0(x) . 0.
(c) lim

x!1
Fi(x) . I .

Note that condition (c) guarantees that mass will not build
up at any point along the chain so long as the input is kept at
the constant value I. This assumption is also reasonable for
systems for which the input is being perturbed by a mean
zero random process and will be used to keep concen-
trations from escaping to infinity.
We will consider two different classes of random pertur-

bations of the input I. The first will be white in time while
the second will be almost surely continuous in time. Since
the kinetics, Fi, are defined only on the positive portion of
the real line, it is important that any noise we consider as
a perturbation to the input will never drive the concen-
trations of the species into the negative portion of the real
line. Hence we will impose restrictions on the perturbations
to ensure that the concentrations stay non-negative at all
times. Because we consider two different classes of pertur-
bations of the input, we consider two different mechanisms
to achieve this goal.
In the case of the white in time random perturbation, we

multiply the noise term, dBt, by a function, ud(.), that turns
the noise off if x1 approaches zero. This property of ud com-
bined with the dynamics governing the concentration of X1

ensures that x1 remains non-negative for all time which, in
turn, keeps all other concentrations non-negative for all
time. The concentration of x1 is now governed by a stochas-
tic differential equation, while the equations for the remain-
ing xi stay as in (7). That is

dx1 ¼ (I " F1(x1)) dt þ sud(x1)dB(t)

_x2 ¼ F1(x1)" F2(x2)

..

.

_xn ¼ Fn"1(xn"1)" Fn(xn)

(8)

where B(t) ¼ B(t, v) is standard one-dimensional Brownian
motion, s [ R.0, and for some small d . 0, ud(x) ¼ 1 for
all x . d, ud(0) ¼ 0 and ud(x) is C

1 and monotone increas-
ing. Since F1(0) ¼ ud(0) ¼ 0 and I . 0, x1(t) % 0 for all
t . 0 if x1(0) . 0.
The second class of perturbations to the input considered in

this paper are mean zero, finite variance, stationary, random
processes, j(t, v), which are continuous in time at almost
every moment of time. To guarantee that the concentrations
of the chemical species remain non-negative for all time we
only consider perturbations such that j(t, v) % 2I for all t
and v (and so we no longer need the function ud(.) used in
the white in time setting). In order to keep the reaction

system away from equilibrium, we make the added restriction
that for each choice of v, j(t, v) is non-constant on all time
intervals larger than some fixed value a ¼ a(v). We will typi-
cally write j(t) instead of j(t, v). The almost everywhere con-
tinuity of j(t) allows the possibility of isolated jumps and
allows us to use a standard differential equation for x1 (in con-
trast to the Itô stochastic differential equation used in (8)). In
this case, the equations governing the behaviour of the
concentrations are

_x1 ¼ I " F1(x1)þ j (t)

_x2 ¼ F1(x1)" F2(x2)

..

.

_xn ¼ Fn"1(xn"1)" Fn(xn)

(9)

To prove the existence of a stationary state we will further
assume that the distribution of the noise’s future is comple-
tely determined by its past. An example of such a j(t) is a
Markov processes whose future distribution depends only
on its present value.

2.2 Decreasing variance for SSC chains

We are mainly interested in describing the system once it
has settled into a statistical equilibrium and any behaviour
that is transient in time has passed. Such statistical steady
states are characterized by a stationary solution. A solution
x&(t) is stationary if for any collection of times
t1 , t2 , $ $ $ , tn and any s the distribution of the vector
(x&(t1þ s), x&(t2þ s), . . . , x&(tnþ s)) is independent of s.
When the forcing is Brownian as in (8), the solution is a
Markov process and the distribution of x&(t) at any time t
is an invariant measure for the associated Markov semi-
group. An invariant measure, m, is a measure on the state
space of the system, Rn, such that if the initial condition
is chosen according to m then solutions at any time t % 0
are also distributed as m. More precisely, if for all
measurable A , Rn,P(x(0) [ A) ¼ m(A) implies that
P(x(t) [ A) ¼ m(A) for all t % 0, then m is invariant to the
dynamics of the system. Therefore when the forcing is
Brownian, a stationary solution exists. When the forcing
is a stationary process j(t) as in (9) more care must be
taken to obtain a stationary solution to the dynamics as
the solution need not be a Markov process.
We will concern ourselves with the existence and basic

properties of stationary solutions and invariant measures at
the end of this section. First we state the principal result of
the article and give a few numerical examples to illustrate
its use. The following theorem is proved in Section 7.2.

Theorem 2.2 (Decreasing variance down a nonlinear SSC
chain): Let x&(t) be a stationary solution for the dynamics
given in either equation (8) or (9). Then for all 1 ' i ' n
and all t

Var(Fi(x
&
i (t))) . Var(Fiþ1(x

&
iþ1(t)))

We note that the variances of Theorem 2.2 are computed
with respect to the choice of randomness, v, in B(t, v) or
j(t, v). That is, Theorem 2.2 gives the variance as an
average over the choice of perturbations. In Section 2.3
we give a similar result except the variance is computed
as a time average over a single path. In many natural set-
tings (including those given in the examples below), the
two notions are equivalent and therefore give the same
intuition about fluctuations down reaction chains.
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We now give three examples where the preceding
theorem holds. For the moment we will assume that the
systems possess a stationary solution to which the statistics
of the solutions converge as t ! 1. At the end of the
section, we will prove that the preceding assumption
holds for any initial condition.

Example 2.3 (Variances of concentrations need not
decrease): Consider the following SSC chain with
Michaelis–Menten kinetics

"!
10þ sud(x1)dBt

X1 "!
F1(x1)

X2 "!
F2(x2)

where s ¼ 1, d ¼ 0.001, F1(x1) ¼ x1, F2(x2) ¼ (12x2)/
(1þ x2).Wewill see in Theorem2.6 that this systempossesses
a unique invariant measure to which the statistics of the trajec-
tories converge. UsingMatlab to perform aMonteCarlo simu-
lation we computed the means, variances and coefficients of
variation of the concentrations and fluxes to be the following.

x1 x2 F1(x1) F2(x2)

Mean 10 5.18 10 10

Variance 0.5 1.19 0.5 0.124

CV 0.07 0.21 0.109 0.035

As guaranteed by Theorem 2.2, the fluctuations of the fluxes
decrease down the chain. However, no matter the measure
we use (variance or CV), the fluctuations of x2 are always
greater than those of x1. Therefore there is no counterpart
to Theorem 2.2 pertaining to the concentrations of an SSC
reaction chain.
To understand why the fluctuations of x2 are higher than

those of x1, consider the plot of F2(x) ¼ 12x/(1þ x) in
Fig. 1. The horizontal lines at x1 ¼ 9, 10 and 11 represent
possible fluxes into species X2 and the vertical lines show
what the equilibrium value of x2 would be corresponding
to that input. While the perturbed system will never settle
to an equilibrium, the kinetics will always be driving the
concentration of X2 towards the solution of 12x2(t)/
(1þ x2(t)) ¼ x1(t). Therefore minor fluctuations in the
input to the species X2 give rise to large fluctuations in x2.

Example 2.4 (Continuous input and unbounded kinetics):
Consider the following SSC chain

"!
10þ j(t)

X1 "!
F1(x1)

X2 "!
F2(x2)

where 210 ' j(t) is a modified Ornstein–Uhlenbeck

process defined in Section 8, F1(x1) ¼ x1
2 and F2(x2) ¼

x2
2/(1þ x2). Because both F1(x) and F2(x) are unbounded
as x ! 1, we will see in Theorem 2.7 that the system
possesses a unique stationary solution to which the statistics
of the trajectories converge. Using Matlab to perform a
Monte Carlo simulation we computed the means,
variances, and coefficient of variation of the fluxes to be
the following.

10þ j(t) F1(x1) F2(x2)

Mean 10 10 10

Variance 8 6.8 3.9

CV 0.28 0.26 0.20

The variances and coefficients of variation of the fluxes
decrease down the chain, as guaranteed by Theorem 2.2.

Example 2.5 (Continuous input and Michaelis –Menten
kinetics): Consider the following SSC chain

"!
4þ j(t)

X1 "!
F1(x1)

X2 "!
F2(x2)

where 24 ' j(t) ' 4 is a modified Ornstein–Uhlenbeck
process defined in Section 8, F1(x1) ¼ 11x1/(1þ x1) and
F2(x2) ¼ 10x2/(1þ x2). We will see in Theorem 2.8 that
this system possesses a unique stationary solution to
which the statistics of the trajectories converge. Using
Matlab to perform a Monte Carlo simulation we computed
the means, variances and coefficient of variation of the
fluxes to be the following:

4þ j(t) F1(x1) F2(x2)

Mean 4 4 4

Variance 4.2 3.3 2.9

CV 0.51 0.46 0.43

The variances and coefficients of variation of the fluxes
decrease down the chain, as guaranteed by Theorem 2.2.

We now show the random dynamics given in (8) pos-
sesses a unique invariant measure. This invariant measure
generates a stationary solution x&(t) when extended to
paths from 21 to 1. Similarly, under some additional
assumptions on j and the Fi’s, we show that the dynamics
given in (9) possesses a unique stationary solution x&(t)
(the concept of an invariant measure does not directly
make sense for (9) since the dynamics are not necessarily
Markovian, see Section 7.1). In addition, in both settings
we show that the statistics of the trajectories converge to
those of the stationary solution x&(t) as t ! 1. In other
words, for any x(0) and measurable A , Rn

P(x(t) [ A) ! P(x&(t) [ A) ¼ P(x&(0) [ A), as t ! 1:

ð10Þ

This means that the long time statistics of the solutions are
independent of the initial condition and the result on the
decrease of fluctuations is applicable on long time intervals.
Of course in the setting of (8), x&(t) is distributed as the
invariant measure m so P(x&(0) [ A) ¼ m(A). In the
setting of (9), x&(t, j) should be viewed as a function of
the entire past of the noise.
The next three results apply, respectively, in the three

preceding examples to ensure the existence of an unique
stationary solution to whose statistics the statistics of

Fig. 1 Horizontal lines represent possible inputs to species X2

from species X1 and the vertical lines represent the value of x2
that would give an equilibrium to the system for a given input.
Therefore we see that minor fluctuations in F1(x1) ¼ x1 can
correspond with large fluctuations in x2.
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arbitrary trajectories converge in time. The first result
covers the case of white in time forcing while the second
two apply to stationary forcing. The proofs of all three are
contained in Section 7.3.

Theorem 2.6 (Ergodicity of the SSC chain with white
noise): Equation (8) possesses a unique invariant measure,
m, on Rn. Furthermore, the distribution of any solution to
(8) converges to m as t ! 1.

To prove the existence of a stationary solution to (9), we
need to assume that the distribution of the future of the
noise, j(t), is determined by its past (such as for Markov
processes). This is made precise in Section 7.1. We also
need additional assumptions on the functions Fi. We give
two versions of these assumptions.

Theorem 2.7: Let j be as in Section 7.1. Under the
additional assumption that the rate functions Fi are
unbounded as x ! 1, (9) possesses a unique stationary sol-
ution, x&(t). Furthermore, any solution x(t) to (9) converges
to x&(t) as t ! 1.

In the event that any of the Fi are bounded, we need a
bound on the size of j(t).

Theorem 2.8: Let j be as in Section 7.1. Define
K ¼ min

i
{ lim
x!1

Fi(x)" I}. Under the additional assumption

that"I ' j(t) ' M , K, for all t and someM , K, (9) pos-
sesses a unique stationary solution, x&(t). Furthermore, any
solution x(t) to (9), converges to x&(t) as t ! 1.

In the white in time setting, the system is in fact ergodic
and hence by Birkhoff’s ergodic theorem we know that for
almost every realisation the time average of any statistic
converges to the value of the statistic in the invariant
measure. Combining this with the strong mixing properties
of such a system we have that

lim
t!1

1

t

ðt

0

(Fi(xi(s))" I)2 ds ¼ Var(Fi(x
&
i (t)))

for almost every realisation of the Brownian forcing and
every initial condition x0. For the above equation to hold
in the setting of (9), we need to assume in addition that
the stationary measure on j is ergodic. Even without this
assumption, the next section shows that one can say some-
thing in general. This underlines the fact that the decrease of
variance is really a pathwise phenomenon due to the
dynamics.

2.3 Pathwise perturbations

The variance described in the previous subsection is com-
puted with respect to the probability measure of the pertur-
bations. More precisely, if v is the realisation of the
perturbation then Var(Fi(x(t, v))) ¼ Ev(F(xi(t, v))2 I)2,
that is, the variance is an average over the realisations of
the noise. Another natural way to characterise how pertur-
bations propagate down chains is to consider the time
averages of paths. Consider again the dynamics given by
(9), except now the only assumptions on j(t) are the path-
wise assumptions

lim
t!1

1

t

ðt

0

j(s) ds ¼ 0 and lim sup
t!1

1

t

ðt

0

j(s)2 ds , 1:

(11)

That is, we now assume that the time average for j(t) con-
verges to zero and that the time average of the square is
bounded above. The following theorem states that the path-
wise variances of the fluxes do not increase down reaction
chains and is proved in Section 7.4.

Theorem 2.9: Consider (9) where j(t) satisfies (11). Then
for all i % 1, the following hold

1. lim
t!1

1

t

ðt

0

Fi(xi(s)) ds ¼ I .

2. lim inf
t!1

1

t

ðt

0

j(s)2 ds" 1

t

ðt

0

(Fi(xi(s))" I)2 ds

" #
% 0.

3. lim inf
t!1

1

t

ðt

0

(Fi(xi(s))" I)2 ds" 1

t

ðt

0

(Fiþ1(xiþ1(s))

"

" I)2ds

#
% 0:

3 MSC chains with random perturbations

We now consider MSC chains with random perturbations.
We will again allow perturbations that are white in time
or that are stationary, mean zero, finite variance and con-
tinuous for almost every t and that satisfy the conditions
of Section 7.1. Consider a reaction chain (5), where each
complex, Ci, consists of mi unique species and no species
is contained in more than one complex. Thus, if x(t) is the
vector representing the species concentrations at time t,
then x(t) [ Rm1þ$$$þmn . Let Xi

j represent the jth species in
complex i and vij be the multiplicity of species Xi

j in
complex i. For example, if the reaction chain is

"! X 1
1 þ 2X 2

1 "! 3X 1
2 "!

then v11 ¼ 1, v12 ¼ 2, and v21 ¼ 3.
If Fi represents the reaction rate from complex Ci to

complex Ciþ1 we have that

Fi(x(t)) ¼ Fi(x
1
i , . . . , x

mi

i ): Rmi ! R

We assume each Fi satisfies Assumption 3.1 which is analo-
gous to Assumption 2.1.

Assumption 3.1: Fi is a real-valued C1 function of [0, 1)mi

with the following properties:

(a) If xi
j ¼ 0 for any 1 ' j ' mi, then Fi(x) ¼ 0.

(b) If 1 ' j ' mi and x [ R.0
mi , then (d/dx i

j)Fi(x) . 0.
(c) 9M . 0 such that if x i

j . M for all species in the ith
complex, then Fi(x) . I.

As in the SSC case, if we want to add a random pertur-
bation to the input flux of the system, we must only consider
perturbations that will never drive concentrations into the
negative portion of the real line. We handle this issue in a
similar manner as in the SSC case:
If the perturbation is white in time, we multiply the per-

turbation by a function which will go to zero if the concen-
tration of one of the species in the first complex goes to
zero. Therefore let ud(x11, . . . , x

m1

1 ): Rm1 ! R%0 satisfy the
following three properties for some small d . 0.

1. ud(x) ¼ 1 when each x1
j . d.

2. ud(x) ¼ 0 if x1
j ¼ 0 for any 1 ' j ' m1.

3. ud is C
1 and is monotone increasing in each of the vari-

ables x1
1, . . . , x1

m1.
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If we add a white noise perturbation multiplied by ud(x) to
the input of the system, then the dynamics are governed by
the stochastic differential equation

dx(t) ¼ f (x(t)) dt þ sud(x) dB(t)u (12)

where u ¼ [v11, v12, . . . , v1m1
, 0, . . . ,0]T, s [ R.0, B(t) is

standard one dimensional Brownian motion, and f i1(x) ¼
v1i(I " F1(x)) for each 1 ' i ' m1, f

i
2 ¼ v2i(F1(x)" F2(x)),

for each 1 ' i ' m2, . . . , fn
i ¼ vni(Fn21(x)2 Fn(x)) for

each 1 ' i ' mn.
If the perturbation is a mean zero, finite variance, station-

ary process, j(t, v), that for each v is continuous for almost
all t and that satisfies the conditions of Section 7.1, then in
order to keep the concentrations non-negative, we again
assume that j(t, v) % 2I for all t and v. In this case the
dynamics of the system are governed by the differential
equation

_x(t) ¼ f (x(t))þ j(t)u (13)

where f and u are as above.
The following four theorems are analogous to those in the

SSC case and their proofs can be found in Section 7.5.

Theorem 3.2: (Decreasing variance down a nonlinear MSC
chain): Let x&(t) be a stationary solution for the dynamics
given by either (12) or (13). Then for all i % 1 and t % 0

Var(Fi(x
&(t))) . Var(Fiþ1(x

&(t)))

Theorem 3.3 (Ergodicity of the MSC chain with white
noise): Equation (12) possesses a unique invariant
measure, m, on Rn. Furthermore, the distribution of any sol-
ution to (8) converges to m as t ! 1.

Theorem 3.4: Let j be as in Section 7.1. Under the ad-
ditional assumption that the rate functions Fi are unbounded
as x ! 1, (13) possesses a unique stationary solution, x&(t).
Furthermore, any solution x(t) to (13) converges to x&(t) as
t ! 1.

Theorem 3.5: Let j be as in Section 7.1. Define
K ¼ min

i
{ lim
x!1

Fi(x)" I}. Under the additional assumption

that 2I ' j(t) ' M , K, for all t and some M , K, (13)
possesses a unique stationary solution, x&(t). Furthermore,
any solution x(t) to (13) converges to x&(t) as t ! 1.

Example 3.6 (Sum of two species with mass action
kinetics): Consider the following MSC chain with mass
action kinetics

"!
I(t)

Y "!
F1

X1 þ X2 "!
F2

X3 þ X4 "!
F3

where I(t) ¼ 10þ 2ud(y) dBt (with d ¼ 0.001), F1(y) ¼ y,
F2(x1, x2) ¼ x1x2, F3(x3, x4) ¼ x3x4. Using Matlab to
perform a Monte Carlo simulation we computed the
means, variances and coefficient of variation of the fluxes
to be the following

F1(y) F2(x1, x2) F3(x3, x4)

Mean 10 10 10

Variance 2 1.73 1.62

CV 0.14 0.131 0.127

We note that the variances and coefficients of variation of
the fluxes decrease down the chain, as guaranteed by
Theorem 3.2.

Example 3.7 (Sum of two species with Michaelis–Menten
kinetics): Consider the following MSC chain with
Michaelis–Menten kinetics

"!
I(t)

Y "!
F1

X1 þ X2 "!
F2

X3 þ X4 "!
F3

where I(t) and F1 are as in Example 3.6, and F2(x1,
x2) ¼ 14x1x2/[(1þ x1)(1þ x2)], F3(x3, x4) ¼ 14x3x4/[(1þ
x3)(1þ x4)]. Using Matlab to perform a Monte Carlo simu-
lation we computed the means, variances and coefficient of
variation of the fluxes to be the following

F1(y) F2(x1, x2) F3(x3, x4)

Mean 10 10 10

Variance 2 0.72 0.49

CV 0.14 0.085 0.07

As guaranteed by Theorem 3.2 the variances and coeffi-
cients of variation of the fluxes decrease down the chain.

Example 3.8 (Species cannot be in more than one complex):
Consider the following MSC chain subjected to white
noise perturbations for which the species X1 appears in
two complexes (and so this system is not covered by
Theorem 3.2)

"!
I(t)

X1 þ X2 "!
F1

X3 "!
F2

X1 þ X4 "!
F3

where I(t) ¼ 10þ ud(x1, x2) dB(t) (with d ¼ 0.001), F1(x1,
x2) ¼ 2x1x2, F2(x3) ¼ x3 and F3(x1, x4) ¼ 5x1x4. We
performed a Monte Carlo simulation using Matlab to
compute

F1(x1, x2) F2(x3) F3(x1, x4)

Mean 10 10 10

Variance 4.16 0.45 1.71

CV 0.204 0.067 0.131

Note that Var(F3(x)) . Var(F2(x)) and CV(F3(x)) .
CV(F2(x)). Therefore the assumption in Theorem 3.2 that
each species is in precisely one complex is necessary.

4 Discussion

We have proved under a variety of different contexts that if
the input to a non-reversible biochemical reaction chain is
perturbed by a random process, then the variances and coef-
ficients of variation of the fluxes will decrease as one moves
down the chain. The assumptions made on the different
choices of perturbations and on the properties of the rate
functions were varied, and explicitly spelled out. Further,
much care was taken to state precisely what is meant by
‘fluctuations decrease down reaction chains.’ Owing to
this (necessary) mathematical detail, however, it is easy
for the over-riding point of the paper to be lost: considering
the out-of-equilibrium dynamics of a biochemical system
can be an important tool for understanding the dynamical
properties of that system.
A comparison of the results of this paper to metabolic

control analysis (MCA) [12, 13] sheds light on the import-
ance of considering out-of-equilibrium dynamics. The
control coefficient for the flux out of a reaction chain, F,
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in terms of the input, I, is

CF
I ¼ @F

@I
$ I
F

where the values are computed at equilibrium. However, at
equilibrium, F ¼ I. Therefore independent of the choice of
reaction kinetics or the length of the chain, CF

I ¼ 1. This
implies that changes in the output of a chain correspond
directly with changes to the input. However, by studying
the out-of-equilibrium dynamics, we have shown in this
paper that the fluctuations in a reaction chain will actually
decrease as one moves down a reaction chain and changes
to the output of a chain do not correspond directly with
changes to the input. The differing results are biologically
significant since it is tempting to speculate that this decrease
in fluctuations (and, hence, increase in stability) is one
reason long reaction chains may be evolutionarily advan-
tageous in cellular systems.
While all of the technical details of the proofs have been

relegated to the appendices, we would like to point out that
to prove the main results of this paper (with the exception of
Theorem 2.9) two things must be shown: (1) the existence
of a unique solution whose statistics are stationary for the
dynamics and (2) variances of a stationary solution decrease
down reaction chains. Typically, a stationary solution can
be proved to exist so long as the perturbations to the
system do not drive any solutions to infinity. Stability prop-
erties of the non-perturbed system can then be used to show
uniqueness of the stationary solution. The fact that the var-
iances decrease down reaction chains follows from standard
inequalities and the use of Lyapunov type functions.
Intuitively, however, the variances decrease down reaction
chains because the dynamics are always forcing the
output flux from a complex towards the input flux. That
is, the dynamics are constantly moving the system
towards a shifting equilibrium. There is, however, a
natural time delay in its ability to do so. Therefore the
output will always be lagging behind the input, which
leads to the decrease in variance.
There is still much work to be done in studying bio-

chemical reaction systems subjected to external pertur-
bations. A natural extension of this work and that of [2]
would be to attempt to analyse reaction systems with
more complicated geometries and more complicated kin-
etics (like product inhibition). The main technical issues
encountered in such a study would be: 1) the extremely
weak stability of many such systems [3, 14] would make
proving the existence of a stationary solution difficult and
2) it will be difficult to isolate the variances of particular
fluxes or concentrations within a complicated system.
While both of these problems are formidable in a theoretical
study such as in this paper, they become trivial in an in
silico study [5].
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7 Appendix A. Precise definition of the noise j
and the proofs

7.1 Assumptions on the noise j(t) needed for
existence

In addition to the standing assumptions that j(t) is stationary
with mean zero and finite variance, to prove the existence of
a stationary solution for (9), we need to assume that the dis-
tribution of j(t) is determined entirely by the past of j on
any interval of time (21, s] with s ' t. Intuitively, we
mean that given the value of j(s) for s [ (21, t] the distri-
bution on [t, T ] is uniquely determined for any T . t. This
must be done in a way such that if one first adds a segment
[t, T2 r] and then [T2 r, T ], the resulting distribution on
[t, T ] is the same as if one had added the segment [t, T ]
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in one step. For a discussion of some of the issues involved
if one does not make such an assumption, see [15] and sub-
sequent works by the author.
Let Cae((21, 0], R) denote the space of almost every

where continuous functions, f, endowed with the norm sup
j f(s)je2ajsj for some a . 0. Let Pt be a Markov semigroup
on Cae((21, 0], R) which is Feller, has an invariant
measure M, and such that for M-almost every
g0 [ Cae(("1, 0], R),Pt(g0, $ ) is concentrated on
elements gt [ Cae(("1, 0], R) with gt(s) ¼ g0(sþ t) for
s ' 2t. If gt, t % 0, is a realisation of the Markov chain
generated with Pt with g0 distributed as M, we define
j(s) ¼ gt(s2 t) for s ' t. This is well defined since our
assumptions on Pt make gs(r2 s) ¼ gt(r2 t) for
r ' min(s, t).
The dynamics of such a Pt can be understood as follows.

Given an initial history from 21 to 0, one adds on a
segment of length t, resulting in a trajectory from 21 to t.
After shifting this trajectory back by 2t, one again obtains
a trajectory from21 to 0. The distribution of this new trajec-
tory from 21 to 0 is given by Pt. The conditions above
simply insure that the trajectory from 21 to 2t coincide
with the initial trajectory from 21 to zero. If j(t) is a
Markov process, then it can be constructed as earlier and
hence is an example of the type of noise we allow.

7.2 Proof of principal result on variances

Proof of Theorem 2.2: We consider the dynamics given by
(8). The proof when the dynamics is given by (9) is
identical.
Defining j1(t) ¼ F1(x

&
1(t))" I , the equations governing

x&1 and x&2 are

dx&1 ¼ (I " F1(x
&
1)) dt þ sud(x

&
1) dB(t) (14)

_x&2 ¼ F1(x
&
1)" F2(x

&
2) _¼ I " F2(x

&
2)þ j1 (15)

We claim that for any t, EF1(x
&
1(t)) ¼ EF2(x

&
2(t)) ¼ I .

Integrating (14), taking expected values, using that the dis-
tribution of x&(t) is stationary and noting that
s
Ð t
0 ud(x

&
1(s))dBs is an L2-martingale gives

Ex&1(t) ¼ Ex&1(0)þ I " EF1(x
&
1(t))

% &
t

By the stationarity of the system, Ex&1(t) ¼ Ex&1(0), so
E F1(x

&
1(t))" I

% &
¼ 0 as claimed. A similar argument

which uses EF1(x
&
1(t)) ¼ I (and, hence, Ej1(t) ¼ 0) shows

that EF2(x
&
2(t)) ¼ I . Therefore in order to show that

Var(F2(x
&
2(t))) , Var(F1(x

&
1(t))), we need

E F2(x
&
2(t))" I

% &2
, Ej1(t)

2.

Let G1(x) ¼ 2
Ð x
0 (F2(y)" I) dy. Then

d

dt
G1(x

&
2(t)) ¼ G0

1(x
&
2(t))_x

&
2(t)

¼ 2(F2(x
&
2(t))" I)(I " F2(x

&
2(t))þ j1(t))

¼ "2(F2(x
&
2(t))" I)2 þ 2(F2(x

&
2(t))" I)j1(t)

(16)

Pick !t . 0 arbitrarily. Integrating (16) up to time !t and
taking expected values gives

EG1(x
&
2(!t))" EG1(x

&
2(0)) ¼"2

ð!t

0

E(F2(x
&
2(s))" I)2 ds

þ 2

ð!t

0

E (F2(x
&
2(s))" I)j1(s)

' (
ds

(17)

Using that x&2(t) is stationary, differentiation of (17) together
with the inequality 2ab ' a2 þ b2 gives

0 ¼ "2E(F2(x
&
2(!t))" I)2 þ 2E (F2(x

&
2(!t))" I)j1(!t)

' (

' "E(F2(x
&
2(!t))" I)2 þ Ej1(!t)

2 (18)

We claim, however, that the inequality in (18) is strict. To
see why, we suppose, in order to find a contradiction, that
2E (F2(x

&
2(!t))" I)j1(!t)

' (
¼ E(F2(x

&
2(!t))" I)2 þ Ej1(!t)

2:Then
F2(x

&
2(!t))" I ¼ j1(!t) with probability one. However, this

implies F2(x
&
2(!t)) ¼ F1(x

&
1(!t)) with probability one. Because

!t was arbitrary, we conclude that with probability one
F2(x

&
2(t)) ¼ F1(x

&
1(t)) for all t in some countably dense

subset of R. However, by the continuity of the functions
involved, this implies that with probability one F2(x

&
2(t)) ¼

F1(x
&
1(t)) for all t [ R. Thus, _x&2(t) ¼ 0 for all time and

x&2(t) is a constant. But, F2(x
&
2(t)) ; F1(x

&
1(t)) and so x&1(t) is

also a constant. However, for any t . 0, P{x&1(s) ¼
const : s [ [0, t]} ¼ 0. Thus, the inequality in (18) is
strict, which was the desired result of the Theorem.
Therefore the result is shown for the first step in the chain.
To complete the proof, one simply repeats the argument
down the chain. A

7.3 Existence and uniqueness of stationary
solutions and invariant measures

The proofs of Theorems 2.6, 2.7 and 2.8 have the same
overall structure. We use the assumptions over the
dynamics to obtain a uniform in time bound on some stat-
istic of the concentration vector which can be used to
prove that a sequence of time averages is tight. By
extracting a convergent sub-sequence we can prove the
existence of at least one invariant measure for the white
in time setting. For the stationary forcing, we must
work on the space to trajectories stretching back to nega-
tive infinity and prove the existence of a stationary
measure on that space. We then prove that the invariant
measure or stationary solution is unique and that the stat-
istics of any solution converge to it under the dynamics of
the system.
To prove the needed tightness for Theorem 2.6, we make

use of the following Lyapunov function

V (x) ¼
Xn

i¼1

Vi

2

Xi

j¼1

xj " !xj

) *" #2

(19)

where the Vi’s are positive numbers yet to be determined
and the !xj are defined as the solution to Fj(!xj) ¼ I (i.e.,
they are the equilibrium values of the unperturbed
problem). As an example, for a chain with n ¼ 2 we have

V (x) ¼ V1

2
(x1 " !x1)

2 þ V2

2
x1 " !x1
% &

þ (x2 " !x2)
' (2

We begin by proving a fact that, while technical, is the crux
of the proof of Theorem 2.6.
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Lemma 7.1: Let A be the generator of the SDEs (8). Then
there are positive numbers V1,V2, . . . ,Vn and positive
numbers c, k such that if V(x) is defined by (19) then
AV (x) ' c" kjxj.

Proof: For all k ' n

@V

@xk
¼ @

@xk

Xn

i¼1

Vi

2

Xi

j¼1

xj " !xj

) *" #2

¼
Xn

i¼k

Vi

Xi

j¼1

xj " !xj

) *" #

(20)

Let F0 ¼ I . Using (20), it can be shown that

Xn

k¼1

@V

@xk
(Fk"1 " Fk) ¼

Xn

j¼1

(xj " !xj)
Xn

i¼j

Vi(I " Fi)

 !

Therefore

AV (x) ¼ 1

2
s2ud(x1)

2 @2

@x21
V (x)þ

Xn

k¼1

@V

@xk
(Fk"1 " Fk)

¼ 1

2
s2ud(x1)

2
Xn

i¼1

Vi

 !

þ
Xn

j¼1

(xj " !xj)
Xn

i¼j

Vi(I " Fi)

 !

_¼ 1

2
s2ud(x1)

2
Xn

i¼1

Vi

 !

þ
Xn

j¼1

sj(x)

where the last equality is a definition. We now choose the
Vj’s recursively. Let Vn ¼ 1. Because lim

x!1
Fn(x) . I , sn is

bounded by

sn(x) ¼ (xn " !xn)(I " Fn(xn)) , cn " knxn

where cn and kn are some positive constants. Then sn"1 is
given by

sn"1(x) ¼ (xn"1 " !xn"1)(Vn"1(I " Fn"1(xn"1))

þ (I " Fn(xn)))

Fn(xn) % 0, so if xn"1 % !xn"1, then

sn"1(x) ' (xn"1 " !xn"1) Vn"1(I " Fn"1(xn"1))þ I
% &

We may therefore choose Vn"1 to be large enough so that
there are positive constants cn"1 and kn"1 such that

sn"1(x) , cn"1 " kn"1xn"1

Continuing up the chain, we consider sj for j , n. When
xj . !xj we have

sj(x) ¼ (xj " !xj) Vj(I " Fj(xj))þ
Xn

i¼jþ1

Vi(I " Fi)

 !

' (xj " !xj) Vj(I " Fj(xj))þ I
Xn

i¼jþ1

Vi

 !

Since Vjþ1, . . . ,Vn have already been defined, we may
choose Vj so large that there are positive constants cj and

kj such that

sj , cj " kjxj

Setting

c ¼ 1

2
s2
Xn

i¼1

Vi þ
Xn

i¼1

ci

we now have that for some k

AV (x) ' c"
Xn

i¼1

kixi ' c" kjxj

which was the desired result. A

Proof of Theorem 2.6: The proof has two parts. First, we
will use Lemma 7.1 and Prohorov’s theorem [16, p. 59] to
show that there exists a measure which is invariant to the
stochastic flow generated by (8). We will then prove that
this invariant measure is unique and that all distributions
converge to it under the flow of the SDE (8).

Part 1. Let V (x) be defined by (19) where V1,V2, . . . ,Vn are
given by Lemma 7.1. Then, if k, c . 0 are the constants
given in the conclusion of Lemma 7.1

dV (x) ¼ AV (x) dt þ dM(t) ' c" kjxjð Þ dt þ dM(t)

where M(t) is some L2-martingale. Integrating gives

V (x(t)) ' V (x(0))þ ct " k

ðt

0

jx(s)j dsþM(t)"M(0)

where x(0) is some fixed value. Rearranging terms, taking
expected values and using the fact that EM(t) ¼ EM(0)
then yields

1

t

ðt

0

Ejx(s)j ds ' c

k
þ V (x(0))

kt

Thus for any R . 0 Chebychev’s inequality gives

1

t

ðt

0

P{jx(s)j . R} ds ' c

k

1

R
þ V (x(0))

kt

1

R
(21)

where, again, the initial condition x(0) is fixed. The right
side of (21) converges to zero uniformly in t % 1 as
R ! 1. Therefore the sequence of measures on R defined
by

nn(A) _¼
1

tn

ðtn

0

P{x(s) [ A} ds

where tn ! 1 as n ! 1 and A , Rn, is tight [16, p. 59].
By Prohorov’s theorem, nn is relatively compact and so
there exists a subsequence nnk and a measure m, such that
nnk ! m, where the convergence is weak convergence.
Thus, for all A , R

m(A) ¼ lim
k!1

1

tnk

ðtnk
0

P{x(s) [ A} ds

For A , Rn, let fT (A) ¼ {x(T ): x(0) [ A}. To show that m
is invariant to the flow of (8) we need to demonstrate that for
all T . 0 and A , R, m(f"1

T )(A) ¼ m(A), where

m(f"1
T )(A) _¼m(x : fT (x) [ A). Note that, by definition,

m(x: fT (x) [ A) ¼ limk!1
1

tnk

ðtnk
0

P{x(sþ T ) [ A} ds.

Using a change of variable, we then make the following
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computation for any T . 0 and A , R

m(f"1
T )(A) ¼ lim

k!1
1

tnk

ðtnk
0

P{x(sþ T ) [ A} ds

¼ lim
k!1

1

tnk

ðtnk
0

P{x(s) [ A} ds

þ lim
k!1

1

tnk

ðtnkþT

tnk

P{x(s) [ A} ds

" lim
k!1

1

tnk

ðT

0

P{x(s) [ A} ds

¼ m(A)þ lim
k!1

1

tnk

ðtnkþT

tnk

P{x(s) [ A} ds

"

"
ðT

0

P{x(s) [ A} ds

+

However

lim
k!1

1

tnk

ðtnkþT

tnk

P{x(s) [ A} ds

",,,,,

"
ðT

0

P{x(s) [ A}ds

+,,,, ' lim
k!1

2T

tnk
¼ 0

and so m(f"1
T )(A) ¼ m(A). Thus, m is invariant under the

stochastic flow generated by (8).

Part 2. The proof that the invariant measure is unique is not
completely straightforward. The noise enters only one
species, hence the diffusion is not uniformly elliptic (so
arguments such as in [17] do not suffice). The proof we
now sketch follows a rather standard line of argument.
We refer the reader to [18, 19, 20] for the missing details.
The proof has three elements. First, one shows that the gen-
erator of the diffusion satisfies Höormander’s ‘sum of
squares’ theorem and hence is hypoelliptic. This ensures
that the Markov transition density pt(x, y) is smooth in x
and y and hence is a Strong Feller process. This gives the
local smoothing needed to ensure that the invariant
measure found above is unique. The structure of (8) and
the fact that the F 0

i do not vanish ensures that the span of
the needed Lie brackets is of full dimension. Hence
Höormander’s theorem holds.
Secondly, we need to provide the global information

which ensures open set irreducibility (the fact that processes
starting from different initial points have nonzero probability
of entering a small neighborhood of each other). The
Lyapunov function given by (19) shows that the processes
return to a bounded ball B about the origin eventually.
Since there is a globally attracting fix point, if the noise is
small for long enough all of the points of B will enter an
arbitrarily small neighbourhood of the fixed point.
Finally, with the above facts in hand, the uniqueness and

convergence result follows from standard arguments [18,
20–22]. A

Proof of Theorem 2.7: As in the proof of Theorem 2.6, the
proof is split into two parts. In the first we prove the exist-
ence of a stationary solution x&(t) for the dynamics (9). In
the second we show that the if x(t) and y(t) are solutions
driven by the same noise, then y(t) ! x(t) pathwise.
Hence, we conclude there can only be one stationary sol-
ution since any two would converge to each other over time.

Part 1. Unlike the previous example, the process x(t) alone
is not a Markov process. However, if we include the entire
history of j then the system does become Markovian. More
precisely, from the assumptions in Section 7.1 we know that
j(s) ¼ gt(s" t) for s ' t where gt is a Feller Markov
process on Cae(("1, 0],R) with semi-group Pt and with
g0 distributed as the invariant measure M. Then the pair
(x(t),gt) is a Markov process on the expanded state space
Rn * Cae(("1, 0],R). Let P̂t denote the Markov transition
semi-group of this system and px and pg the projection onto
the x and g coordinates, respectively. Since we start gt from
an invariant measure for its dynamics, we know that the
statistics of gt are constant in time equal to M for all t
and hence is tight.
Let x(0) be an arbitrary initial condition for x(t). Defining

the measure

Qt($) ¼
1

t

ðt

0

ð
P̂s(x

(0), g, $ )M(dg) ds

we need only shows that Qtp
"1
x is tight to conclude that Qt

is tight since Qtp
"1
g ¼ M is independent for t. We will do

this coordinate by coordinate. Consider the equation gov-
erning x1ðtÞ

_x1(t) ¼ I " F1(x1(t))þ j(t) (22)

Integrating (22) gives

x1(t) ¼ x(0)þ It "
ðt

0

F1(x1(s)) dsþ
ðt

0

j(s) ds (23)

' x(0)þ It "
ðt

0

F1(x1(s))1{jx1(s)j.R} dsþ
ðt

0

j(s) ds

' x(0)þ It " F1(R)

ðt

0

1{jx1(s)j.R} dsþ
ðt

0

j(s) ds

Taking expected values and rearranging terms gives

1

t

ðt

0

P{jx1(s)j . R} ds ' I

F1(R)
þ Ex1(0)

F1(R)
(24)

Note that rearranging (23) and taking expected values gives
us the additional bound

1

t

ðt

0

EF1(x1(s)) ds ' I þ Ex1(0)

t
(25)

Continuing down the chain we consider x2ðtÞ

_x2(t) ¼ F1(x1(t))" F2(x2(t))

Integrating gives

x2(t) ¼ x2(0)þ
ðt

0

F1(x1(s)) ds"
ðt

0

F2(x2(s)) ds

' x2(0)þ
ðt

0

F1(x1(s)) ds" F2(R)

ðt

0

1{jx2(s)j.R} ds

(26)

Rearranging terms as before, taking expected values and
using (25) gives

1

t

ðt

0

P{jx2(s)j . R} ds ' I

F2(R)
þ Ex1(0)

tF2(R)
þ Ex2(0)

tF2(R)

Further, rearranging (26) and using (25) gives

1

t

ðt

0

EF2(x2(s)) ds ' I þ Ex1(0)

t
þ Ex2(0)

t
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We may continue down the chain in a similar manner and
conclude that there are positive constants c1, c2, . . . , cn
such that for all t % 1

Qtp
"1
x ({y : sup

i
jyij . R}) ¼ 1

t

ðt

0

P{ sup
i
jxi(s)j . R} ds

,
X

i

1

t

ðt

0

P{jxi(s)j . R} ds

,
X

i

ci
Fi(R)

(27)

Because each Fi is monotone and unbounded, the right side
of inequality (27) converges to zero uniformly in t as
R ! 1. Therefore just as in the proof of Theorem 2.6,
we may invoke Prohorov’s Theorem to guarantee the exist-
ence of a measure m on Rn * Cae(("1, 0],R) that is invar-
iant to the dynamics induced by P̂t. By Kolmogormov’s
extension theorem we can use this measure to define a
measure on pairs of noise j and solution trajectories x start-
ing at 21 and continuing to 1. The projection of this
measure onto the solution coordinate produces a stationary
solution for the x(t) dynamics. One should really view this
stationary solution x& along with its noise trajectory j
which was constructed along with it.

Part 2. Let x&(t) ¼ x&(t, j) be the stationary solution and
matching noise trajectory found above. Let y(t) be the sol-
ution starting from an arbitrary initial condition y(0) using
the same noise j(t).
Consider x&1(t) and y1(t). If x&1(0) ¼ y1(0), then

x&1(t) ¼ y1(t) for all time by uniqueness of solutions.
Suppose that x&1(0) . y1(0) (if x

&
1(0) , y1(0) there is a sym-

metric argument). Then, x&1(t) . y1(t) for all time.
Differentiating x&1(t)" y1(t) gives

d

dt
(x&1(t)" y1(t)) ¼ "(F1(x

&
1(t))" F1( y1(t)))

¼ "(x&1(t)" y1(t))

* F1(x
&
1(t))" F1( y1(t))

x&1(t)" y1(t)

Defining

H1(t) ¼
F1(x

&
1(t))" F1( y1(t))

x&1(t)" y1(t)
(28)

we have that

x&1(t)" y1(t) ¼ (x&1(0)" y1(0))e
"
Ð t

0
H1(s) ds

By the uniform bound given in (27), we know that both x&1(t)
and y1(t) spend a positive fraction of time in a compact
set on which H1(t) . d1 . 0 for some d1 . 0 (since H1 is
an approximation to the derivative of F1). Thus,
x&1(t)" y1(t) ! 0, as t ! 1.
We next consider x&2(t) and y2(t). Suppose that

x&2(0) , y2(0). Let t2 be the first time x&2(t) ¼ y2(t). Then,
up until time t2

d

dt
( y2(t)" x&2(t)) ¼ "(F1(x

&
1)" F1( y1))

" (F2( y2(t))" F2(x
&
2(t)))

But, x&1 % y1 so (F1(x
&
1)" F1( y1)) % 0 and

d

dt
( y2(t)" x&2(t)) ' "(F2( y2(t))" F2(x

&
2(t)))

¼ "( y2(t)" x&2(t))

* F2( y2(t))" F2(x
&
2(t))

y2(t)" x&2(t)

Defining H2(t) as we did H1(t) we may conclude from the
above that up until time t2

y2(t)" x&2(t) , (y2(0)" x&2(0))e
"
Ð t

0
H2(r) dr

Therefore if t2 ¼ 1, then, as in the previous case, we may
use the above equation and the bound (27) to conclude that
jx&2(t)" y2(t)j ! 0, which is the desired result.
If t2 is finite, then for all time after t2, x

&
2(t) % y2(t). To

see this note that if x&2(t) ¼ y2(t), then

d

dt
(x&2(t)" y2(t)) ¼ F1(x

&
1)" F1( y1) % 0

where the inequality follows since x&1 % y1. Thus, we con-
sider times past t2 and redefine our initial condition to be
the values x(t2) and y(t2).
We note

d

dt
(x&2(t)" y2(t)) ¼ " F2(x

&
2)" F2( y2)

% &
þ F1(x

&
1)" F1( y1)

¼ "(x&2 " y2)
F2(x

&
2)" F2( y2)

x&2 " y2

þ F1(x
&
1)" F1( y1) (29)

To gain control over the term F1(x
&
1)" F1( y1) we use the

equations governing x1
& and y1

x&1(t)" y1(t) ¼ x&1(0)" y1(0)þ
ðt

0

ðF1(x
&
1(x))" F1(y1(s))Þ ds

(30)

Rearranging and using that x&1 % y1, we have
ðt

0

F1(x
&
1(s))" F1(y1(s)) ds ' x&1(0)" y1(0) (31)

Thus, if h1(t) ¼
Ð t
0 F1(x

&
1(s))" F1( y1(s)) ds, we have that

F1(x
&
1(t))" F1( y1(t)) ¼ h0

1(t), and that for all t, h1(t) ,
x&1(0)" y1(0). Therefore

d

dt
(x&2(t)" y2(t)) ¼ "(x&2 " y2)H2(t)þ h0

1(t)

and integrating by parts gives

x&2(t)" y2(t) ¼ (x&2(0)" y2(0)e
"
Ð t

0
H2(r) dr

þ
ðt

0

h1(s)e
"
Ð t

s
H2(r)dr ds

¼ (x&2(0)" y2(0)e
"
Ð t

0
H2(s) ds

þ h1(t)" h1(0)e
"
Ð t

0
H2(r) dr

"
ðt

0

h1(s)e
"
Ð t

s
H2(r) drH2(s) ds

The last two terms are negative and, as before, the
exponential terms go to zero as t ! 1. So,
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limt!1 jx&2(t)" y2(t)j ' h1(t) ' x&1(0)" y1(0). However,
we can re-scale time (do the above analysis on the interval
[t/2, t] instead of [0, t]) to conclude that limt!1 jx&2(t)"
y2(t)j ' limt!1 h1(t) ' limt!1 (x&1(t=2)" y1(t=2)) ¼ 0.
Now we continue down the chain in a similar manner and

consider x3 and y3. Without loss of generality we may
assume x&2(t) . y2(t) for all time. If x3(t) , y3(t) for all
time, we do the same argument as above to conclude that
jx3(t)" y3(t)j ! 0, as t ! 1. Thus, we assume
x3(t) . y3(t) for all time. The argument is the same as
that above, except we should now have control over
F2(x

&
2(s))" F2(y2(s)). We have

x&2(t)" y2(t) ¼ x&2(0)" y2(0)

þ
ðt

0

F1(x
&
1(s))" F1(y1(s))

% &
ds

"
ðt

0

F2(x
&
2(s))" F2(y2(s))

% &
ds

Rearranging gives

ðt

0

F2(x
&
2(s))" F2(y2(s))

% &
ds ¼ x&2(0)" y2(0)þ h1(t)

We may define the above integral to be h2 (t) and perform
the same analysis as before. In this way, we continue down
the chain and conclude that limt!1 jx(t)" y(t)j ¼ 0, which
was the desired result. A

Proof of Theorem 2.8: Let N1
1 ¼ F"1

1 (I þM þ 1), where
1 , K "M . If x1(t) . N1

1 , then by the monotonicity of F1

we have

_x1(t) ¼ I " F(x1(t))þ j(t)

' I " F(N 1
1 )þ j(t)

¼ "M " 1þ j(t)

, "1

Therefore independent of initial conditions, x1ðtÞ ' N 1
1

for all t large enough. However, 1 was arbitrary, so
lim supt!1 x1(t) ' F"1

1 (I þM). Continuing in this manner
down the chain shows lim supt!1 xi(t) ' F"1

i (I þM), for
each i. Thus, for large t, there exists L . 0 such that
Ejx(t)j , L. By Chebychev’s inequality we then have

1

t

ðt

0

P{jx1(s)j . R}ds ' L

R

which converges to zero uniformly in t as R ! 1. As in
the proof of Theorem 2.7, we need to consider the
Markov process on the extended state space Rn*
Cae(("1, 0],R). As before, we obtain tightness by using
the above estimates on the marginal of this measure in the
x(t) variable since the j (t) variable is stationary and
hence already tight. We may again use Prohorov’s
Theorem to guarantee the existence of an invariant
measure. The proof of uniqueness is the same is in the
proof of Theorem 2.7. A

7.4 Proof of Theorem 2.9

We begin by showing that limt!1 x1(t)=t ¼ 0. Consider the
dynamics governing x1 where j (t) satisfies (11)

_x1 ¼ I " F1(x1)þ j(t) (32)

Let !x1 ¼ F"1(I). Then

d

dt
(x1(t)" !x1) ¼ I " F1(x1(t))þ j(t)

¼ " I " F1(x1(t))

!x1 " x1(t)
(x1(t)" !x1)þ j(t)

Setting H(t) ¼ (I " F1(x1(t)))=(!x1 " x1(t)) . 0 (which is
well defined since F1 is assumed differentiable and is posi-
tive by the monotonicity of F1) and using Duhamel’s
formula gives us

(x1(t)" !x1) ¼ (x1(0)" !x1)e
"
Ð t

0
H(s) ds þ

ðt

0

e
"
Ð t

s
H (r) drj(s) ds

Integrating by parts gives

(x1(t)" !x1) ¼ (x1(0)" !x1)e
"
Ð t

0
H(s) ds þ

ðt

0

j(s) ds

þ
ðt

0

e
"
Ð t

s
H(r) dr

H(s)

ðs

0

j(r)dr

" #
ds

By the positivity of H(t) and property (11), we then have

lim
t!1

x1(t)

t
¼ lim

t!1
1

t

ðt

0

e
"
Ð t

s
H (r)dr

H(s)

ðs

0

j(r) dr

" #
ds

Let 1 . 0. There exists an S . 0 such that s . S implies
jð1=sÞ

Ð s
0 j(r) drj , 1=2. There exists a T ¼ T (s) . 0 such

that t . T implies sups,S jð1=tÞ
Ð s
0 j(r) drj , 1=2.

Therefore, if t . max {S, T} we have that

1

t

ðt

0

e
"
Ð t

s
H(r) dr

,,,, H(s)

ðs

0

j(r) dr

" #
ds

,,,, '
ðt

0

e
"
Ð t

s
H(r) dr

H(s)

* 1

t

ðs

0

j(r) dr

,,,,

,,,,(1{s'S} þ 1{s.S}) ds

' 1

ðt

0

e
"
Ð t

s
H(r) dr

H(s) ds ' 1

Thus, limt!1 x1(t)=t ¼ 0.
Integrating (32), dividing by t and taking the limit as

t ! 1 now gives us

lim
t!1

1

t

ðt

0

F(x(s)) ds ¼ I ,

which proves Part 1 of Theorem 2.9 for x1.
Let G(x) ¼ 2

Ð x
0 (F1(y)" I) dy, which, non-

coincidentally, is the same function used in the proof of
Theorem 2. We have

d

dt
G(x1(t)) ¼ "2(F1(x1(t))" I)2 þ 2(F1(x1(t))" I)j(t)

Integrating and using the inequality ab ' (1=2)a2þ (1=2)b2

gives

G(x1(t)) ' G(x1(0))"
ðt

0

(F1(x1(s))" I)2dsþ
ðt

0

j(s)2 ds

Therefore, Part 2 of Theorem 2.9 will be shown for x1 if
lim inf t!1 G(x1(t))=t % 0. We have
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lim inf
t!1

1

t
G(x1(t)) ¼ 2 lim inf

t!1
1

t

ðx1(t)

0

(F1( y)" I)

* (1{y.!x1}
þ 1{y'!x1}

) dy

% 2 lim inf
t!1

1

t

ðx1(t)

0

(F1(y)" I)1{y'!x1}
dy

% "2I lim
t!1

x1(t)

t
¼ 0

so Part 2 is shown for x1. Note that Parts 1 and 2 of Theorem
2.9 show that F1(x1(t))" I satisfy condition (11). Therefore
to prove Parts 1, 2 and 3 for all xi, one simply continues
down the chain considering Fi(xi(t)) as the external pertur-
bation of xiþ1.

7.5 Proofs of Section 3

The proofs of Theorems 3.2, 3.3, 3.4 and 3.5 can be handled
simultaneously.

Proof of Theorems 3.2, 3.3, 3.4 and 3.5: The key to each
proof is the recognition that the species in each complex
satisfy constant multiples of the same (stochastic) differen-
tial equations. Mathematically, this means these species can
by grouped and treated as a single species with a redefined
kinetics. This reduces us to the case previously studied.
More explicitly, there are constants cijk and dijk such that
x
j
i (t) ¼ dijkx

k
i (t)þ cijk for all t. Thus, the species of each

complex can be solved from knowledge of just one
species from that complex. Further, a monotone increase
in one translates to a monotone increase in the others.
Choosing one species, yi, from each complex, we may rede-
fine the Fi’s (and ud in the white noise case) appropriately so
that the vector function y(t) satisfies either (8) or (9) with
the Fi’s satisfying Assumption 2.1. Therefore applying the
theorems of Section 2 completes the proof. A

8 Processes used in examples 2.4 and 2.5

In Example 2.4, j(t) is described as a modified Ornstein–
Uhlenbeck process such that "10 ' j(t). More precisely,
j(t) is governed by the following dynamics

dj(t) ¼ "j(t) dt þ 4dB(t) if j(t) . "10
"j(t) dt if j(t) ' "10

-

This dynamics ensures that if j(0) . "10 then j(t) % "10
for all t.
In Example 2.5, j(t) is built from the Ornstein–

Uhlenbeck equation dj(t) ¼ "j(t) dt þ 3dB(t), with the
added condition that if j(t) ¼ "4 or j(t) ¼ 4, then
dj(t) ¼ "j(t) dt. More precisely, j(t) is governed by the fol-
lowing dynamics

dj(t) ¼
"j(t) dt if j(t) dt % 4
"j(t) dt þ 3dB(t) if "4 , j(t) , 4
"j(t) dt if j(t) dt ' "4

8
<

:
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