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ABSTRACT

Several metabolites in the folate and methionine cycles influence the activities of distant
enzymes involved in one-carbon metabolism. Many hypotheses have been advanced about
the functional impact of these long-range interactions. Using both steady-state and fluctu-
ation analyses of a mathematical model of methionine metabolism, we investigate the
biochemical basis for several of these hypotheses. We show that the long-range interactions
provide remarkable stabilization of the DNA methylation rate in the face of large fluctu-
ations in methionine input. In particular, they enable the system to maintain methylation
in the face of low and exiremely low protein input. These interactions may therefore have
evolved primarily to stabilize DNA methylation under conditions of methionine starvation.
In silico experimentation allows us o evaluate the independent effects of various combinations
of the long-range interactions, and thereby propose a plausible evolutionary scenario.

INTRODUCTION

S-Adenosylmethionine (SAM) is the universal methyl donor for a broad range of
methyltransferase reactions. Among the most important of these is the methyltransferase
reaction in which cytosines at CpG sites on DNA become methylated. DNA methylation
is a critical factor in the control of gene expression and both hyper- and hypo-methylation
have been implicated in the inappropriate regulation of proto-oncogenes and tumor-suppressor
genes, and have been associated with the development of various cancers.!? Therefore,
understanding the regulatory mechanisms that control DNA methylation is important for
understanding normal cell function, gene expression, and neoplastic transformation.
DNA methylation depends on the availability of methyl groups provided by the folate and
methionine cycles, the control of the DNA methyltransferase (DNMT) reaction, and the
availability of cytosine substrates that is controlled by histones and other DNA-binding
proteins. In the present paper we are solely concerned with the first two mechanisms, and
so assume that the availability of methylation sites is constant.

The level of SAM and the velocity of the DNA methyltransferase reaction depend on
the properties of both the methionine and folate cycles. These metabolic cycles in turn
depend on the dietary intake of certain nutrients (methionine, choline, betaine) and vitamins
(B,,, folate, B;) and are affected by polymorphisms in the genes for enzymes of the
methionine and folate cycles.® Because defects in folate and methionine metabolism are
associated with a large number of serious disorders (several types of cancer,” !0 cardiovas-
cular disease,!'"13 neural tube defects'4 and neurodegenerative diseases!>-10), the genes
and enzymes of these cycles have been well studied.

One of the most interesting aspects of the biochemistry of these cycles is that some
substrates have excitatory or inhibitory allosteric effects on distant enzymes in the reaction
network: SAM inhibits MTHFR and BHMT and activates CBS and 5SmTHF inhibits
GNMT (acronyms for enzymes and substrates are defined in the caption of Fig. 1). It is
believed that these “long-range interactions” play an important role in regulating the
dynamic properties of the system.>* Using mathematical models based on established
enzyme kinetics, we show that both the long-range interactions and the existence of the
GNMT reaction play important and independent roles in stabilizing the methylation rate
in the face of large fluctuations in methionine input. We show that this regulation is
particularly important under conditions of methionine starvation. Because we can quantify
the relative improvement in the stabilization of methylation that results from various
combinations of these long-range interactions, we are able to propose an evolutionary
scenario.
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METHODS

The mathematical model used for the present study is
described in the Appendix.

RESULTS

Since our purpose is to study the effects of the long-
range interactions we begin by examining their effects on
the steady-state concentrations of the metabolites. Figure 2
shows the steady-state values of [MET], [SAM], [SAH]
and [HCY] as functions of the rate of methionine input
with all four long-range interactions present (regulated)
and absent (unregulated). It is evident that in the regulat-
ed cycle the metabolite levels are relatively insensitive to
methionine input. By contrast, in the unregulated cycle the
metabolites, in particular methionine and SAM, vary sub-
stantially as methionine input changes. Thus, we are able
to establish that one important effect of the long-range
interactions is to stabilize metabolite levels.

It has long been thought that the ratio [SAM]/[SAH]
has important regulatory consequences40 because SAM is
the substrate for the methylation reactions, which are all
inhibited by the product, SAH.?® Figure 3 shows that in
the fully regulated case, the [SAM]/[SAH] ratio varies only
2-fold as methionine input varies 13-fold while, in the
unregulated case, the ratio varies 50-fold. The fact that the
relationship between methionine input and the [SAM]/
[SAH] ratio is nearly linear in the regulated case suggests
that [SAM]/[SAH] is a good biomarker for methionine
input. The [SAM]/[SAH] ratio is often taken as an indicator
of “methylation capacity.” Since the [SAM]/[SAH] ratio
(Fig. 3) and the methylation rate (Fig. 4) are both monotone
increasing approximately linear functions of methionine
input in the regulated case, they are certainly well correlated.

Figure 2 shows that even in the fully regulated case, the
steady- state value of SAM varies dramatically with
methionine input (the methionine concentration, by con-
trast, is relatively stable). Since SAM supplies the methyl
groups for the methylation reactions, one might expect
that the DNA methylation reaction would be sensitive to
methionine input. Contrary to this expectation, in the
fully regulated case, the steady-state flux through the
DNMT reaction is strikingly stable as methionine input
decreases (Fig. 4, green curve). If, however, all the
long-range interactions are removed, the flux through the
DNMT reaction becomes extremely sensitive to methion-
ine input (Fig. 4, red curve) and drops precipitously as
methionine input declines. Thus, the long-range interac-
tions effectively stabilize the methylation rate, particularly
under conditions of methionine starvation. The underly-
ing reason that the effect is largest at low METin is that the
regulations of CBS, MTHFR, and GNMT have their
strongest influence at low SAM concentrations (see the for-
mulas in Appendix) that correspond to low methionine
inputs. To see how strong this effect is, note that as methio-
nine input drops from 100 uM/hr to 10 uM/hr, [SAM]
drops from 66 UM to 13 UM but the methylation rate
drops only from 150 uM/hr to 127 uM/hr. By contrast, at
moderate and high methionine inputs the long-range
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Figure 1. Long-range interactions of the methionine cycle. Substrates of the methionine
cycle are in green boxes and those of the folate cycle in pink. Enzymes are in blue
ellipses. Long-range interactions are shown in red; arrow indicates excitation and bars
inhibition. The abbreviations used are: THF, tetrahydrofolate; SAM, S-adenosylmethio-
nine; SAH, S-Adenosylhomocysteine; 5mTHF, 5-methyltetrahydrofolate; 5,10-CH,-THF,
5,10-methylenetetrahydrofolate; SAHH, S-Adenosylhomocysteine hydrolase; BHMT,
Betaine:homocysteine methyliransferase; CBS, Cystathionine B-synthase; DNMT, DNA-
methyltransferase; GNMT, Glycine N-methyltransferase; MAT, Methionine adenosyl-
transferase; METin, rate of methionine input; MS, Methionine synthase; MTHFR, 5,10-
Methylenetetrahydrofolate reductase.
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Figure 2. The steady-state concentrations MET, SAM, SAH and HCY as METin varies in
the presence (green curves) and absence (red curves) of long-range inferactions. The
long-range interactions stabilize metabolite concentrations.
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Figure 3. The [SAM]/[SAH] ratio as methionine input varies in the presence
(green curve) and absence (red curve) of long-range interactions. The long-
range interactions reduce the sensitivity of [SAM] to high methionine inputs
and stabilize the [SAM]/[SAH] ratio.

Table T Values for r for the regulated and unregulated
methionine cycle, and in the presence and
absence of the GNMT reaction

Regulated Unregulated

GNMT 0.0072 0.088

No GNMT 0.057 0.15

interactions have little effect on methylation rate. This is because the
K of the DNMT reaction is low and at moderate methionine input
the reaction is already running at near saturation.

The results in Figure 4 are steady-state results; that is, for each
fixed methionine input the system was allowed to relax to equilibrium
and then methylation reaction velocity was calculated. In reality,
methionine input never holds steady and, indeed, undergoes large
fluctuations. So, another way to assess the stability of the DNA
methylation rate is to determine its variation in response to such
large fluctuations. Instead of using a constant methionine input, we
used a continually varying random input with mean 100 uM/hr and
variance 900 (see Appendix), and calculated

variance of DNA methylation rate
variance of methionine input

The value of r tells us how much the methylation rate varies when
methionine input varies. By calculating r under different circum-
stances, we can assess the contribution of different mechanisms to
the stabilization of DNA methylation rate. The top row of Table 1
shows that when all four long-range regulations are in place, r =
0.0072, i.e., the rate of methylation is remarkably stable. Without
any long-range regulations, r = 0.088. It has been proposed by
Wagner et al.#*4 that the purpose of the GNMT reaction (in parallel
to DNA methylation) is to buffer the DNA methylation rate against
large swings in methionine input and [SAM]. We tested this experi-
mentally by turning off the GNMT reaction in our model and
recalculating. The bottom row of Table 1 shows that when all four
long-range regulations are in place, r = 0.057, and without

www.landesbioscience.com

160 -
£ 10}
=
= 120 +
Q9
© 100 f
=
g st
f_; ~a— Regulated
£ 60t =—0=—|Jnregulated
[1h)
E 40 L

20 :

0 20 40 60 80 100 120 140
Methionine input (uM/hr)

Figure 4. The rate of DNA methylation as a function of methionine input in
the presence (green curve) and absence (red curve) of long-range interac-
tions. The long-range interactions prevent the decline of methylation rate as
methionine input falls.

long-range regulations, r = 0.15. The results presented in Table 1
demonstrate conclusively that both the long- range regulations, and
the existence of the GNMT reaction, independently provide sub-
stantial stabilization of DNA methylation and both together
improve the stability approximately 21-fold.

It is reasonable to assume that these long-range interactions did
not all evolve simultaneously, but were added sequentially in such a
way that each new interaction substantially improved fitness, which
in this case we take to be correlated with the stabilization of the
methylation rate. Within the mathematical model we can add the
long-range interactions one at a time, and in any combination. For
each case we can recompute the dependence of methylation rate on
methionine input. We found that the regulation of BHMT has only
a small effect on methylation rate. The reasons are twofold. First, the
inhibition of BHMT only occurs at very high [SAM] (see the formu-
la for Vi in the Appendix) and therefore has little effect on
methylation rate for low or moderate METin. Second, because the
K, of the DNMT reaction is low, the reaction runs near saturation
at moderate to high levels of SAM and METin. Thus, the regulation
of BHMT probably did not evolve for stabilization of methylation.
The primary role of BHMT regulation appears to be the control of
the fraction of homocysteine that is transsulfurated as proposed by
Finkelstein and Martin,'®3% and as seen in reference 17.

We also found that the binding of 5mTHF to GNMT has only
a small stabilizing effect on the DNMT reaction, so it is unlikely
that the sole function of this long-range interaction is methylation
stabilization. Since GNMT is exceedingly abundant in liver,® the
binding has been thought to be a storage mechanism for folate*!-42
and a recent theoretical study>* has shown that this kind of allosteric
binding stabilizes the velocities in the folate cycle against fluctuations
in total folate. Thus, although the presence of the GNMT reaction
is important for stabilizing the DNMT reaction (see Table 1), the
long-range interaction of 5SmTHF with GNMT appears to be primar-
ily concerned with the regulation of the folate cycle.

We found that both stimulation of CBS by SAM and the inhibi-
tion of MTHFR by SAM had major stabilizing effects on the
DNMT rate. Figure 5 shows the effect of adding individually the
long-range regulations of CBS (pink curve) and of MTHEFR (blue

curve) and adding both (green curve), with the regulations of
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Figure 5. The rate of DNA methylation as a function of methionine input in
the presence of various combinations of the long-range interactions. Red curve:
the response in the absence of interactions. Pink curve: the effects of regulating
CBS by SAM. Blue curve: the effect of regulating MTHFR by SAM. Green
curve: the response in the presence of both CBS and MTHFR regulation.
MTHEFR regulation adds a substantial improvement in stabilizing the methy-
lation rate if CBS regulation is already present, whereas CBS regulation
adds only a marginal improvement if MTHFR regulation is already present.
If the primary function of these regulatory interactions by SAM is to stabilize
the methylation rate, then it is likely that CBS regulation evolved first.

GNMT and BHMT present in all three cases. Notice that if the
CBS regulation had evolved first and was then followed by the
MTHEFR regulation, then each would have added substantially to
stabilization. On the other hand, if the MTHFR regulation had
evolved first and was then followed by the CBS regulation, then the
second step would have provided only a minor benefit except for
very low methionine input. Thus, in our view, it is likely that the
CBS regulation evolved first followed by the regulation of MTHER.
It has been thought that the methylation rate is also sensitive to
the level of folate®3 because the concentration of SmTHF affects the
rate of remethylation of homocysteine to methionine via the MS
reaction (Fig. 1). We used our model to test this idea. The results in
Figure 6 show that high folate status is necessary to maintain the
methylation rate at low and very low methionine inputs, but has
only a minor effect when methionine input is moderate to high.

DISCUSSION

In this paper we have used a mathematical model to investigate
the functions of four long range allosteric interactions that have been
hypothesized to control the properties of the methionine cycle. We
found that the inhibition of BHMT by SAM has little effect on
methylation rate but controls of the fraction of homocysteine that is
transsulfurated as proposed by Finkelstein and Martin.!7>18:3% The
binding of GNMT and 5mTHEF also has only a small stabilizing
effect on methylation rate. The primary role of this binding is probably
to store folate*142 and to stabilize the velocities in the folate cycle against
fluctuations in total folate.?* We found that both the stimulation of
CBS by SAM and the inhibition of MTHFR by SAM dramatically
stabilize the methylation rate against fluctuations in methionine
input and [SAM]. We also found that, although regulation of
GNMT activity by SmTHEF has only a small effect on methylation
rate, the presence of the GNMT reaction strongly buffers the DNA
methylation rate against large swings in methionine input and [SAM].
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Figure 6. The effect of folate status on methylation rate. The normal and
50% levels of [SmTHF] are calculated by using formula (5) in the Appendix.
The long-range interactions buffer methylation rate against declines in folate
at low METin.

We recognize that no mathematical model can capture the full
complexity of a biological system. First, there are substantial
uncertainties and variations in measurements of kinetics because
experimental data come from a diversity of tissues, organisms, and
experimental procedures. Second, many of the substrates and enzymes
participate in other reactions that are not in this system.
Nevertheless, the model has allowed us to verify the effects of
mechanisms proposed in the experimental literature and to quantify
the relative magnitudes of the effects. Perhaps the greatest advantage
of an explicit mathematical model is that it allows us to perform in
silico experiments in which one or more regulations are removed,
experiments that would be difficult or impossible to do in vivo.

The stabilizing effect of the long-range interactions on the DNA
methylation rate can be explained as follows. As methionine input
falls, SAM concentration declines, which has two effects. First, the
decline in SAM reduces the activity of CBS so a larger fraction of
homocysteine is remethylated, which tends to maintain the flux
around the methionine cycle. Second, the decline in SAM releases
the inhibition of MTHFR. This causes the concentration of
SmTHEF to rise, which increases the inhibition of GNMT. Thus,
even though the flux from SAM to SAH is lower, the inhibition of
GNMT causes a larger fraction of the flux to be carried by DNMT.
This second mechanism was originally hypothesized by Wagner, Briggs
and Cook.% The mathematical model shows that each step in this
relatively complicated causal chain is, indeed, correct, and that the
combination of long-range interactions and the presence of the
GNMT reaction are responsible for the stabilization of the DNA
methylation rate.

DNA methylation, of course, depends not only on the DNMT
kinetics and the availability of methyl groups, but also on the
mechanisms that expose certain CpG islands to methylation. When
kinetic information about these latter processes becomes available,
the model can be extended to include the differential methylation of
different genes.

It is interesting to note that the stabilizing effects of the long-range
interactions on the methylation rate are particularly important at
low methionine inputs and relatively unimportant at moderate and

2006; Vol. 1 Issue 2



Stabilization of Methylation Rate

high methionine inputs. Correspondingly, we found that folate status
significantly affects methylation rate only at low methionine input
(Fig. 6). Thus, the long-range regulatory mechanisms that we have
described, as well as the connection between the folate cycle and the
methionine cycle may well have evolved to protect methylation rates
against periods of low and very low methionine input. Periods of
protein starvation are common for some human populations today
and must have been common for paleolithic humans, who are
believed to have been primarily hunters and meat eaters.*> These
mechanisms have obvious benefits to any organism that is subject to
repeated and prolonged periods of protein starvation and it would
therefore be of great interest to discover when in the course of evo-
lution each of these long-range biochemical interactions first arose.
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APPENDIX

The mathematical model consists of a set of four differential
equations for the time dependence of the concentrations of MET,
SAM, SAH and HCY, that express the rate of change of the con-
centrations in terms of the incoming and outgoing fluxes indicated
in Figure 1. We denote each flux by Vy where X is the acronym for
the corresponding enzyme and denote the methionine input, which
may depend on time, by METin. Each term has units uM/hr.

%w\ﬁ + Vier + METin = Vyyrr = Vagurins oy
d[sl';‘M]: et Vst - Visarr - Vs 2
$=VDMH + Ve = Vearnns (3)
WO\ e @

The fluxes depend, of course, on the current values of one or
more of the variables. This model is an extension of our previous
model!” for the hepatic methionine cycle. That model reproduced
and provided explanations for many well-known experimental and
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Table 2 Values of the kinetic parameters used in the
mathematical model
Enzyme Parameter Valuet Reference
MAT VY max 260 [23]
m 41 [23]
MATII VY max 220 [24]1
m 300 [24]1
K, 360 [23]1
DNMT Vinax 180 [25]
m 14 [25]
K 14 [25]
GNMT VY max 160 [26]1
m 63 [26]1
K, 18 [17]
SAHH Vinax 5,000 §
Km (forward) 10 §
m (backward) 1 5
CBS VY max 100,000 [19]
m 1,000 [19]
MS VY max 350 7]
Km (5mTHF) 25 [.I 7]
m (Hey) 0.1 [.I 7]
BHMT Vinax 720 [17]
m 12 [17]
TUnits: Voo = UMW K K K= uM; tObtained by nonlinear regression on the data in the reference.
$See text.

clinical observations, for example, the positive correlation of homo-
cysteine levels with methionine input and its negative correlation
with the level of 5SmTHE The model also confirmed the hypotheses
of Finkelstein®1819 that SAM regulates the fraction of homocysteine
that is transsulfurated to cystathionine. The current model builds on
the previous one but incorporates more recent biochemical findings
and includes the long-range inhibition of MTHFR by SAM and the
inhibition of GNMT by SmTHE SAM is the methyl donor for
most methyltransferases.’? Other mathematical models of the
methionine cycle have been developed in?!*2 where the focus is pri-
marily on the regulation of substrate concentrations.

Here we focus on DNA methyltransferase (DNMT). There are a
large number of other methyltransferase reactions?® that run in
parallel to the DNMT reaction. Most methyltransferases have low
K, s for SAM and low Ks for SAH and therefore the reactions they
catalyze will behave similarly to what we describe here for DNMT.
Had we included them all, the sum of their V__ s would add up to
the V  we use here for DNMT.

Kinetic equations and parameter values. For each enzyme, the
K, are in UM and the VoS and the velocities of the reactions, V,
are in WM/hr. The values of the kinetic parameters used in the pre-
sent model are given in Table 2.

The MAT-I kinetics are from,?3 and we take Ve = 260 and K
= 41. The inhibition by SAM was derived by nonlinear regression on
the data from Figure 5 in reference 23.

Vo = ( 1 [MET] J (0.23+(0.8)c- 0015
K, +[MET]
The methionine dependence of the MAT-III kinetics is from
Figure 5 in reference 24, fitted to a Hill equation with V=220,

K., = 300. The activation by SAM is from Figure 5 in reference 23,
fitted to a Hill equation with Ka = 360.
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Vo [MET]
V.\'T.-'\T-I[I L I y

7.2[SAMT
K, +[MET]"*!

(K, +[SAMT

The DNA methylation reaction is given as a uni-reactant scheme
with SAM as substrate. That is, the substrates for methylation are
assumed constant. Their variation can be modeled by varying the
Vmax. The kinetic constants, Vmax = 180, K_=1.4, and K; = 1.4 are
from reference 25.

v V,sAM]

PR, (1 )+ [SAM]

The first term of the GNMT reaction is standard with V=
160, and K_ = 63 estimated from Figure 8 in reference 26. The
second term is product inhibition by SAH from!” with K, = 18. The
third term, the long-range inhibition of GNMT by 5SmTHE was
derived by nonlinear regression on the data of Figure 3 in reference
27, and scaled so that it equals 1 when the methionine input rate is

100 pM/hr.

V.. [SAM] 1 ( 4.38 ‘
V{i\\ll = :
K, +[§AM] [+ 50 \(].35+[5mTIIF]J

The SAHH reaction is fast and reversible and we model it using
standard Michaelis-Menten kinetics. The factor 5000 was chosen to
make the reactions equilibrate rapidly and the K ¢ AH = =10 for SAH
and K m HCY = =1 for HCY were chosen so that the ratio of [SAH] to
[HCY] is about 10:1, as observed experimentally.

5000[SAH]

V_[ .“\..+[SAH1] [

The kinetics of CBS are standard Michaelis-Menten with K =
1000 taken from reference 19 and V= 100000. The form of the
activation of CBS by SAM was derived by nonlinear regression on
the data in references 28 and 29 and scaled so that it equals 1 when
the methionine input rate is 100 uM/hr.

5000[HCY] ]
K, ey HTHCY]

V. [HCY] |( L1S([SAM]+[SAH])*
ces = K +[HCY] /| 30*+([SAM]+[SAH])*

The kinetics of MS, with V.

max
0.1, and references are as in reference 17.

N ( [HCY] [
M K ey HHCY]

The kinetics of BHMT are taken from reference 17 with the
parameters K =12 and V= 720. The form of the inhibition of
BHMT by SAM was derived by nonlinear regression on the data of
reference 30 and scaled so that it equals 1 when the methionine
input rate is 100 pM/hr.

= 350, Km,smTHF =25, Km,HCY=

[SmTHF]
K v swrie +[5mTHF]

V. = o MORNISAMESAH]) Ve [HCY]
BHMT K”|+[HCY]

Scaling of the long-range interactions. Note that each of the
long-range interactions appears in a kinetic formula as a multiplica-
tive factor. In order to compare the effect of the long-range interactions
as methionine input changes we scale the factors so that they equal
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one when methionine input is 100 WM/hr, which we take to be
normal average hourly intake.?! This gives us a baseline that enables
us to compare the effects of each long-range interaction as methionine
input varies above and below its normal value.

Derivation of the dependence of [SmTHF] on [SAM]. The
inhibition of MTHEFR by SAM was derived by non-linear regression
on the data of references 32 and 33 and has the form
10/(10+[SAMY]). In addition, SAH competes with SAM for binding
to the regulatory domain of MTHFR. It neither activates nor
inhibits the enzyme3? but prevents inhibition by SAM; thus, we take
our inhibitory factor to be

10
 10+[SAM]-[SAH]’

except when [SAH]>[SAMY], in which case we take I = 1. The formula
for the dependence of [SmTHF] on [SAM] is derived as follows. We
start with the differential equation for [SmTHF] from reference 34:
[SmTHF] [ [HCY] ] .
25—15mT|1FJJ\o_u[nc\'],

dIim'['HF]=4,}OU': [5.10-CH,-THF] "{

dt | 50+[5,10-CH,-THF] |

[NADPH]
16+[NADPH]

]1-350[

We assume typical values for kinetic constants and the concen-
trations of NADPH = 50 uM, 5,10-CH,-THF = 1 uM, and HCY
= 1 UM (see ref. 34). Using these values and supposing that the reac-
tion is at steady-state (so the right hand side equals zero), one can
derive the general form for the dependence of [SmTHF] as a func-
tion of I. Scaling so that at METin = 100 pM/hr the “normal” value
of [5SmTHF] is approximately 4 UM (see ref. 34), yields:

[SmTHF = =AM “

T IH[SAMI-SAH]

Fluctuation theory. To study the behavior of the methionine
cycle under large fluctuations in methionine input we add to the
“normal” input of 100 uM/hr an Ornstein-Uhlenbeck process of
mean zero and variance 900.3% This means that the methionine
input is continually changing in time with mean 100 uM/hr and
standard deviation 30. For simpler systems, it can be proven that
after the system has run for a very long time the joint distribution of
the concentrations converges to a unique distribution on R inde-
pendent of t.3° To compute this joint distribution approximately, we
ran the methionine cycle with the stochastic input 80,000 times
evaluating the concentrations at a fixed large time T. We found that
repeating the process and/or changing T always gave the same
distribution so that we were sure the distribution of the concentration
vector had become stationary, i.e., independent of T. Each of the
concentrations of MET, SAM, SAH and HCY has a distribution
that is a marginal distribution of this joint distribution. Since we
have explicit formulas for the rates of the various reactions in terms
of the concentrations and because the distribution for each of the
concentrations of MET, SAM, SAH and HCY can be computed
from the joint distribution, we can compute the means and variances
of each of the reaction rates.

It is important to note that driving the biochemical system with
large-scale fluctuations is different from the methods of biochemical
control theory.3”3 In that theory one takes a system at a fixed
steady-state, makes a small perturbation in a parameter (perhaps an
input), and allows the system to relax to a new steady-state. By
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comparing the new value of a variable (a concentration or flux) to
the old value, one computes the percentage change of the variable
per unit percentage change in the parameter. Technically, one is
computing a partial derivative. This kind of sensitivity analysis gives
good information about local, linearized behavior near the initial
steady-state. By contrast, we are concerned here with responses to
large-scale continuous fluctuations in inputs. Technically, this means
computing the variances of the distribution of each concentration or
flux. This fluctuation theory gives different answers from biochemical
control theory and the differences are biologically significant.
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