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Administrative

Course: ME 555: Distributed Optimization (Spring 2015)

Instructor: Soomin Lee (email: s.lee@duke.edu)

Time: TuTh 3:05 - 4:20 pm

Location: 232 Hudson Hall

Office hours: TBA

Website: http://sites.duke.edu/me555 07 s2015
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Prerequisites

I CEE 690: Introduction to Numerical Optimization or equivalent

I Consent of instructor

We will review necessary concepts, but I will assume you already have
some knowledge on:

1. Multivariate Calculus

2. Real Analysis

3. Linear Algebra

4. Basic Numerical Methods: Gradient Descent, Newton Method
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References

No textbook is required. There will be some reading assignments.

1. D. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd Edition.

2. A. Ruszczynski, Nonlinear Optimization, Princeton University Press.

3. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Springer.

4. D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Athena Scientific.

5. J. Nocedal and S. Wright, Numerical Optimization, Springer, 2nd Edition.

6. S. Boyd and L. Vandenverghe, Convex Optimization, Cambridge
University Press.
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Grading

I Homework (6 sets): 30%

The last three weeks will be devoted to presentations. Each student will
give two presentations.

I Paper Presentation: 20%
I Papers to be announced by instructor
I Peer evaluated

I Final Project: 50%
I Any theoretical topics or applications relevant to optimization
I Individual project encouraged
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Final Project: Time Line

I Proposal (1 page) by January 27th, in class

I Interim Report (1 page) by March 5th, in class

I Presentation (20-30 minutes) on April 7th, 9th and 14th

I Final Report (5-6 page, double column) by 5pm, April 24th
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Optimization History

I Optimization Theory and Analysis have been studied for a long time,
mostly by mathematicians

I Until late 1980s:
I Algorithms mainly focused on solving Linear Problems

I Simplex Algorithm for linear programming (Dantzig, 1947)
I Ellipsoid Method (Shor, 1970)
I Interior-Point Methods for linear programming (Karmarkar, 1984)

I Applications mostly in operations research and few in engineering

I After late 1980s:
I A new interest in optimization emerges in various fields

I Automatic Control Systems
I Estimation, Signal and Image Processing
I Communication and Data Networks
I Data Analysis and Modeling
I Statistics and Finance

7



Newly Emerging Interest in Optimization

I The end of Moore’s Law promoted parallel computing

I Networked systems are now pervasive in practice
I Communication networks
I Social networks
I Power grid
I Transport grid
I Decentralized computing networks
I Military applications

Distributed optimization algorithms and analysis
are now more important than ever!
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Mathematical Formulation of Optimization Problem

min
x

f(x)

subject to x ∈ X

where
X = {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m}.

I f : Rn → R is the objective function (or cost function).

I x ∈ Rn are the decision variables.

I X ⊆ Rn is the constraint set (or feasible set).

I gi : Rn → R are constraint functions.

Goal: We would like to find a solution x∗ ∈ X such that

f(x∗) ≤ f(x) ∀x ∈ X
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Mathematical Formulation of Optimization Problem

min
x

f(x)

subject to x ∈ X

I We say x is a feasible point if x ∈ X.

I A feasible point x∗ ∈ X is an optimal point (or optimum) if

f(x∗) ≤ f(x) ∀x ∈ X

I f∗ is the optimal value
f∗ , f(x∗)

I X∗ is the optimal set

X∗ = {x ∈ X | f(x) = f∗}

Note: X∗ is not always nonempty. Therefore, whenever you encounter
an optimization problem, the first thing to do is to check the existence of
the solution.
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Some Examples

Communication Networks

I Variables: communication rates for users

I Constraints: link capacities

I Objective: user cost

Portfolio Optimization

I Variables: amounts invested in different assets

I Constraints: available budget, maximum/minimum investment per
asset, minimum return, time constraints

I Objective: overall risk or return variance

Data Fitting

I Variables: model parameters

I Constraints: prior information, parameter limits

I Objective: measure of misfit or prediction error
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Classification of Optimization Problems

1. Constrained vs. Unconstrained

min
x

f(x)

subject to x ∈ X

I If X = Rn, unconstrained.

I If X ⊆ Rn and X 6= Rn, constrained.

I Constrained problems are usually much harder to solve.
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Classification of Optimization Problems

2. Linear ⊆ Convex ⊆ Nonlinear

min
x

f(x)

subject to x ∈ X

where
X = {x ∈ Rn | gi(x) ≤ 0, for i = 1, . . . ,m}.

I If f and gi are linear (or X is polyhedral), the problem is called
Linear Programming.

I If f and gi are convex (or X is a convex set), the problem is called
Convex Programming.

I If f and gi are nonlinear, the problem is called Nonlinear
Programming.
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Classification of Optimization Problems

3. Continuous vs. Discrete (Mixed Integer)

min
x

f(x)

subject to x ∈ X

I The problem is continuous if x ∈ Rn.

I The problem is discrete (or mixed integer) if
x = [yT zT ]T ∈ Rn1 × Zn2 .

Here, n = n1 + n2.

I Discrete problems are usually much harder to solve.
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Classification of Optimization Problems

4. Deterministic vs. Stochastic

min
x

Eξ[f(x, ξ)]

subject to x ∈ X

I The problem is deterministic if ξ is deterministic.

I The problem is stochastic (or uncertain) if ξ is a random variable
following some known or unknown distribution.
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Classification of Optimization Problems

5. Centralized vs. Distributed

min
x

f(x)

subject to x ∈ X

I The problem is centralized if a single computing unit (or decision
maker) solves the problem.

I The problem is distributed if multiple computing units (where each
unit has either partial or full information about the problem)
cooperatively solve the problem together.
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Motivation of Distributed Optimization

1. Computational Issue

I Optimization problem is large-scale
I Either n or m (or both) is really huge

I Limited time and/or memory

I For some problems, complexity grows more than linearly

I Examples:
I Weather Prediction
I Image Processing
I Machine Learning with Big Data

Necessity of problem decomposition and parallel processing
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Motivation of Distributed Optimization

Decomposition: Ideal Case

min
x1,x2

f1(x1) + f2(x2)

where x1 ∈ Rn1 and x2 ∈ Rn2

I Let us say n1 = 109 and n2 = 109.

I Our system has 8GB memory and uses double-precision floating
point format.

I This problem cannot be saved or processed in a single system.

I Let system 1 solve the subproblem minx1∈Rn1 f1(x1) and system 2
solve the subproblem minx2∈Rn2 f2(x2).

I Our final solution is [x∗1 x
∗
2] and the optimal value is f1(x

∗
1)+ f2(x

∗
2).

I But life is not that easy.
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Motivation of Distributed Optimization

Decomposition: More Interesting Case

min
x1,x2,y

f1(x1, y) + f2(x2, y)

where x1 ∈ Rn1 , x2 ∈ Rn2 and y ∈ Rn3

I We can assume n1, n2 � n3
I Majority of distributed optimization methods is about how to

enforce the consistency in y across many decision makers.

I We are going to learn those methods in this class.

I If the problem is convex, we have more options for handling the
coupled variables.
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Motivation of Distributed Optimization

2. Structural Issue

I Decision makers are geographically distributed

I Limited communication

I Examples:
I P2P Networks, Ad-hoc Networks
I Social Networks
I Transport and Power Grid
I Fleets of Robots

The problem is naturally decomposed and
its communication structure is already given.
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Motivation of Distributed Optimization

A Distributed Problem in a Networked System

min
x∈Rn

f(x) , f1(x) + f2(x) + f3(x)

I fi(x) is the local objective of subsystem i.

I f(x) is the system-wide objective.

I Hence, the subsystems are coupled through x.
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Motivation of Distributed Optimization

An Equivalent Form

min
x1,x2,x2

f1(x1) + f2(x2) + f3(x3)

s.t. x1 = x2 and x2 = x3

I Let each system i solve the subproblem minxi
fi(xi).

I Subsystem 1 and 2 communicate and try to enforce x1 = x2.
I Subsystem 2 and 3 communicate and try to enforce x2 = x3.

I We are going to learn variants of such methods in this class.
I Again, if the problem is convex, we have more options.
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List of Topics (Tentative)

1. Introduction and Motivation

2. Review of Basic Concepts from Real Analysis and Linear Algebra

3. Convex Sets and Convex Functions

4. Convex Problems and Optimality

5. Separation Theorems and Lagrangian Duality

6. Mathematical Decomposition

7. Proximal Algorithms and Augmented Lagrangian Methods

8. Recent Convex Optimization Algorithms for Big Data

9. Spectral Graph Theory / Subgradient Methods

10. Consensus Theorem

11. Subgradient Consensus Schemes
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Goal of this course

This is a theory course with lots of mathematics!

I To provide you with working knowledge (basic terminology,
principles and methodologies) of optimization

I To develop convergence proof techniques of optimization algorithms

I To study optimization algorithms that can be distributed across
many decision makers

I To understand the information aggregation / propagation
mechanism of geographically distributed systems

I To develop an ability to decompose large-scale problems

I To know which distributed algorithm is best suitable for your purpose

I To design new distributed algorithms or improve the efficiency of
existing ones
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Topics Not Covered

I Nonconvex, stochastic, discrete optimization problems / algorithms

I Optimization softwares and corresponding algebraic mathematical
programming languages

I Parallel computation framework

e.g. GPU, Hadoop, MapReduce, Spark, . . .

I High level parallel computation languages

e.g. Pig, Hive, Jaql, . . .

I Instead, we will assume a computation unit can be anything
I Personal computers or smartphones interconnected over TCP/IP
I Unmanned vehicles communicating with each others
I Sensing units in mobile sensor networks
I CPU cores with shared memory
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