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The zero-force evolutionary law (ZFEL) states that in evolutionary systems, in the absence of forces or constraints, diversity

and complexity tend to increase. The reason is that diversity and complexity are both variance measures, and variances tend

to increase spontaneously as random events accumulate. Here, we use random-walk models to quantify the ZFEL expectation,

producing equations that give the probabilities of diversity or complexity increasing as a function of time, and that give the

expected magnitude of the increase. We produce two sets of equations, one for the case in which variation occurs in discrete steps,

the other for the case in which variation is continuous. The equations provide a way to decompose actual trajectories of diversity

or complexity into two components, the portion due to the ZFEL and a remainder due to selection and constraint. Application of

the equations is demonstrated using real and hypothetical data.

KEY WORDS:

Diversity and complexity are governed by alaw of evolution called
the zero-force evolutionary law (ZFEL), proposed by McShea
and Brandon (2010, see also McShea 2005; Brandon 2006). As
originally formulated, the ZFEL was purely qualitative. Here, we
offer a quantitative formulation.

We give the formal statement of the ZFEL later, but the basic
principle can be stated simply here. Given two independently
evolving entities, in the absence of forces or constraints acting
on the differences between them, they will tend to accumulate
differences and therefore to diverge, that is, to become ever more
different from each other. The entities can be populations, or
species lineages, or even higher taxa, in which case the divergence
is an increase in diversity. Or they can be structures, “parts,” within
an evolving organism, in which case the divergence is an increase
in the complexity of the organism. The ZFEL is a null model. It
describes what happens in evolutionary lineages when forces and
constraints are absent. In effect, it describes what happens when
nothing happens.

The main aim of this article is to explain why ZFEL-driven
divergence occurs, and to develop a quantitative method to detect

Complexity, diversity, random walk, ZFEL (zero-force evolutionary law).

and measure departures from the ZFEL expectation. Departures
can arise from a variety of different configurations of forces and
constraints, but any force- or constraint-driven divergence is al-
ways in addition to the baseline divergence predicted by the ZFEL.
Thus, our methodological aim is to justify the idea that whenever
one is investigating the evolution of diversity or complexity, the
first step is to test the ZFEL null. If the ZFEL alone will produce
the phenomenon to be explained, then there is no need to invoke
a more complex hypothesis. Notice that we are not advocating an
exclusive null hypothesis testing methodology. When the ZFEL
null can be rejected, one should certainly use whatever methods
are appropriate to evaluate alternative hypotheses. And of course,
when the ZFEL null cannot be rejected, one is still free to inves-
tigate alternative hypotheses to explain the data. Failure to reject
a null does not imply that it is true. Thus, testing the ZFEL null
is a first, but by no means last, step in evolutionary investigations
of diversity and complexity.

Adaptation is central in evolutionary studies. And the ZFEL
has consequences for adaptation, but it is not a law about adap-
tation. It is only about diversity and complexity, and accordingly
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it requires an adaptation-free understanding of these terms. Hap-
pily, the standard view of diversity is already adaptation free.
One standard measure of the diversity of a taxonomic unit is
the number of species in it, independent of how well adapted
those species are, either to the physical environment or to each
other. Sadly, the colloquial understanding of complexity is rid-
dled with adaptive implications. An eye is called complex not
just because it has many parts, but because they work together to
perform a function and perform it well. For the ZFEL, however,
we need a function-free notion of complexity, and so we adopt
what has become the standard usage in the study of organismal
complexity: complexity purely as number of part types, or de-
gree of differentiation among parts, independent of how—or even
whether—they function (e.g., McShea 1993, 1996). Complexity
in this sense has proved useful in biology, especially for docu-
menting evolutionary trends. Valentine et al. (1994) used number
of cell types to document a trend in complexity in metazoans,
and Sidor (2001) used number of skull bone types to document
a (downward) trend in the complexity of tetrapod skulls. It is
now also a standard usage in molecular biology, used to describe
changes in numbers of genes or numbers of protein types involved
in various molecular mechanisms (Doolittle 2012; Finnegan
et al. 2012).

The ZFEL applies to all systems that have heritable varia-
tion. But is it important in the evolution of life on this planet (or
elsewhere)? As we discuss later, there is good reason to think the
ZFEL has been a major factor in the diversification of metazoan
life over the Phanerozoic, but for diversification at smaller scales,
we have no idea. And for complexity, the data we have on number
of cell types in metazoans (Valentine et al. 1994) indicate an in-
creasing trend, but we cannot say at this point whether that trend
was driven by the ZFEL or by selection (McShea and Brandon
2010), nor do we know how the ZFEL has acted on complexity
at other time and spatial scales, or for other taxa. The formu-
lation of the ZFEL we propose here provides a way to answer
these questions quantitatively. It gives a way to dissect actual tra-
jectories of diversity and complexity into their components, the
portion due to the ZFEL and the remainder due to selection and
constraint, and to estimate the direction and magnitude of that
remainder.

Diversity and Complexity

DISCRETE AND CONTINUOUS

In addition to diversity’s discrete sense, number of types of in-
dividual or of taxa, it also has a continuous sense, degree of dif-
ferentiation among individuals or taxa, or disparity (Foote 1994),
often measured as a variance. Complexity too has both discrete
sense, a count of part types, and a continuous sense, degree of
differentiation among parts. For the continuous sense, it can like
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disparity be measured as a variance. As will be seen, the ZFEL
applies to both diversity and complexity and in both senses.

LEVEL RELATIVITY

Both diversity and complexity are level-relative concepts, mean-
ing that the diversity or complexity of a system at some level
has no necessary relationship to its diversity or complexity at any
other level. The complexity of a fish at the level of tissues and or-
gans is about 90, that is, it has about 90 different tissue and organ
types. Its complexity at the level of cell types is about 130. And at
the atomic level it is 6, if we include just the most abundant atom
types: oxygen, carbon, hydrogen, nitrogen, calcium, and phos-
phorus. The point is that a fish has a different complexity at every
level, and that these numbers could in principle be independent
of each other. An animal could in principle have thousands of cell
types and only a few tissue and organ types, or vice versa. Fur-
ther, as there is no preferred level of analysis, a fish has no “true”
complexity. Diversity too is level-relative. When the diversity of
some group measured in terms of genera goes up, the diversity of
species in the same group could either go up or down.

As may be clear by now, diversity and complexity are the
same concept applied in different contexts. Diversity is differen-
tiation among individuals or higher level entities, whereas com-
plexity is differentiation within an individual.

The Zero-Force Law
The ZFEL has two qualitative formulations (McShea and Brandon
2010). The first is what we call the special formulation:

ZFEL (special formulation): In any evolutionary system in
which there is variation and heredity, in the absence of natural
selection, other forces, or constraints acting on diversity or
complexity, diversity and complexity will increase on average.

Unleashed from forces and constraints, evolving entities—
parts (for complexity) and lineages (for diversity)—change ran-
domly, with the result that they diverge from each other, on aver-
age. Figure 1 illustrates this for a group of 10 entities, changing in
a size morphospace. All of the entities start at the same arbitrarily
chosen size, 20 mm. To model complexity, we could imagine a
worm with 10 initially identical segments, all the same length,
20 mm. For diversity, the figure might represent an asexual pop-
ulation of 10 individuals of some species, all 20 mm long.

In each timestep, each entity either increases or decreases
in length by 1 mm, each with 50:50 probability. The result is 10
random walks, which the figure shows over 30 timesteps. Notice
that at the end of 30 timesteps, the random walks have dispersed
considerably. The histogram above the trajectories shows what
the expected distribution would be if there had been hundreds of
random walks, rather than just 10. The Central Limit Theorem
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Figure 1. Ten entities following independent random walks over
30 timesteps. The histogram shows the distribution of outcomes
for a much larger number of random walks.

tells us that the histogram approximates a normal distribution,
with variance equal to the number of timesteps. Thus, the variance
increases without limit. In other words, the ZFEL expectation is
not only that diversity and complexity increase initially, when
lineages or parts are similar to each other, but also later, when they
have become quite different. Even for a diverse set of individuals
or species, the ZFEL expectation—in the absence of forces or
constraints—is even greater diversity. And for individuals that
are already quite complex, having highly differentiated parts, the
expectation is even greater complexity. Of course, the behavior
is probabilistic. In any timestep, diversity and complexity may
decrease, if by chance entities vary in such a way as to become
more similar to each other. But the expectation, the on-average
result, is always increase.

No absolute timescale needs to be specified here. What we
call “timesteps” can be thought of as generations, or million-year
increments, or even longer units of time. The ZFEL principle
operates on all timescales. Also, the horizontal axis is treated as
an additive scale, but recognizing that change in biology tends to
be proportional, one could instead interpret it as a log scale, with
increases and decreases occurring in units of constant proportion.

Some may find the result—the expectation of increasing di-
versity or complexity—puzzling, simply because when change is
random, the expected size for each lineage does not change over
time. For all entities, it remains at 20. And it might seem that if
the expected values for each of the two entities do not change, so
that the distance between their expected values is constant, then
the expected (absolute) distance between the entities themselves
should not change. In fact it does. It increases. We explain later.

THE GENERAL FORMULATION OF THE ZFEL

In the original, qualitative version of the ZFEL, McShea and
Brandon (2010) also offered a more general formulation, covering
the vastly more common situation in which forces and constraints
are present.

ZFEL (general formulation): In any evolutionary system in
which there is variation and heredity, there is a tendency for
diversity and complexity to increase, one that is always present
but may be opposed or augmented by natural selection, other
forces, or constraints acting on diversity or complexity.

The critical word here is “tendency.” The tendency toward
increase is always present even when forces and constraints act on
differences. Thus, if selection opposes the ZFEL in some evolving
organism, and as a result its complexity does not increase, the ten-
dency to increase is still present and increase begins the moment
the opposing selection is removed. In other words, a tendency is
a kind of push or straining toward increase. It is not an actual
outcome. The general formulation of the ZFEL does not say that
diversity and complexity will increase, only that there is a kind of
pressure, or oomph, toward increase.

RANDOMNESS

The ZFEL follows from that the fact that evolving entities change
randomly when forces and constraints are absent. In population
genetics, random change ordinarily means drift. And in fact, drift
is the expectation for evolving lineages or parts when forces and
constraints are absent. But for the ZFEL, the relevant notion of ran-
domness is broader than drift. It includes the case in which entities
change deterministically but independently of each other, that is,
in which they change randomly with respect to each other. Thus,
two snail species, one changing under selection for a wider aper-
ture and the other under selection for a thicker shell, are changing
randomly with respect to each other. Both are under determinis-
tic selection, but independently, which means they become more
different from each other but without any force acting directly on
their differences. There is selection, and diversity increases—or
more properly, disparity increases—but there is no selection for
disparity. Assuming no constraints or other directed forces are
acting, the zero-force condition of the special formulation of the
ZFEL is met, and the resulting increase in disparity is attributable
to the ZFEL. A contrast case would be two species competing
for the same resource and simultaneously selected for reduced
resource overlap, for avoiding competition. In that case, selection
is directly for disparity, the zero-force condition is not met, and
selection acting on their differences—not the ZFEL—is the cause
of the divergence. (We will mention another contrast case later,
in which two lineages diverge as they are drawn over many time
steps toward different and widely separated adaptive peaks. This
is not the ZFEL, because although the attracting peaks are inde-
pendent, the lineage movements are not random over time, with
the result that the steps are expected to be [negatively] correlated.)

NATURAL SELECTION AND CONSTRAINTS

The ZFEL gives the null expectation, the change in diversity and
complexity that would be realized in the absence of forces. The
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ZFEL treats selection as a force, in that, like the various forces in
physics, it has magnitude and direction. For a Newtonian analogy,
think of gravity. Like gravity, selection can act with greater or
lesser intensity and can act in different directions, to augment
the ZFEL—driving lineages or parts further apart—or to oppose
it—driving lineages or parts toward greater similarity.

The phrase “absence of constraint” in the special formulation
of the ZFEL may be puzzling. We do not have space here to treat
the issue in detail. For present purposes, it suffices to say that we do
not intend this phrase to be understood as all-encompassing. For
one thing, it covers only constraints on diversity and complexity.
A constraint on, say, maximum body size, does not (by itself)
limit either diversity or complexity. For another, the phrase is
not intended to exclude certain constraints that we take to be
constitutive of the system. For the special formulation of the
ZFEL, there are two such constitutive constraints, reproduction
and heredity, constraints that are fundamental to life everywhere.
See McShea and Brandon (2010) for further discussion.

UNIVERSALITY

The ZFEL for diversity applies to all populations and taxa, in all
places and at all times in the history of life. The ZFEL for com-
plexity applies to all characters, in all organisms, everywhere and
always. More generally, it applies to all evolutionary systems, all
systems in which there is variation and heredity. Notice that these
two requirements are a subset of Darwin’s three conditions for the
occurrence of selection itself: variation, heredity, and nonrandom
differential reproductive success. It follows that the ZFEL is at
least as widely applicable as selection.

HISTORICAL CONTEXT

The present method can be seen as an extension of studies
of random walks in paleobiology pioneered by Raup (1977,
see also Raup and Gould 1974) and advanced since then by
Bookstein (1988), Gingerich (1993), McShea (1994), Roopnarine
et al. (1999), Sheets and Mitchell (2001), Hunt (2006, 2007), and
others. But even in this context, the aims are different. The con-
cern of much of this literature has been on devising ways to detect
trends and investigate mechanisms in various morphometric vari-
ables like body size. Here, we take this line of thought in a some-
what different direction, applying the methods to a second-order
variable, the variance. We discuss later the relationship between
the ZFEL and various phylogenetic methods.

A Quantitative Formulation

The ZFEL gives the null expectation, the zero-force expectation. It
describes what happens in the absence of selection and constraint.
A quantitative formulation has two main uses. It enables us to
detect the action of forces. For diversity and complexity, selection
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Figure 2. Two entities, A and B, moving in a one-dimensional
space over one timestep, both with probabilities of increase, stasis,
and decrease equal to 1/3, 1/3, and 1/3, respectively.

and constraint are detectable as statistically significant departures
from the zero-force expectation. A quantitative formulation also
enables us to measure the magnitude and direction of forces. The
intensity of selection and constraint are measureable as a function
of the degree of departure from the zero-force expectation.

Here, we offer two very different approaches to quantifying
the zero-force expectation, one specific to the discrete case—
where entities occur as discrete types—and one to the continuous
case—where variation among entities is continuous. There is no
suggestion here that these are the only approaches. Others are
doubtless possible.

In both approaches, we develop equations to describe the
behavior of the difference between—or distance between—two
lineages evolving in a simple one-dimensional morphospace. We
use the terms difference and distance, rather than complexity
or disparity, because the equations are general and applicable
equally and interchangeably to both. Finally, as we discuss briefly,
the equations can be extended to more lineages, and to more
dimensions, but that is beyond the scope of this article.

QUANTIFICATION OF THE ZFEL: THE DISCRETE CASE

‘We start with a very simple case. Consider two entities, A and B,
in a one-dimensional space with A to the left of B (Fig. 2). Each
moves through time according to the following rule: move one unit
to the left with probability 1/3, stay in place with probability 1/3,
and move one unit to the right with probability 1/3. These three
probabilities are labeled p,, p», and ps, respectively. For simplicity
we have made p; = p, = ps, but they can take any values so long as
they sum to 1. There are nine possibilities for the joint behaviors
of the two entities after one timestep. One of these is stasis. Here
stasis means no part of the system changes. The result of stasis is,
obviously, no change in the distance between A and B. Two other
possibilities also result in no change in the initial distance between
the two; when they both move to the right, and when they both
move to the left. We will call this parallel change. Three more
possibilities result in the two entities coming closer together. They
are: A moves to the right and B moves to the left; A moves to the
right and B stays in place; and A stays in place while B moves to
the left. We call this convergent change. Finally, there is what we
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call divergent change. Here the entities move further apart, which
in this simple model happens when A moves to the left and B
moves to the right; when A moves to the left and B stays in place;
or when A stays in place while B moves to the right. Note that
the four categories, stasis (S), parallel change (PC), convergent
change (CC), and divergent change (DC), are qualitative.

A changes position over one timestep, if it moves to the right
(with probability 1/3) or if it moves to the left (with probability
1/3). Thus, it changes with probability 2/3. We will label this
probability, 7, which denotes the rate of change per timestep. So
for the system of two entities, A and B, the probability of change,
or equivalently, the probability of non-stasis over one timestep,
is 1 — (1 — r)?, because change occurs if either one or both of A
and B change. (If we had a system of k entities the, probability of
non-stasis would be 1 — (1 — ), but in this article we will restrict
ourselves to comparisons of two.) We will label the number of
timesteps, ¢. Stasis occurs over n steps only if there is no change
in any of the n steps. Thus (where NS stands for non-stasis):

P(NS) = 1—(1—r)".

One important consequent of this equation is that the proba-
bility of change, or equivalently the probability of non-stasis very
quickly approaches 1 as n increases. In our example, at n = 1,
P(non-stasis) = 8/9 or 0.889 to three decimal places; at n = 3,
P(non-stasis) = 0.9986; and by n = 5, P (non-stasis) = 0.99998.
Put another way, in this simple model, stasis is incredibly unlikely.

But we are not interested in the probability of change, rather
we are interested in the probability of divergent change, that is,
change that increases the difference between A and B. The prob-
ability of divergent change is the probability of non-stasis minus
the probability of parallel change minus the probability of con-
vergent change. We can combine parallel change and convergent
change into one quantity, non-divergent change (NDC). Thus,

P (DC) = P(NS) — PINDC).

Adding and subtracting P(S) on the right side of the above
equation gives:

P(DC) =P (NS) +P(S) —[P(NDC) + P(9)].

But since change and stasis are mutually exclusive and ex-
haustive options in our system, P(non-stasis) + P(stasis) = 1.
Therefore, the above simplifies to:

P(DC) =1—-[P(NDC) + P (9)]. (1)

We can compute the term P(NDC) + P(S) directly by going
through each possible move of A and then looking at every pos-
sible move of B, seeing which of those increases the difference
between A and B. Figure 3 shows how this is done in practice.
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Figure 3. All possible trajectories for two entities, A (blue) and
B (red), with starting points of 10 and 11, respectively, over five
timesteps. The inset reprises Figure 2, showing the probabilities of
increase, stasis, and decrease in each time step, 1/3, 1/3, and 1/3,
respectively. In the discussion, the entities are two populations of
sunstars, and the horizontal axis is number of arms, presumed to
be strongly heritable.

The first thing to notice about the figure is that it locates A and B
on a scale, in particular a scale that is metric in the sense that dif-
ferences correspond to distances and also, in this section, discrete
in that points on the scale correspond to whole numbers. This
geometrical approach is quite versatile, in that it is applicable
to many aspects of the phenotype, especially to morphology, al-
though there are certainly some biological dimensions for which
it will not work. For instance, we see no nonarbitrary way of
placing the four DNA bases on such a metric scale.

Figure 3 extends our model over five timesteps. To help fix
ideas here, let this figure represent two populations of sunflower
starfish (also called sunstars). Sunstars vary in arm number and
we assume here that arms come in whole numbers, and that arms
are added or subtracted by only one over one timestep. This is
a purely hypothetical example to show how equation (3) works
numerically and to show why the ZFEL is a statistical necessity in
the conditions described by special formulation of the ZFEL. The
reader is asked to ignore developmental biology or population
genetics for purposes of this example.

The one-way trifurcating lattices represent all of the possible
trajectories of A (blue) and B (red). Let A and B denote the
positions of lineages A and B, with Ay and By denoting their
initial positions. Note that at timestep n, lineage A can take on
2n + 1 possible values: Ay — n through Ay + n.

For each possible move of lineage A, classify the moves of
lineage B into two categories: divergent and non-divergent (the
latter consisting of parallel, convergent, and stasis). The initial
value of B — A is By — Ayp; in our example we have By — Ayp =
1. As trajectories of B and A can cross so that A > B, divergent
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moves are ones for which either B—A > 1 or A — B > 1, that is,
for which [B - A| > 1.

To calculate the probability of divergence, we return to equa-
tion (1) above, P(DC) =1 —-[P(NDC) + P(S)]. Itis straightforward
to calculate the sum of non-divergent change and stasis, P(NDC)
+ P(S), in one step. We start by taking a fixed value of A; and
then summing over values of B that result in |B — A| < By — A,.
For instance, at timestep 3, A has 2n + 1 = 7 possible states,
ranging from 7 arms to 13 arms, each of which has a well-defined
probability. If A is in state 7, then what possible states of B result
in non-divergence, that is, [B — A| < 1? Figure 3 makes clear that
there is only one such B state, namely B = §. Next, we move
to state A = 8, where we find that there is non-divergence when
B = 8 or 9. We continue similarly for the other possible values of
A. Expressed as a formula, P(INDC) + P(S) is:

> P(B = j).

il < By — Ao

Ap+n

Z P(A = 1)

i=A¢g—n lj

This gives us a simple measure of all of the possible pairs
of trajectories that leave |B — A| at or below the original distance
between them. It includes all of the pairs that would fit into one
of our qualitative change categories (convergent or parallel), but
it also includes the single case of stasis. Recall that stasis means
no part of the system changes at any time. Thus, stasis excludes
a trajectory that, say, moves one unit to the left, then one unit to
the right. That case is one of no net change, but is still change.
The trifurcating pattern of our model produces 59,049 [ = (3°)?]
possible trajectories for each of A and B by timestep 5, but there
is exactly one of these (one of 59,049) that is stasis, namely when
A stays at 10 and B at 11.

Again, the double summation above is the sum of P(NDC)
and P(S), that is, the sum of probabilities over all pairs of trajec-
tories that leave |B — A| less than or equal to 1. Now, returning
once more to equation (1), P(DC) = 1 — [P(NDC) + P(S)], we
can calculate the probability of divergence as follows:

Ap+n

Z P(A = i)

i = Ag—n

P (DC)= 1— > PB=j.Q

j— il < By — Ag

Letus see how equation (2) works over a number of timesteps.
We have already gone over the result for one timestep: 1/3 of the
time the system moves in parallel, 1/3 of the time it converges,
and 1/3 of the time it diverges. This is straightforward given
the way we have built the model. However, this result does not
hold consistently. What is true of the one timestep change is
not necessarily true for n timesteps. We will illustrate this by
considering what happens in timestep 3 and timestep 5.

Figure 3 shows the 27 possible trajectories for A by timestep
3. By timestep 5 there are 243 possible trajectories (blue lines).
Figure 3 shows the same number of possible trajectories of B

6 EVOLUTION 2079
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Figure 4. Reprise of Figure 3, highlighting the crossing of two
extreme trajectories, the maximum for A (which started at 10) and
the minimum for B (which started at 11).

starting at position 11 rather than 10 (red lines). As we have
assumed that the three basic transition probabilities are identical,
it follows that every possible trajectory has the same probability.
Thus, we can get the probability of a class of trajectories (say those
of A that end up at 10) from the frequency of those trajectories.
(Relaxing the assumption that the transition probabilities are all
identical makes for a more complex calculation, but raises no
other problems.).

As described earlier, A has seven possible states—ranging
from seven to 13 arms—at timestep 3. If A is in state 7, then what
possible states of B result in non-divergence or stasis? That is,
what states of B result in a difference between A and B of less
than or equal to 1? Figure 3 makes clear that there is only one
such B state, namely B = 8. Then we move to state A = 8, where
we find that there is non-divergence in the cases where B = 8
and B = 9. Going through the remaining possible states of A, we
can calculate P(NDC) + P(S): for our example, this probability is
0.4897. This is not yet the probability of ZFEL change. To get that
we subtract P(NDC) + P(S) from 1, as per equation (1). So the
probability of divergent change, P(DC), is 1 — 0.4897 = 0.5103.

Recall that at timestep 1, the probability of divergent change
is 1/3. At timestep 2, it equals 4/9. It is not until timestep 3 that
the probability of divergent change exceeds 0.50. By timestep
5, it is 0.5924. This chance of divergence continues to increase
with time. How does this happen, that is, how does the unlikely
at timestep 1 become likely by timestep 5? It happens because
certain pairs of trajectories change their qualitative categories as
they extend through time. Consider the inner envelopes of the A
and B distribution of trajectories (Fig. 4). They are one unit apart
at time 0 (A = 10, B = 11) and one unit apart at time 1 (A = 11,
B = 10), but the ordinal relation of A and B change because the
two trajectories cross each other. Attime2,A =12and B=9, and
so the distance between A and B has increased and will continue
to do so.
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Two things favorable to divergence are happening here. The
first is the crossing of lines, which results in a qualitative change
from non-divergent to divergent. That is why the result of one
timestep in our example cannot be extrapolated forward. Of
course, we have started our two lineages (A and B) close to each
other so that the lines start crossing earlier. But there will always
be only a finite distance between any two lineages and so crossing
over can eventually occur.

The second thing that happens in our example is quantita-
tive. The black lines in Figure 4 are in the divergent category
by timestep 2, but they get more and more divergent with each
timestep.

Thus, far we have quantified the likelihood of ZFEL change.
But we can also quantify how much change is expected at any
given timestep, that is, we can quantify the expected value of
|B — Al. Here, we simply go through all possible combination of
A and B values and calculate |B — A|, which we then weigh by the
appropriate probability. This is shown is equation (3):

Ap+n By+n
EB—Al= ) > li—ilP(A=D) P(B=)). 3
i=Ao—n j= By—n

At timestep 1, E|B — A| = 1.222. Recall that the probability
of divergent change in timestep 1 was only 0.333, so one might
wonder how this expectation could be greater than the original
difference of 1. This happens because the distribution of values
of |B — A| is skewed. Already in timestep 1, the distance between
B and A can be as high as 3, but |B — A| can never go below
0, thus causing a right skew. By timestep 3, E|B — A| = 1.774,
and by timestep 5, E|B — A| = 2.199. The expected value of
|B — A| continues to rise with time. This gives us a quantitative
null expectation against which real world data can be compared.

QUANTIFICATION OF THE ZFEL: THE CONTINUOUS
CASE

Evolutionary change in organisms is often continuous rather than
discrete. Body size varies continuously, as does everything from
the dimensions of body parts to the rates of biological processes.
Here we show how to calculate, as for the discrete case, the
probability as a function of time that two continuously varying
entities will diverge and the expected value of that divergence,
that is, the magnitude of the expected increase.

Consider two entities, A and B, starting at different values
along some continuous axis of variation, as shown in Figure 5. We
have arbitrarily labeled that axis “size,” and set the starting points
at 2.0 and 3.0 mm. One can think of the entities as two species,
plotted on a body-size axis, with an initial difference between
them of D, here 1.0 mm, in which case, D is their initial disparity.
Or the entities could be two parts in the same individual, perhaps

| &
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Figure 5. Trajectories of two lineages, A and B, initially separated
by some difference, D, both following Gaussian random walks. In
each timestep, each lineage changes by a value drawn from a nor-
mal step-size distribution (circled lowercase letters). The resulting
distributions after n timesteps (circled uppercase letters) is shown
above.

two teeth, in which case the initial difference D is a measure of
the complexity of the tooth pair.

In each timestep, each entity increases or decreases in size
by some value chosen from the small normal distributions shown
(lowercase a and b, with circles). These small distributions are
what we call step-size distributions. To calculate the size of each
entity at time 1, we draw a value from the step-size distribution
and add it to the entity’s value at time 0, that is, to 2.0 and 3.0 mm
for A and B, respectively. The step-size distributions have a mean
of zero, so the size of each entity will increase half of the time and
decrease half the time, and we have assigned them a variance, cfs.
(We assume for present purposes that the step-size distributions
for both entities are the same, although there is no reason that this
assumption could not be relaxed.) Again, in this model, change is
additive, but because change in biology is often proportional, the
horizontal axis could alternatively be interpreted as a log scale.

The procedure is the same for later timesteps. To compute
an entity’s size at time 2, we draw a value from the step-size
distribution and add it to the entity’s value at time 1. To make the
problem tractable, we assume the step-size distributions do not
change with time. Continuing this procedure, each entity follows a
random walk, or more precisely, a Gaussian random walk, because
the step sizes are drawn from a normal distribution. Figure 5 shows
a possible trajectory for each of the two entities over 4 timesteps.
Extending the run to n timesteps, the cumulative results are the two
large normal distributions (uppercase A and B, with circles). The
means of these large distribution are the same as the initial values,
2.0 and 3.0, and the difference between means is the same as
the difference between initial values, D = 1.0 mm. The variances
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of these large distributions are the sum of the variances of the
step-size distributions that produced them, ncfx. Thus,

o’ = no’ “4)

n 58

where, o is the variance of the terminal distributions of each of
the Gaussian random walks after n steps, and o2, is the variance
of the step-size distribution.

We now calculate the distribution of differences between
A and B after n steps. Figure 6A shows the distribution for
B — A. Because the distributions of A and B are independent,
the distribution of B — A is also normal, with mean equal to the
mean of B minus the mean of A (i.e., D, here 1.0 mm), and vari-
ance equal to the sum of the variances of the A and B distributions,
202

Divergence occurs after n steps whenever B — A is greater
than the initial difference, that is, whenever B — A > D. But there
is a second route to divergence, one in which the two lineages
cross so that by the nth step, B is not only less than A, but less
than A by an amount greater than the initial difference, D. (This
is the “crossing” discussed in the discrete case.) In these cases,
the entities would have reversed their ordinal positions along the
size axis, but they are still more different from each other than
they started out. Thus, to capture both routes to divergence, we
need to measure the increase in the absolute difference between
the random walks, |B — A| > D (or here, |B - A| > 1.0). Figure 6B
shows the first step in calculating the distribution for |B — A|. The
B — A distribution in Figure 6A is folded over at the zero line. In
effect, the negative differences for B — A are converted to positive
differences, in other words, to absolute differences.

We are now in a position to calculate the probability of di-
vergence. It is the area of the folded curve in Figure 6B that is
to the right of D (1.0, vertical dashed line). Notice that this area
is the sum of two pieces, the large right-hand half of the original
B — A distribution, which has an area of 0.5, plus the portion of
the folded left tail of the original B — A distribution that is to
the right of D. Three features of this result are worth pointing
out. First, consistent with intuition, the smaller the initial absolute
difference between the entities, the larger the size of the residual
folded left tail, and the closer the total probability of divergence
will be to 1. When the initial difference is zero, when the entities
start at the same size, divergence is essentially certain. Starting
from zero disparity or zero complexity, there is nowhere to go but
up. Second, the sum of the two distribution pieces will always be
greater than 0.5, meaning that divergence is always the expected
outcome, regardless of the initial difference. Third, notice that the
reversal of ordinal position can happen in the very first timestep.
The step-size distributions extend to infinity in both directions,
with the consequence that—no matter how far apart the starting
points and how low the variance of the step-size distribution—
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Figure 6. Distribution of the difference and absolute difference
between two lineages, A and B, after n timesteps. (A) Distribu-
tion of difference between A and B, where A and B are initially
separated by 1 unit. Dotted vertical line indicates initial separa-
tion. (B) The distribution of absolute differences is generated by
folding the distribution in (A) about the vertical line at x = 0. (C)
The probability density function for |B — A| (heavy blue curve) is
obtained by summing the curve bounding the light blue region
and the curve bounding the dark blue folded region. The triangle
denotes the expected value of |B — A|. Note that this expected
difference is greater than the initial difference of 1 (shown by the
dotted vertical line).

some portion of the folded left tail will extend into divergence
territory, increasing the probability of divergence above 0.5.

We can now give an equation for the probability of diver-
gence:

P(DC) = P(B—A)> D+ P(A—B)> D
=05+ [1-o(£22)], 5)
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where P(DC) is the probability of divergence, or the probability
that the distance between the lineages after n steps will be greater
than D, the absolute initial difference between the two lineages.
Also, o, is the standard deviation of the terminal distribution of
either of the random walks, and @ is the standard normal cumula-
tive distribution function. Notice that this equation is the analogue
of equation (2), which gives the probability of divergence in the
discrete case.

Finally, we can calculate the expected value of the |B — A|
distribution, in other words, the expected absolute difference be-
tween A and B after n steps. The |B — A| distribution belongs
to a class of well-known folded-normal distributions. Figure 6C
shows the distribution after folding; the expected value can be
calculated as:

2 -D’ D
ElB_Al:ﬁG"XeXp<F>+D[1_2¢<_ﬁg >], (6)

where E|B — A| is the expected absolute difference between A

and B, o, is the standard deviation of the terminal distribution of
either of the random walks ( = /% oy), D is the absolute initial
difference between the two lineages, and @ is the standard normal
cumulative distribution function. Consistent with the prediction of
the ZFEL, E|B —-A| increases monotonically with time, or in other
words, the expectation is always an increase in disparity or com-
plexity. Notice that this equation is the analogue of equation (3),
which gives expected values in the discrete case. (Eqs. 7 and 8
in Supporting Information Appendix 1 express P(DC) and E|B —
Al in terms of oy, which makes for a more direct computation in
some circumstances.)

We can now use these results to demonstrate how the ZFEL
can be applied to certain kinds of data. Hunt et al. (2010) stud-
ied a body-size trend in deep-ocean ostracods over the past
40 million years. They found a general trend toward increased size
and argued that it was driven by deep-ocean cooling over much
of that period. However, they also identified a 16 million year
period during which the cooling paused, the trend disappeared,
and the pattern of change in ostracod lineages was consistent with
a random-walk model. Figure 7 shows the pattern during that
interval.

For our purposes, we are interested in disparity, the difference
in body size between pairs of lineages and their divergence over
time. Table 1 shows probabilities of divergence as well as actual
absolute differences and the absolute differences predicted by
the ZFEL, all for a select sample of lineage pairs from Figure 7.
Supporting Information Appendix 1 explains how the calculations
were done, and Supporting Information Appendix 2 gives the R
code.

The left side of Table 1 shows results over a five million year
span for four lineage pairs that start close together (column 1).
In particular, it shows the starting difference (column 2) and the
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Figure 7. Body-size trajectories for deep-ocean ostracods. Data
are from Hunt et al. (2010). See text for discussion. See Support-
ing Information Appendix for species identification and numerical
data.

probability of divergence over five million years (column 3). This
is the probability that disparity would increase over the starting
distance, on the assumption that change in disparity was driven by
the ZFEL alone. Column 4 shows whether the lineages actually
converged (conv) or diverged (div). The left side of the table also
shows the disparity predicted after five million years by the ZFEL
acting alone (column 5), the actual disparity after 5 million years
(column 6), and a P-value for the difference between the two
(column 7).

The lineage pairs in the left half of the table were chosen
because the starting sizes of the two lineages were nearly the
same, in other words, the starting disparity was near zero. In such
a circumstance, disparity is extraordinarily likely to increase and
unsurprisingly it did so in all four pairs (column 4). The ZFEL
must have been partly responsible for this increase, but the mag-
nitude of the increases is potentially revealing. In principle, one or
more these divergences could have been encouraged by compet-
itive displacement, that is, selection favoring nonoverlap among
body sizes. In that case, the spread of terminal sizes would be
the result of selection for diversity, as well as the ZFEL, and the
spread should be greater than predicted by the ZFEL alone. How-
ever, for these four lineage pairs, none of the actual divergences
(column 6) is significantly greater than the divergence expected
due to the ZFEL alone (column 5). In other words, none of the P
values in column 7 attain statistical significance (P < 0.05), con-
sistent with (although of course not conclusively demonstrative
of) the interpretation that selection for diversification did not play
a significant role.

Another feature of the left side of Table 1 is worth a re-
mark. As the initial absolute difference increases (EF to BC to
EG to FG), the probability of increase—that is, the probability
of ZFEL-driven divergence—decreases (column 3). The reason is
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Table 1. Actual and expected absolute differences between selected lineage pairs.

Expected Actual

Lineage Absolute Div/ absolute  absolute Lineage 26.12
pair difference P(div) conv difference difference P pair (mya) 24.39 22.27 20.63 13.06
) @) 3) C)) &) (6) (7 (®) ) (10) (1) (12) 13)
Initial ~ 31.12 At26.12 At26.12 At26.12 At26.12 Initial Starting  Actual abs Actual abs Actual abs Actual abs
close mya = mya mya mya mya moderate  absolute  diff (d/c) diff (d/c) diff (d/c) diff (d/c)
spacing start spacing difference (expected) (expected) (expected) (expected)
EF 0.001 0.982 div 0.03600 0.042 0.35 BC 0.020 0.016 (¢) 0.036 (d) 0.090 (d)
(0.027) (0.036) (0.041)
BC 0.002 0.965 div 0.03603  0.020 066 EH 0.033 0.146 (d) 0.126(d) 0.185(d)
(0.042) (0.047) (0.064)
EG 0.004 0.930 div 0.03613 0.078 0.08 CH 0.035 0.004 (¢) 0.120(d) 0.059 (d)
(0.043) (0.048) (0.065)
FG 0.005 0.912 div 0.03621 0.036 0.43 FG 0.036 0.082(d) 0.046 (d)
(0.044) (0.048)
EF 0.042 0.017 (¢)  0.030 (c)
(0.048) (0.052)

that for any fixed time interval, as the starting distance between
lineages increases, the probability that they will cross decreases,
and as discussed earlier, it is the crossing that produces the ex-
pected ZFEL divergence. In the extreme case, where the initial
separation is very large, the probability of crossing would drop to
near zero, and the ZFEL expectation would be that the terminal
difference will be nearly the same as the initial difference, D. Still,
as pointed out earlier, the probability of divergence will always be
greater than 0.5, and the expected divergence always greater than
D.

The right half of Table 1 shows actual and expected changes
in diversity as a function of time for six lineage pairs. The starting
point for all pairs was 26.12 mya, at which time the members
of each pair were a moderate distance apart. For all pairs, the
dataset is complete enough to show changes in their disparity at
a number of times over a relatively long span. Consistent with
expectation, in a pure-ZFEL system, the frequency of divergence
increased with time: at 22.27 mya, there were three divergences
and two convergences; at 20.63 mya, there were four divergences
and one convergence; and at 13.06 mya, both pairs for which data
were available were divergences. Also, consistent with a central
claim of the ZFEL in the continuous case, divergence is the ex-
pectation for all pairs at all timespans. That is, all expected values
(parentheses) are greater than the starting distances. Of course, in
a pure-ZFEL world, change is probabilistic, so divergence is just
the expectation. As the table shows, convergence is still possible
and does occur.

The purpose of this exercise is to demonstrate the application
of the ZFEL null to a real dataset, but we will say a word about
interpretation of this result. First, several caveats: the pairwise
comparisons may not be independent of each other, so these re-
sults alone may not tell us very much about processes acting at
the level of the clade as a whole. Also, the ZFEL is a null hy-
pothesis, and the fact that the data are consistent with it does not
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imply the null is true. These considerations aside, if the null is
true, then it implies that selection has not acted to drive lineages
apart by some mechanism like competitive displacement. Finally,
it is worth reiterating that the ZFEL itself is consistent with more
than one hypothesis of change, such as drift or independent adap-
tive peaks (see below), which in turn suggests possible further
investigations.

Alternative Evolutionary
Mechanisms

The range of causal mechanisms underlying change in diversity
and complexity is enormous. Here, we review some of the more
commonly invoked ones and describe their relationship to the
ZFEL. As we have seen, the ZFEL corresponds to all situations in
which two lineages (or parts) experience no consistently applied
forces, and the resulting trajectories are therefore expected to
be uncorrelated. The focus in this article is on divergence, and on
detecting force-driven divergence that is significantly greater than
the ZFEL expectation. But of course the ZFEL null can also be
rejected for convergence, when the distance between two entities
is significantly less than the expectation, what might be called a
“lower tail” rejection. For purposes of this theoretical discussion,
we consider both.

DIVERSITY

1. Dirift. Two lineages undergoing random genetic drift will tend
to diverge. As discussed, this is the ZFEL.

2. Displacement. Two species competing for the same resources
will tend to displace each other, and to diverge. The process
goes by a number of names, including competitive displace-
ment. It is also one aspect of Darwin’s principle of divergence
(Fleming 2013). Competitive displacement is selection for dif-
ference, in other words, change where the driving force is the
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selective advantage, not of some particular adaptation but of
being different. It is not the ZFEL, and can lead to rejection of
the ZFEL null. The same occurs when one lineage is selected
for similarity to the other, as occurs in the various forms of
mimicry, which can lead to lower tail rejection.
. Attraction to independent adaptive peaks. If two lineages are
acted upon by different selective forces, and if those forces are
independent of each other, then they are expected to change
randomly with respect to each other. And that is the ZFEL. The
two snail species discussed earlier are an example. However, it
is not the ZFEL when peaks move systematically in a way that
drives divergence, as might occur in a coevolutionary arms
race. The same is true when peaks are stable but widely sep-
arated so that the two lineages are consistently drawn further
and further apart over many timesteps, so that the forces expe-
rienced by the two lineages are not random from one timestep
to the next. Both cases can lead to rejection of the ZFEL null.
Finally, it is also not the ZFEL when two peaks that are
very close to each other draw the two lineages together over a
number of timesteps, producing convergence and the potential
for lower tail rejection of the ZFEL. Stabilizing selection acting
on both lineages can also lead to lower tail rejection.

COMPLEXITY
1. Drift. Two parts in a species that are not under selection or

constraint will drift and therefore tend to diverge. As for two
lineages, this is the ZFEL.

. Selection for difference. The asymmetrically positioned ear
openings in some owls may have been the result of selection
for better sound localization. If so, then it was selection for dif-
ferentiation of ear location, not independent selection on each
ear. That is, it was selection for complexity and not the ZFEL.
Likewise, selection for subfunctionalization, the splitting of
a task among parts—such as perhaps the differentiation of
mouth parts in arthropods—is not the ZFEL. In general, selec-
tion arising from the advantages of the division of labor among
parts is selection for complexity and not the ZFEL. Of course,
selection can also favor convergence of part types, when a
functional advantage arises from similarity. For example, in
the evolution of the vertebral column in whales, the vertebrae
became simpler and more similar to each other, compared to
those in the highly differentiated columns of terrestrial whale
ancestors. This may have been the result of selection for ver-
tebral similarity, for a column that could function as a simple
flexible rod in locomotion. If so, this was not the ZFEL, and
the trajectories for any two vertebrae could produce a lower
tail rejection of the ZFEL null.

. Attraction to independent adaptive peaks. The argument here
parallels the one above for diversity. When two parts are acted
upon by selective forces that are independent of each other,

they are expected to change randomly with respect to each
other. And that is the ZFEL. For example, one tooth in a tooth
row might be briefly selected for one function while another is
selected for another unrelated function. Likewise, the standard
explanation for duplication and selective divergence of genes
is also the ZFEL. However, it is not the ZFEL when peaks are
widely separated so that the two parts are consistently drawn
further and further apart over many timesteps, that is, so that
the forces acting on the parts are not random over time. Instead,
there are consistently acting divergent forces, which in turn can
lead to rejection of the ZFEL null. This last mechanism was
implicit in the notion of duplication and differentiation of parts
advanced by early twentieth century paleontologists (Williston
1914, Gregory 1935). In early terrestrial vertebrates, anterior
vertebrae were selected for a new function, head support, in
addition to the older function of transmitting swimming forces.
As a result, anterior and posterior vertebrae became more dif-
ferent, increasing column complexity. To the extent that this
was the result of adaptive forces acting consistently over a
many timesteps to pull the parts toward different morpholo-
gies, along trajectories that were negatively correlated with
each other, the result was not the ZFEL, and the expectation is
that ZFEL null would be rejected.

. Complexity ratchets. Decades ago, Saunders and Ho (1976)

proposed that complexity would tend to increase in evolution
because existing parts tend to become integrated into devel-
opment and therefore difficult to remove, whereas new parts
could be added without disrupting present function. Recently,
the idea has been developed more fully under the heading
of “constructive neutral evolution,” or CNE (Stoltzfus 1999,
Lukes et al. 2011; Brunet and Doolittle 2018). In CNE, de-
pendencies arise between initially useless parts and functional
ones such that the useless ones become locked in, and their
removal is selected against. CNE is ZFEL-like in that it in-
vokes the random addition of new part types, but differs in
that it requires selection to block reversals. Another ratchet,
proposed by (Lynch and Conery 2000; Lynch and Force 2000),
occurs when neutral additions in DNA go to fixation in small
populations. Despite their affinities to the ZFEL, neither of
these is a pure ZFEL process. The ZFEL has no requirement
for negative selection or small population size. The ZFEL also
does not require that new parts have a neutral origin. New
part types can arise when existing parts are selected for new
functions (as in the tooth example above), that is, when they
change randomly with respect to other parts.

Still other ratchets are possible. For example, it could be
that as species diversity increases, niches become more com-
plex (because niches are partly defined by existing species).
The more complex niches are then filled by more complex or-
ganisms, which further increases niche complexity, and so on
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(Waddington 1969). Again, none of these complexity ratchets
involves a purely ZFEL process, and all are expected, when
they operate, to lead to an increase in complexity above that
predicted by the ZFEL.

5. Constraints on complexity. When variation is constrained by
development, parts may fail to diverge, leading to lower tail
rejection of the null. Examples include the constraints imposed
by the body plan in multicellular organisms. Insects have three
body regions, vertebrates have a notochord at an early life
stage, and so on. Variants in body plan features either do not
arise because development is canalized, or they arise but the
organism is inviable (internal selection). In either case, the re-
sult is that the differentiation of part types is limited, possibly
leading to a lower tail rejection of the ZFEL. In other words, di-
vergence fails because the absence-of-constraint-requirement
of the ZFEL is violated.

The phenomenon of DNA saturation deserves some men-
tion. When a gene with two copies evolves neutrally, both
copies eventually become fully randomized and stop diverg-
ing. When this happens, divergence can be seen as limited by
the number of nucleotides, four. In present terms, this is a con-
straint imposed by the chemistry of DNA. If a fifth nucleotide
was introduced, complexity could again increase. Again, this
sort of constraint can underlie a lower tail rejection of the
ZFEL null.

The ZFEL and Phylogeny

“Nothing in comparative biology makes sense except in the light
of phylogenetics.” Surely someone has said that, but if not, we
are willing to assert it here. One then might wonder about why
phylogenetics has played no role in what we have done so far.
The answer to that should be clear. We are attempting to show
what happens in the bare minimal model of evolution, that is, in
systems with only heritable variation. We have shown that such
systems diverge from one another with a quantifiable regularity.
Selection, constraints and phylogenetic relationships are, in our
view, to be layered in later.

Many important questions in evolution are explicitly phylo-
genetic. For instance, does evolution typically proceed in rapid
bursts of disparity within a higher taxon followed by long periods
of speciation with much less phenotypic change (Gould 1989)?
Or is evolution after branching a more conservative process where
ecological niches are preserved longer than would be expected un-
der a purely random process (what is called niche conservatism,
see, e.g. Ackerly 2009)? And what is the relationship between
divergence and species interactions (e.g., Nuismer and Harmon
2015; Drury et al. 2018)? None of these questions can be ad-
dressed empirically without putting the taxa into a phylogeny.
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A large literature of phylogenetic comparative methods has
developed to address these questions. Most basic are Brown-
ian motion (BM) models (Felsenstein 1973, 1985). Ornstein-
Uhlenbeck (OU) models (Lande 1976; Hansen 1997) add to the
BM model a parameter that represents the strength of return to
some optimal trait value. Further variations are possible. We have
to leave to the future any attempt to give anything like a precise
account of the relationship of our work to this large body of litera-
ture. But there are a few basic points we can make here. Although
our approach shares much with the BM approach, unlike that ap-
proach we have shown that the rate of diversification will decrease
with increasing distance between lineages. The logic behind this
has, we think, been well explained by our mathematical models.
The closer two lineages are, the more frequent are “crossing-over”
events (that is when convergent trajectories cross and become di-
vergent), and thus the faster is the rate of divergence. Put into a
phylogenetic context, this does predict a more rapid rate of diver-
sification just after a splitting event, but with a gradual slowdown
of that rate. Thus, the ZFEL, when operating alone, produces a
pattern that fits neither a rapid burst model, nor a pure BM model.
This, we have argued, is the appropriate null expectation.

Discussion: The Uses of
Quantification

The quantitative version of the ZFEL developed here makes it
possible to answer a number of long-standing questions in evolu-
tionary biology.

COMPLEXITY

Aside from the Valentine et al. (1994) study of cell type types in
metazoans and a few smaller scale studies (some cited earlier),
very little is known about the trajectory of complexity over the
history of life. To appreciate the size of the data gap, recall that
complexity is, like diversity, a level-relative concept, which means
that the trajectory could well be different at every hierarchical
level. An upward trend in cell types does not mean that there
was an upward trend in complexity at the level of organs, tissues,
or molecules. Thus, it is in some ways premature to talk about
the ZFEL and the causes of change. It would be helpful to first
understand the pattern to know what we need to explain.

Still, there has been a modest amount of theorizing, especially
recently, in treatments of CNE and other ratchets, discussed ear-
lier. CNE is ZFEL-like, as discussed, but it is not the ZFEL, and
the methods developed here could be used to detect it. In any
case, perhaps this small surge of interest in CNE can motivate the
development of datasets suitable for investigating how frequently
the proposed ratchets have operated. The same goes for other pro-
posed drivers of complexity. For example, complexity has been
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said to be advantageous on account of the advantages of the divi-
sion of labor (discussed in McShea 1991, 1996). The suggestion
has been made that selection generally favors greater body size,
which in turn produces selection for complexity, because larger
organisms require greater division of labor (Bonner 1988). The
argument has, perhaps, seemed too obvious and sensible not to be
true, but even if true, we do not know how pervasive this mecha-
nism has been in the history of life. The ZFEL provides a way to
investigate that.

DIVERSITY

The standard explanation in paleoecology for the diversification of
plant and animal life over the Phanerozoic, the past 540 million
years, is lineages changing under independent selective forces.
This is implicitly the ZFEL. One starfish species is under pre-
dation pressure favoring a spinier skin, whereas another faces
pressure to survive longer periods of desiccation. Continental
drift breaks a land mass into two, so that two closely related snail
species become separated and diverge as they track independently
changing environments. Lineages are not changing randomly as
they would under drift, but they are changing randomly with re-
spect to each other, independently. Thus, if the standard view is
correct, the diversification of multicellular life is the ZFEL in
action.

One major alternative is selection for divergence. Two species
competing for the same resources will tend to displace each other,
and to diverge. This is not the ZFEL. Competitive displacement
is doubtless quite common, say, in the divergence of sister taxa.
But arguably it must be rare in evolution generally, because most
species pairs do not overlap or compete much in their resources
use. A beetle species does not overlap much with a species of
cyanobacteria. Bats do not overlap much with whales. And thus,
for most pairwise combinations of species, displacement cannot
have been a significant driver of their divergence over most their
history. Consider the following simple calculation. Assume that
there are about eight million eukaryotic species (Mora et al. 2011).
It follows that there are 31,999,996,000,000 possible species pairs
in this group of eight million. There are two requirements for the
competitive displacement hypothesis. One is spatial and temporal
overlap, and the second is ecological similarity for which phylo-
genetic closeness is a good proxy. Thus let us suppose competitive
displacement occurs only between two recently split sister species
so that each species competes with exactly one other in a way that
leads to competitive displacement. On this assumption, there are
four million competitive pairs of eukaryotic species. Thus, the
fraction of the total number of species pairs that could possibly
fall under the competitive displacement hypothesis is about four
million over 32 trillion. That is 0.000000125. Notice that our es-
timate of four million competitive pairs could be off by several
orders of magnitude and yet the percent would still stay very,

very small. This is not to say that competitive displacement is
not important in evolution (see Pfennig and Pfennig 2012), but it
does not go very far in explaining the macro-pattern of biological
diversity.

Another major alternative to the ZFEL involves fixed and
separate adaptive peaks. Whales and bats do not compete, but
suppose that in the divergence of those two lineages, the whale
lineage has steadily been attracted to the preexisting whale adap-
tive peak, whereas the bat lineage has steadily been attracted
to the bat adaptive peak. If those peaks are distant from each
other, then the increasing difference between those two lineages
is explained. This is an alternative to the ZFEL because it does
not involve different lineages evolving randomly with respect to
each other. But it faces serious difficulties. First, it invokes the
idea of preexisting niches, which ignores the ecological reality of
complex evolutionary dynamics involving coevolution and niche
construction (Odling-Smee et al. 1996; Brandon and Antonovics
1996). Second, even if there are strong attractors in morphospace,
such as wings or camera eyes, it does not follow that every aspect
of morphology and behavior will be dragged along in a prede-
termined way. Thus, those other aspects of phenotype would be
subject to ZFEL differentiation. The hypothesis that macrodiver-
sity is explained by the existence of distant fixed adaptive peaks
is limited at best.

Besides these two, we see no other major alternative to the
ZFEL. But if there is not another major alternative, and if these
two can at best explain a small fraction of cases of diversification,
then we are in a position where the failure to reject the ZFEL
null is particularly informative. If data falls well within the ZFEL
expectations, as the ostracod data analyzed above does, then we
have good reason to accept the ZFEL as the main driver of di-
versification in these cases. In any case, the tools developed here
enable us to investigate this directly. Applying them across a large
number of cases would allow us ultimately to draw broader con-
clusions about the role of the ZFEL versus alternative mechanisms
in explaining life’s diversity.
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