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Little empirical work has been done to see what sort of patterns of change in morphological 
complexity ocrur in evolution, mainly because the complexity of whole organisms has been so hard 
to define and to measure. For serial structures within organisms, there are fewer difficulties; this 
paper introduces a set of complexity metrics that are designed especially for serial structures, and 
then explores some of the properties of the new metrics. Also, a principle proposed in the last century 
by Herbert Spenrer, and offered recently in a new form by the thermodynamic school of 
evolutionary thought, predicts that complexity should increase in evolution as a consequence of the 
accumulation of perturbations. Here, simulations in which perturbations are introduced to ideal and 
real series of vertebral measurements show how the complexity increase predicted by Spencer’s 
principle would be captured by the new metrics. 
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INTRODUCTION 

The notion that organismal complexity increases in evolution seems to be part 
of the conventional wisdom in evolutionary biology. The existence of a trend has 
been noted explicitly by many including Lamarck (1809 [1984]), Spencer 
(1860 [1890]), Rensch (1960), Stebbins (1969), Saunders & Ho (1976, 1981), 
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Wicken (1979, 1987), Bonner (1988) and Brooks & Wiley (1988). Nevertheless, 
many have expressed scepticism. Williams ( 1966) and Hinegardner & Engelberg 
( 1983) have questioned whether complexity has increased significantly since the 
Cambrian. McCoy (1977), Wake et al. (1986), Maynard Smith (1970), Simpson 
(1949) and others acknowledge that increases have occurred but emphasize that 
they have been restricted to certain groups and certain times and that decreases 
are common as well. 

Little empirical work that might help settle this controversy has been done 
(although see studies by Cisne, 1974 and Bonner, 1988). This is partly because 
a trend has seemed so obvious to many of its proponents as to not require 
demonstration. A more important reason is that complexity has been hard to 
define and to measure. 

Useful tools or metrics for measuring biological complexity have been devised 
for whole organisms by Schopf et al. (1975) and Bonner (1988), for complex 
organic molecules by Papentin (1982) and Yagil (1985), for behaviour by Cole 
(1985) and for nucleotide sequences by Gatlin (1972). Here I add another 
complexity metric (more precisely, a set of metrics) to the tool chest, one 
designed especially for serially homologous structures. 

In this paper I first explain the metrics and explore some of their properties. 
Then, in a series of simulations, I show how the metrics would capture the 
increase in complexity in evolution that has been predicted on theoretical 
grounds. 

COMPLEXITY METRICS FOR SERIAL STRUCTURES 

The standard approach to measuring complexity 

Complexity is usually understood to mean something like heterogeneity or 
degree of differentiation. And among modern students of complexity, there is 
some consensus that the differentiation of a system is measurable as some 
function of the number of different parts i t  has and the irregularity of their 
arrangement. A complex system is therefore one with many different parts 
arranged in a patternless configuration (Wicken, 1979, 1987; Saunders & Ho, 
1976; Papentin, 1980; Hinegardner & Engelberg, 1983; Kampis & Csanyi, 
1987). Junk heaps, glacial till, and jigsaw puzzles are complex. (For discussion of 
‘order’ and ‘organization’ and their relation to complexity, see Wicken, 1979, 
1987 and McShea, 1991.) 

Note that the concern here is only with morphological complexity, by which I 
mean the degree of physical differentiation in a system of comparable parts of 
about the same size. Excluded are the many other kinds of complexity, such as 
hierarchical (the degree to which a system is composed of nested subsystems), 
functional (the number of different tasks a system can perform), generative (the 
number of steps or instructions required to generate a system), and so on. 

Serial slructures 

Measuring the complexity of whole organisms is difficult using the standard 
approach, because it  is hard to know what to call a part and hard to find a 
simple way to characterize three-dimensional arrangements. Bonner ( 1988) has 
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made some headway using cells as parts and measuring complexity as number of 
different cell types. The approach is apt, but only rough estimates of numbers of 
cell types are possible for organisms with more than about ten. Also, the problem 
of characterizing pattern remains. 

For serially homologous structures, such as body segments in annelids, 
vertebrae in vertebrates and limb segments in arthropods, the difficulties are 
fewer. Each element in the series is a part, and in arthropods, for example, the 
types of limb segments are different enough that they can be readily 
distinguished and the number of each type can be counted. Further, the 
arrangement of structures is linear, so the complexity of their arrangement is 
easy to measure using the Boltzmann/Shannon equation. Cisne ( 1974) took 
advantage of both of these features in his pioneering study of complexity changes 
in aquatic, free-living arthropods. 

This method works for some serial structures, but not for others. In the 
vertebral column, for example, change along the sequence is continuous and the 
elemental types intergrade, so types cannot be reliably distinguished and 
counted. (It  is possible to characterize vertebral types loosely-mammals have 
cervical, thoracic, lumbar, sacral and caudal types-but for within-class 
comparisons greater resolution is needed.) The solution is to give up trying to 
count parts and instead to measure differentiation in some other way, such as the 
following. 

The metrics 

The metrics use as raw data a sequence of measurements of a single dimension 
of each element along a homologous series (for example, the sequence of 
vertebral centrum lengths in a squirrel specimen shown in Fig. 1A). They are 
thus univariate in the present discussion, although generalization to the 
multivariate case would be straightforward. 

The metrics consist of three measures of complexity and two measures of its 
opposite, order or constraint: 

i =  I 
(polarization) 

El = R-C (concentration) 

E2 = C-Cm (smoothness) 

where X, is the measurement taken from the ith element and JV is the number of 
elements. 

R is the range of variation along the series. For centrum length this is just the 
log of the difference between the longest centrum and the shortest. 

C is the polarization of the column. For centrum length, this is the log of twice 
the average absolute difference between each centrum length and the mean for 
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Figure 1. A, Centrum length in a squirrel specimen from axis to last presacral vertebra. B-H, Plots 
of centrum length (in arbitrary units) using artificial data to show how the metric works. Anti-logs 
of complexity values are shown adjacent to each plot; anti-logs are used in order to make the 
connection between the shape of the data curves and their complexity values easier to see. B, The 
extreme case in which all elements are identical and all complexity measures are equal to zero. 
C, Two elements in the ideal series in Fig. 1B become differentiated, causing a substantial increase 
in R, but only small increases in C and Cm. D, Polarization of most of the elements in Fig. IC to the 
extremes of the range increases C to the point where it approaches R, but leaves Cm virtually 
unchanged. E, The addition of numerous perturbations along the series in Fig. ID (with the range 
held constant) has some effect on C and increases Cm substantially. F, Cm is maximal, and equals C 
and R (that is, El and E2 equal zero) in a regular alternating series. C ,  H, Cm is larger when the 
source of a developmental gradient is located in the middle of a series (H)  that when i t  is at either 
end (C). 
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the series. (The average difference is doubled so that when Cm is maximal, R, C 
and Cm are all equal.) 

Cm is the irregularity of the column. For centrum length, this is the log of the 
average difference in length between adjacent vertebrae. 

E l  measures the degree to which elements are concentrated at the mean, as 
opposed to the extremes, and E2 measures smoothness or the degree to which 
each vertebra is constrained to be like the one before it. The properties of the 
metrics in certain ideal cases are discussed in the caption to Fig. 1A-E. 

Rationale 

The main justification for the metrics is that they are simple and give results 
that agree reasonably well with our intuition (although some exceptions are 
discussed below). As in the standard approach, complexity is understood as a 
measure of differentiation, but rather than using counts of parts, these metrics 
use differences among parts (or elements, in the case of serial structures). The 
thinking is that the more different the elements get from each other, the more 
complex the series. 

Importantly, no claim about the genetic basis of differentiation in serial 
structures is implicit in the metrics. They are simply devices for expressing 
quantitatively the morphological differentiation that we observe, just as a ruler 
expresses length quantitatively. Of course, if empirical studies do reveal the 
actual genetic mechanisms behind serial differentiation, quantitative metrics 
such as these will make it easy to discover what relation such mechanisms have 
(if any) to observed complexity. 

Having made this disclaimer, I would like to speculate. We seem to have two 
disparate kinds of complexity, one based on counting parts and the other on 
measured differences, but it is possible that they are really the same. To see how 
this might be so, consider a view of morphological differences as constructed or 
built up from small, standard-sized difference increments, with each increment 
understood as a different part. Thus, a large difference would be built up from 
proportionally more standard increments than a small difference; i t  would have 
proportionally more parts and thus proportionally greater complexity. 

Further, the standard increment might have a physical basis. Quantitative 
genetic theory for continuous or quantitative characters assumes that such 
characters are controlled by a large number of genes, that the morphological 
effect of each gene is small and of about the same magnitude as all others, and 
that the effects of the genes are additive (Mather, 1979; Lande, 1981; Mather & 
Jinks, 1982). In the scheme above, one gene might specify one difference 
increment. Accordingly, a large morphological difference within a series might 
require proportionally more genes to specify than a small one and thus might 
correspond to proportionally greater genetic complexity. 

I must emphasize that the metrics do not depend on these speculations for 
their justification. There is no reason why we should not have two kinds of 
complexity, one for discrete and one for continuous variation. Further, no 
correlation between genetic and morphological complexity is required. The 
metrics are tools for investigating patterns of morphological complexity change in 
evolution. If we discover that genetic complexity is independent, that will be 
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very interesting but will not undermine any evolutionary patterns that emerge 
from purely morphological studies. 

PROPERTIES OF THE METRICS 

Gradients 

The graded changes observed in serial structures has led to the suggestion that 
differentiation is controlled by developmental gradients (Danforth, 1930; 
Huxley, 1932; Butler, 1939; Van Valen, 1970; Sawin & Hamlet, 1972 and earlier 
papers in the series). The idea behind most gradient theory is that a source of a 
diffusible substance, a morphogen, occurs at some point along a developing 
series, and at that point concentration of the substance is highest and its 
morphological effect (whether to increase or decrease some feature) is greatest. 
On either side of the source, morphogen concentration and the effect on 
morphology falls off monotonically. In a series (such as that in Fig. lA), each 
local maximum and/or minimum might be interpreted as the product of a single 
source and gradient (Sawin & Crary, 1964; Van Valen, 1970). 

The metrics capture the effects of gradients as constraints on Cm, measured by 
E2. To the extent that variation follows a gradient, each element is constrained 
to be similar to its neighbour, and Cm will be low relative to C (high E2). 
Conversely, Cm is most sensitive to reversals of the direction of change, to 
numbers of peaks and troughs, and thus a large number of independent 
gradients producing many reversals will result in a high Cm value relative to C 

Cm can be fooled, so to speak, in one way. A regular, alternating series (Fig. 
1F) will have a very high Cm value, as indeed it should if each peak and trough 
represents an independent gradient. Such alternating series occur, for example, 
in the heights of neural processes of fossil captorhinomorph reptiles (Sumida, 
1987). Such series do not seem very complex, however, and it is not hard to 
imagine how such a pattern might be produced quite simply, if pairs of elements 
are developmentally linked in some fashion. T o  accommodate series that 
alternate or have even longer repeating patterns, additional metrics-variations 
on Cm-could be easily developed. 

Fig. lG, H shows a case in which Cm appears to be fooled but may not be. 
The series in Fig. 1H has the higher Cm value, because Cm weighs, so to speak, 
the effect of both peaks and troughs: both have one peak, but Fig. 1H has two 
troughs (local minima) while Fig. l G  has one. Clearly, however, both patterns 
could be produced by a single source lying at the centre in Fig. 1H and at one 
end or the other in Fig. lG. The problem could be avoided by artificially linking 
the two ends of each series and computing the Cm of each as if it were circular, in 
which case the two would have the same Cm values. O n  the other hand, Fig. 1H 
may actually be the result of two gradients, one at each end, in which case the 
difference in Cm values is appropriate. In the absence of knowledge of source 
placement, it is impossible to know what to do in concrete cases, and the choice 
of Cm protocols (the non-circular or the circular version) is difficult. The non- 
circular protocol seems preferable here, because although it is more likely to 
exaggerate complexity differences, it is also less likely to overlook them. 

(low E2).  
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Figure 2. Relations among the complexity measures proposed here (left) and analogous measures of 
information content from communications theory (right). R is always greater than C, and El 
measures the difference between them; similarly, H, (max) is always greater than H , ,  and D, is their 
difference. C is always greater than Cm, and E2 measures their difference; likewise, H ,  is always 
greater than Hm, and 0 2  is their difference. 

Differences in size may also confound the metrics in that larger organisms will 
tend to have larger values even when their homologous series are not more 
complex. Size differences do not affect the conclusions from the simulations 
below, but for comparisons among real taxa the problem is significant and will 
be addressed in a subsequent paper. 

Similarities with communications-theory metria 

R ,  C,  Cm,  El and E2 share some properties with the standard information- 
content metrics from communications theory: H I  (max), H , ,  H m ,  D1 and 0 2  
(from Gatlin, 1972). H I  (max), like R, measures the maximum information 
possible per symbol (per element, for R). H I ,  like C, measures the average 
information actually represented by each symbol (element). And H m ,  like Cm, 
measures the information represented by each symbol (element), taking into 
account the constraint introduced by the preceding element or symbol. 

There are also significant differences. HI is maximal and equals HI (max) when 
all symbols are equally probable; C is maximal and equals R, however, when all 
elements lie at the extremes of the range (half at each extreme). H m  is maximal 
and equals HI when the probability of each symbol is independent of the one 
before it; Cm is maximal and equals C when each element is as different as 
possible from the one before it (Fig. 1F). Figure 2 shows the relationships among 
the variables in each set of metrics. 

SPENCER’S PRINCIPLE 

There are few data on complexity change in evolution but there is no shortage 
of theoretical work. A great variety of rationales have been devised to explain 
why complexity ought to increase over time (McShea, 1991). For example, 
complexity increase has been said to be driven by invisible fluids (Lamarck, 1809 
[ 1984]), natural selection (Rensch, 1960; Maynard Smith, 1970; Bonner, 1988), 
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size increases (Cole, 1985; Bonner, 1988), increasing heterogeneity of the 
biosphere (Waddington, 1969) and ‘diffusion’ in a morphospace with a fixed 
lower boundary (Fisher, 1986). 

One argument that has drawn much attention recently comes from what 
might be called the internalist school. Today’s internalists argue that complexity 
increase is driven not by external forces such as selection, but by an internal 
randomizing tendency, specifically entropy or the Second Law of 
Thermodynamics (see especially Maze & Scagel, 1983, Wicken, 1987, and 
Brooks & Wiley, 1988). The internalists have glimpsed the mechanism behind 
what could, in principle, be a powerful force driving complexity increase, but the 
language of thermodynamics is awkward and unfamiliar in biology. It may also 
be unnecessary: what appears to be essentially the same mechanism was 
described in more general terms in the nineteenth century by Herbert Spencer. I 
adopt Spencer’s version here. 

Spencer (1860 [1890]) argued that given a diffuse collection of particles, all 
more or less identical, the collection will begin to condense, perhaps from gravity 
if the system is a physical one. As it condenses, the particles become 
distinguishable from each other by virtue of their differing positions within the 
whole, those outside from those inside, for example. Particles in different 
positions occupy distinct environments and thus are acted upon by different 
forces (or are acted upon differently by the same forces), causing them to 
differentiate into distinct particle types. The whole, formerly homogeneous, 
becomes heterogeneous. 

Biological systems do not seem to ‘condense’ in Spencer’s sense (although 
Denbigh, 1975 and Wicken, 1987 suggest that aggregative forces dominate in 
biological systems), but aspects of his logic are familiar in biology. In 
combination with natural selection, we use it to account for the breaking of 
primitive symmetries, for the evolution of features defining front and back in 
organisms that move, or inside and outside in those too large to depend on 
diffusion. The mechanism is general, Spencer argues, and he invokes it  to 
explain the differentiation of the planets in the Solar System from a 
homogeneous nebula, of social roles in advanced societies from their 
undifferentiated condition in primitive ones, of words in modern languages, of 
the organs in complex organisms and so on. 

The argument has a corollary, which Spencer calls “the principle of the 
instability of the homogeneous” and which I will call Spencer’s principle. 
Homogeneous systems are unstable, he argues, and they tend to differentiate by 
the passive accumulation of perturbations. The corollary does not mean that the 
homogeneous system is weaker, more prone to destruction, or selectively 
disadvantaged. Rather, i t  is unable to maintain the identity and internal 
relations of its parts. The instability, Spencer writes, is not that of a stick 
balanced on its end, but that of balanced scales becoming unbalanced due to 
rust, erosion, wind and so on. 

In evolution, the passive accumulation of perturbations can be understood as 
a randomizing vector, a force tending to increase the complexity of organisms in 
a lineage, More specifically, the implication for serial structures is that variations 
or perturbations occurring along an initially uniform series should result in 
differentiation, and this differentiation should increase as perturbations 
accumulate, Darwin ( 1859 [ 1964]), Cope ( 187 1 ), Williston ( 19 14) and Gregory 
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(1935a, b) seem to have had something like this principle in mind for explaining 
the differentiation ofserial structures, as did Ohno (1970) for gene differentiation 
in multigene families, and Pringle (195 1)  for increases in behavioural repertoires. 

EFFECTS OF PERTURBATIONS 

Some simple simulations suggest that, in agreement with Spencer’s principle, 
increasing complexity ( R ,  C and C m )  is the most probable result of the addition 
of perturbations. This is trivially true for an ideal, perfectly ordered series; 
complexity in such a series (for example, Fig. 1B) can only increase. More 
interestingly, i t  is also true for various real series which are already complex in 
some respects: the effect of perturbations on the complexity and constraint 
measures is demonstrated here using a series of homologous measurements along 
the vertebral columns of three very different mammals. 

The first set of simulations models the effect of randomly perturbing elements 
individually in a perfectly ordered series; the second set does the same with three 
real series; and the third shows the effects of adding a more structured 
perturbation, again to three real series. 

Random perturbations of an ordered series 

Consider an ideal series of 20 elements that are initially the same in some 
dimension, say length, at time zero (Fig. 1B). In  each time unit or step, 20 coins 
are flipped, one for each element, and the length of the corresponding element is 
increased by one small increment for a head, decreased by one increment for a 
tail. Thus the lengths of the elements follow independent random walks through 
time. (Random walks are prevented from crossing the zero-length line by 
setting the starting length at some very large value; this could also have been 
done by making the step sizes very small.) 

Figure 3 shows the average trajectory of R, C and Cm for the entire series over 
20 time intervals in 500 simulations. All three measures increase as the 20 
independent random walks diverge from each other. So long as upper and lower 
boundaries on the length of elements are not reached, the measures increase 
without limit. Note first that the increase is not an effect of what might be called 
size, because the length of an element decreases as often as one increases, and the 
average length (a reasonable estimate of size) remains about the same. 

Second, in real series, natural selection presumably places upper and lower 
limits on the dimensions of the elements, and therefore complexity should stop 
increasing when elements reach some high level of dispersion between the limits. 
Vertebral series, at least, are highly ordered and lie far from this high level of 
dispersion, however. Therefore, increases in complexity are always the 
expectation, as shown in the next set of simulations. Interestingly, the constraint 
measures (El  and E2) quickly stabilize, raising the question of whether or not 
they do so in real evolving systems as well. 

Random perturbations of real series 

Here, the effect of adding random noise to measurement series from real 
vertebral columns is illustrated. Figure 4A shows measurements taken from the 
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Figure 3. Random perturbations of a perfectly ordered series. Twenty originally identical elements 
underwent simultaneous, independent, one-dimensional random walks. Each step in the walks 
added one increment, with probability one half, or subtracted one increment, with probability one 
half. Complexity and constraint values were computed at each step, and the walks continued for 20 
steps. The procedure was repeated 500 times and average values at each step computed. K, C and 
Cm all show a pattern of monotonic increase, as the elements dispersed from the mean, while El and 
E2 stabilized at constant values. 

vertebral columns of three mammals, a squirrel, a seal and a chevrotain. The 
measurements are the altitudes of the neural processes (defined in Fig. 4 caption) 
from the third cervical vertebra bust behind the axis) to the last presacral 
vertebra. In the simulations, a number was selected at random for each vertebra 
from a normal distribution with a mean of zero and added to the neural process 
measurement for that vertebra (for example, Fig. 4B). R ,  C, Cm, El and E2 
values for the entire column were recomputed, the procedure was repeated 
(always starting with the original data) 100 times, and the results averaged. The 
model was run with various standard deviations. Results appear on the left in 
Table 1.  

The effect of adding random noise was almost always to increase R ,  C and Cm. 
El increased also, because noise tended to extend the range ( R )  more than it  
increased the average dispersion of the vertebrae (C). The original vertebral 
series were highly constrained, and the constraint was disrupted by the addition 
of high-frequency noise, causing E2 to decrease. That is, C increased but Cm 
increased even more. A slightly different experiment, in which the original data 
were multiplied by numbers drawn from a log-normal distribution, gave 
concordant results. 
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Figure 4. A, Measurements of neural altitude from the third cervical vertebra to the last presacral in 
three specimens: a squirrel, a seal and a chevrotain. Neural altitude is defined as the distance from 
the most anterior point on the dorsal median centrum (not including the epiphysis) to the anterior 
tip of the neural process. B, An example of the effect of the addition of random perturbations; here, 
the perturbations (lower trace) are added to the original chevrotain data to produce the modified or 
perturbed series. The perturbations are selected from a normal distribution with mean zero and 
standard deviation 0.5 cm. C, An example of the addition of a sine-wave perturbation; here, a sine 
wave (lower trace) with amplitude 0.5 cm and frequency 2 cycles (over the length of the vertebral 
column) is added to the original chevrotain data to produce the perturbed series. 
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TABLE 1. Results of adding random and structured perturbations to vertebral data 
(neural process altitude) from a squirrel, a seal and a chevrotain. Entries in the table 
indicate whether R, C, Cm, E l  or E2 increased ( + )  or decreased ( - )  for a particular 
combination of parameters. The single column on the left shows the consequences of 
introducing random perturbations drawn independently for each element from 
normal distributions with six different standard deviations (in cm). The remaining 
five columns show the results for sine-wave perturbations with five different 
frequencies (in number of cycles over the length of the column) and six different 
amplitudes (in cm). Complexity and constraint values are computed as averages of 
values from eight equal phase-angle shifts spanning one wavelength. Overall, R, C, 
Cm and El tended to increase while, at least for high frequency perturbations, E2 

tended to decrease 

Random 
perturbations 

Sine-wave 
perturbations 

Frequency 
Standard 
deviation Amplitude 0.25 0.5 I 2 4  

Chevroloin 
R 0.01 

0.05 
0.1 
0.2 
0.5 
I 

c 
0.01 
0.05 
0. I 
0.2 
0.5 
I 

Cm 
0.01 
0.05 
0.1 
0.2 
0.5 
1 

El 

E2 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0. I 
0.2 
0.5 
I 

+ + + + + + 

- 
- 
+ + + + 

+ + + + + + 

+ + + + + 
+ 

- 
- 
- 
- 
- 
- 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0. I 
0.2 
0.5 
1 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

+ + + + + + 

+ + + + + + 

+ 
+ + + + 

- 

+ + + + + + 

+ + + + 
- 
- 

+ + + + + + 

+ + + + + 
+ 

+ + + + + + 

+ 
- 
- 
+ 
+ + 

+ + + 
- 
- 
+ 

+ + + + + 
+ 

+ + + 
+ + 
+ 

+ + + + + + 

+ + + 
+ 
+ 
+ 

+ 
- 
- 
- 
- 
- 
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TABLE 1. (continued) 

Random Sine-wave 
perturbations perturbations 

Frequency 
Standard 
deviation Amplitude 0.25 

- 

Seal 
R 

c 

Crn 

El 

E2 

Squirrel 
R 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

0.01 
0.05 
0. I 
0.2 
0.5 
1 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0. I 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

- 
+ 
+ 
+ 
+ 
+ 

+ 
+ + + + 

- 

+ 
+ 
+ + + + 

- 
+ 
+ + + 
+ 

- 
- 
- 
- 
- 
- 

+ + + + + + 

0.01 
0.05 
0. I 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

0.01 
0.05 
0. I 
0.2 
0.5 
1 

0.01 
0.05 
0.1 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

0.01 
0.05 
0. I 
0.2 
0.5 
1 

~ 

+ 
+ 
+ 
+ + + 

+ + + + + + 

+ 
+ + + + + 

+ + + + 
+ + 

+ 
+ 
+ 
+ + 
- 

+ 
+ + + 
+ 

- 

0.5 I 2 

- 
+ + 
+ + + 

- 
+ 
+ + 
+ + 

+ 
+ 
+ + + 
+ 

+ + + + 
+ 
- 

+ 
+ 
+ + + 

- 

+ 
+ + + 
+ 

- 

+ + + 
+ + + 

+ 
+ + + + 

- 

+ 
+ 
+ + + 
+ 

+ + + + 
+ 
- 

+ 
- 
- 
- 
+ + 

- 
+ + + + + 

4 
- 

- 
- 
+ 
+ 
+ + 

+ + 
+ 
+ 
+ + 

+ + 
+ + + 
+ 

- 
- 
+ 
+ 
+ + 

+ 
- 

- 
- 
- 
- 

+ + 
+ + + + 
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TABLE 1. (continued) 

Random Sine-wave 
perturbations perturbations 

Standard 
deviation 

Frequency 

Amplitude 0.25 0.5 1 

C 
0.01 
0.05 
0.1 
0.2 
0.5 
1 

Cm 
0.01 
0.05 
0. I 
0.2 
0.5 
I 

El 
0.01 
0.05 
0. I 
0.2 
0.5 
I 

E2 
0.01 
0.05 
0. I 
0.2 
0.5 
1 

+ + 
+ 
+ + + 

+ + + 
+ + + 

+ + + 
+ + + 

- 
- 
- 
- 
- 
- 

0.01 
0.05 
0. I 
0.2 
0.5 
I 

0.01 
0.05 
0.1 
0.2 
0.5 
1 

0.01 
0.05 
0. I 
0.2 
0.5 
I 

0.01 
0.05 
0. I 
0.2 
0.5 
1 

+ + + + 
+ 
+ 

+ + 
+ + + 

- 

+ - 
- 
- 
- 
+ 

+ + 
+ + + 
+ 

+ + + + + 
+ 

+ 
+ + + + + 

+ 
- 
- 
- 
+ + 

+ + + + + + 

- 
+ + 
+ 
+ 
+ 

- 
- 
+ 
+ 
+ + 

+ 
- 
- 
+ + 
- 

- 
+ + + 
+ + 

2 
~ 

+ + + 
+ + 
+ 

+ 
+ 
+ + 
+ 
+ 

+ 
+ + + 
+ 
+ 

+ 
- 
- 
- 
- 
- 

4 
~ 

+ + 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ + + 
+ 
+ 

+ 
- 
- 
- 
- 
- 

Structured perturbations of real series 

In  these simulations, sine-wave perturbations were added; the waves are 
highly structured perturbations such as might be introduced in real vertebral 
columns by the addition of one or more morphogenetic gradients. Figure 4C 
shows the changes in neural altitude effected by adding a sine wave to the 
chevrotain data. For a sine wave, three parameters can vary: amplitude, 
frequency and phase angle. Table 1 shows the effect on R, C, Cm, El and E2 of 
adding waves of five different amplitudes and five different frequencies. Values 
are computed as averages from eight equal phase-angle shifts spanning one 
wavelength. 

R, C and Cm increase for most amplitudes and frequencies, although decreases 
do occur for some combinations. El increases and, at least for higher-frequency 
waves, E2 decreases, as in the random-perturbation model. Note that for low 
frequencies, especially those less than one cycle per column length, E2 tends to 
increase. This is not an anomalous result, because a low-frequency wave will 
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tend to disperse vertebrae from the mean (increasing C) without adding a great 
deal of vertebra-to-vertebra irregularity (a lesser increase in Cm). A 
multiplicative model again gave similar results. Other mammalian taxa and 
other vertebral dimensions, such as centrum height, width and length, show 
about the same degree of structuring and can be expected to yield the same 
pattern of results. 

If the perturbations considered here were at all realistic, and if no other forces 
were at work, then Spencer’s principle would make two predictions for real 
evolutionary lineages: ( 1 )  R, C and Cm should all increase; and (2) real columns 
are relatively unconcentrated (low E l )  and consequently are likely to extend 
their ranges, to produce one or a few highly differentiated vertebrae, as a result 
of perturbations. Also, real columns are quite smooth (high a), having low Cm 
relative to C, and consequently are likely to become relatively more irregular 
(lower 222) as perturbations accumulate. 

EVOLUTIONARY EXPECTATIONS 

In addition to Spencer’s principle, natural selection must also affect 
complexity. Unfortunately, we do not know how strongly (relative to Spencer’s 
principle), how frequently, or even in what direction it is likely to act. Regarding 
direction, some organismal functions must require simpler designs, and selection 
for these functions ought to reduce complexity. On the other hand, complex 
designs must also be favoured sometimes. Saunders & Ho (1976) and Stebbins 
(1969), among others, argue that complexity increases are more likely to be 
advantageous than decreases, while Castrodeza (1978) and McCoy (1977) doubt 
whether such a bias exists. The theoretical issue is a t  present unresolved, and 
therefore it is difficult to know whether to expect Spencer’s principle and natural 
selection typically to act in the same direction or to oppose each other. 

Still, the action of selection may be demonstrable in some cases. Most 
complexity decreases in single lineages, for example, are probably attributable to 
selection. (Increases, of course, may be the result of either Spencer’s principle, 
selection or both.) Among many lineages, decreases will probably not 
predominate (the conventional wisdom is probably not completely wrong), but if 
they do, this will weigh in favour of the overall efficacy of selection. Finally, if 
increases predominate, or if neither increases nor decreases predominate, it will 
be difficult to assign causes to the pattern. 

In any case, the discussion of causes may be premature. What we need is more 
data on complexity change in evolutionary lineages so that we will have some 
sense of what patterns actually occur that require explanation. The metrics 
developed here, along with the others listed earlier, provide means to that end. 
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