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Individuals with autistic spectrum disorders exhibit distinct personality traits linked
to attentional, social, and affective functions, and those traits are expressed with
varying levels of severity in the neurotypical and subclinical population. Variation in
autistic traits has been linked to reduced functional and structural connectivity (i.e.,
underconnectivity, or reduced synchrony) with neural networks modulated by attentional,
social, and affective functions. Yet, it remains unclear whether reduced synchrony
between these neural networks contributes to autistic traits. To investigate this issue, we
used functional magnetic resonance imaging to record brain activation while neurotypical
participants who varied in their subclinical scores on the Autism-Spectrum Quotient
(AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces
and of landscape scenes). We used independent component analysis (ICA) combined
with a spatiotemporal regression to quantify synchrony between neural networks. Our
results indicated that decreased synchrony between the executive control network (ECN)
and a face-scene network (FSN) predicted higher scores on the AQ. This relationship
was not explained by individual differences in head motion, preferences for faces, or
personality variables related to social cognition. Our findings build on clinical reports by
demonstrating that reduced synchrony between distinct neural networks contributes to
a range of subclinical autistic traits.

Keywords: autism quotient, executive control network, dual regression, independent component analysis,
functional connectivity, face processing

Introduction

Navigating our social environment requires us to infer the thoughts, intentions, and goals of
others (Saxe, 2006). These social computations are disrupted in a host of psychopathologies
(Lyon et al., 1999; Couture et al., 2006; Zucker et al., 2007), particularly autism spectrum
disorders (ASD; Pelphrey et al., 2004; Oberman and Ramachandran, 2007). Individuals
with ASD exhibit a range of altered attentional, social, and affective functions, as evident
with varying levels of severity in the subclinical population (Gerdts and Bernier, 2011).
Recent work has attempted to quantify variability in autistic traits---from subclinical to
clinical levels---using the Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001). This
questionnaire provides a broad assessment of multiple areas, including social skills, attention
switching, attention to detail, communication, and imagination (Baron-Cohen et al., 2001).
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Although high scores on the AQ can provide useful diagnostic
information regarding ASD (Woodbury-Smith et al., 2005),
variation in AQ primarily reflects the extent of autistic traits
within an individual, thereby providing information regarding
individual differences in autistic traits, even within a subclinical
sample (Baron-Cohen et al., 2001).

Understanding the neural bases of variability in the AQ
and ASD has emerged as a focal point across several studies
in social neuroscience (Adolphs, 2010). Studies employing
tasks requiring social cognition and attentional control
have implicated a number of brain areas---particularly the
amygdala (Ashwin et al., 2007), fusiform gyrus (Dziobek
et al., 2010), anterior cingulate cortex (Dichter et al., 2009),
and the temporo-parietal junction (Lombardo et al., 2011;
von dem Hagen et al., 2011)---in the pathophysiology of
autism. Building on these observations, other work has
highlighted the importance of underconnectivity---evident
as changes in white matter tracts or reduced synchrony
in functional magnetic resonance imaging (fMRI) data---
within these brain systems (Just et al., 2004, 2007); in other
words, greater severity in autistic traits, whether clinical
or subclinical, can be associated with reduced connectivity
within specific brain systems. Recent findings suggest that
reduced connectivity within resting-state networks containing
the amygdala is associated with greater severity in autistic
traits (von dem Hagen et al., 2013). Such results lead to the
specific hypothesis that the interactions between different
resting-state networks---particularly during the processing
of socially-relevant stimuli such as faces, which convey
important social information regarding other individuals
(Little et al., 2008)---may be disrupted by variation in
autistic traits.

We evaluated whether reduced connectivity between a
sensory network related to perception of faces relative to
scenes face-scene network (FSN) and a cognitive network
containing the anterior cingulate cortex (executive control
network (ECN; Smith et al., 2009)) predicted increased
autistic traits. To test this hypothesis, we employed fMRI
to record brain activation from 47 neurotypical males (i.e.,
individuals not exhibiting clinical symptoms of autism) viewing
alternating blocks of faces and scenes (Figure 1); those
individuals also completed the AQ as a behavioral measure
of autism-spectrum traits. We used a model-free analytic
technique (independent component analysis; ICA) (Beckmann
and Smith, 2005) to identify key neural networks and to
separate those networks from sources of unwanted variability
(e.g., head motion). These networks were then submitted to
a spatial regression to reveal how each network responds
across time within each participant. Our key analysis focused
on individual differences in the synchrony between ECN
and FSN (Figure 2). We found that reduced synchrony
between ECN and FSN correlated with greater severity in
autistic traits (indicated by higher scores on the AQ). These
findings suggest that changes in the interactions between
large-scale neural networks may contribute to the pattern
of altered function observed in individuals along the autism
spectrum.

FIGURE 1 | Experimental Task. Participants engaged in a passive visual
stimulation paradigm involving alternating blocks of faces and scenes. Blocks
were 23 s in duration and comprised six different images, with each image
presented for 3 s and followed by a 1 s fixation cross. Following every block of
visual stimulation, participants rested for 23 s.

Materials and Methods

Participants
Forty-seven male young adults completed the study.
Prescreening excluded individuals with prior neurological
or psychiatric illness. We also excluded three participants
prior to data analysis for excessive head motion (see
below for motion quality control description), leaving a
final sample of 44 for all analyses (mean age: 24.07 years;
range: 18--32 years). All procedures and methods were
conducted in accordance with guidelines approved by the
Institutional Review Board at Duke University Medical
Center. Written informed consent was obtained from all
participants.

Stimuli and Tasks
Prior to beginning the main task, all participants completed a
variant of an unrelated response-time task using visual images
(Libedinsky et al., 2011); results from this task will be reported
elsewhere. The main task employed passive visual stimulation
(Figure 1). Participants viewed eight blocks of face and scene
images. Each block presented six images of the same category,
but the attractiveness (determined by an independent group and
unrelated to our current aims) could either be high or low.
Images were presented for 3 s each and were separated by a
1 second fixation interval, yielding a total block length of 23 s
for each block. Image blocks were separated by a 23 s fixation
interval. To facilitate tensorial decomposition (Beckmann and
Smith, 2005), all participants experienced the same stimuli in the
same order: Face High Attractiveness, Scene Low Attractiveness,
Face Low Attractiveness, Scene High Attractiveness, Scene
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FIGURE 2 | Analysis Schematic. Our analysis proceeded in multiple
steps. Data were first preprocessed, and motion parameters and volumes
identified as motion spikes were regressed from the data. Filtered data
were then spatially transformed into standard (MNI) space. Next, we
stacked data across participants and submitted the resulting matrix to a
tensorial group independent component analysis (ICA). The ICA produced
spatial maps that were then back projected onto the functional data (via

spatial regression) to reveal participant-specific time courses for each
spatial map. We estimated synchrony between the time courses
associated with the spatial maps using partial correlation analyses.
Crucially, partial correlation analysis allowed us to quantify, within each
participant, the synchrony between each spatial map while controlling for
the influence of other, potentially confounding (e.g., head motion), spatial
maps.

Low Attractiveness, Face High Attractiveness, Face Low
Attractiveness, Scene High Attractiveness. Once again, our
key analyses focused on the image category rather than
attractiveness.

After completing the scanner portion of the experiment,
each participant completed two computer tasks. First,
each participant completed a simple rating task where an
attractiveness judgment was provided for each image previously
seen in the response-time task and in passive viewing task.
Each participant’s highest rated face and scene images
were then used in a preference task. This task displayed
15 pairs of faces and scenes with identical high ratings,
and the participant was asked to indicate which image he
preferred. We used the relative number of face vs. scene
choices as an idiosyncratic index of preferences; therefore,
participants could range from −15 (complete scene preference)
to 15 (complete face preference). All tasks were programed
using the Psychophysics Toolbox (Version 3) (Brainard,
1997).

Each participant also completed the AQ (Baron-Cohen et al.,
2001). As an additional control for personality variables related

to social cognition, we also used the interpersonal reactivity
index (Davis, 1983), which provided empathetic concern and
perceptive-taking subscales.

Image Acquisition
Images were acquired with a General Electric MR750 3.0 Tesla
scanner equipped with an 8-channel parallel imaging system.
To collect the neuroimaging data, we utilized a T2

∗-weighted
spiral-in sensitivity encoding sequence (acceleration factor = 2),
with slices parallel to the axial plane connecting the anterior
and posterior commissures (repetition time (TR): 1580 ms; echo
time (TE): 30 ms; matrix: 64 × 64; field of view (FOV): 243
mm; voxel size: 3.8 × 3.8 × 3.8 mm; 37 interleaved axial
slices acquired in ascending order; flip angle: 70 degrees). The
first eight volumes were discarded prior to preprocessing the
functional data. To facilitate coregistration and normalization
of the functional data, we also acquired whole-brain high-
resolution anatomical scans (T1-weighted FSPGR sequence; TR:
7.58 ms; TE: 2.93 ms; matrix: 256 × 256; FOV: 256 mm;
voxel size: 1 × 1 × 1 mm; 206 axial slices; flip angle: 12
degrees).
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FMRI Preprocessing
We used the FMRIB Software Library (FSL Version 4.1.8)1

package (Smith et al., 2004) for preprocessing. We first motion
corrected our data by realigning the time series to the middle
volume (Jenkinson et al., 2002). We then skull stripped the non-
brain material using the brain extraction tool (Smith, 2002) and
corrected for intravolume slice-timing differences using Fourier-
space phase shifting to align to the middle slice. After spatially
smoothing the images with a 5 mm full-width-half-maximum
Gaussian kernel, we applied a high-pass temporal filter to remove
signals with periods exceeding 100 s. Finally, each 4-dimensional
dataset was grand-mean intensity normalized using a single
multiplicative factor. Prior to group analyses, functional data
were spatially normalized to theMontreal Neurological Template
(MNI) avg152 T1-weighted template (3 mm isotropic resolution)
using a 12-parameter affine transformation implemented in
FLIRT (Jenkinson and Smith, 2001).

As part of our preprocessing, we also examined three partially
correlated metrics summarizing participant-specific data quality:
signal-to-fluctuation-noise ratio (SFNR; Friedman and Glover,
2006), mean volume-to-volume head motion, and number of
motion spikes within the time series. To identify volumes as
motion spikes, we first computed the root-mean-square error
(RMSE) of each volume relative to the middle time point; the
resulting values were then submitted to a boxplot threshold
to identify outliers (i.e., RMSE amplitude exceeded the 75th
percentile plus the value of 150% of the interquartile range of
RMSE for all volumes in a run). We excluded subjects where
any of these measures was extreme relative to other subjects
(i.e., beyond the upper or lower 5th percentile in the distribution
of values for that specific measure). This procedure created the
following exclusion thresholds: SFNR < 34.68; proportion of
outlier volumes > 0.121; mean volume-to-volume head motion
> 0.204 mm. These thresholds identified three problematic
subjects who were excluded from further analysis, leaving a final
sample of 44 subjects for all analyses. To improve the data quality
in the remaining subjects, we also regressed out variance tied to
the motion parameters and also the motion spikes.

General Linear Model
We used FEAT to estimate a general linear model with
local autocorrelation. The model included four regressors
corresponding to the blocks of image presentation (Face
High Attractiveness, Face Low Attractiveness, Scene High
Attractiveness, and Scene Low Attractiveness). We also included
covariates associated with motion parameters and motion spikes.
Our analysis focused on a bidirectional contrast of face blocks
relative to scene blocks. We combined data across participants
using a mixed-effects model (Beckmann et al., 2003). Brain
activations are displayed using MRIcroGL,2 and anatomical
labels for local maxima (all coordinates reported in MNI
space) were obtained using the Harvard-Oxford Cortical and
Subcortical atlases (Zilles and Amunts, 2010).

1http://www.fmrib.ox.ac.uk/fsl/
2http://www.mccauslandcenter.sc.edu/mricrogl/

Independent Component Analyses
To identify large-scale neural networks in the fMRI data, we
performed a tensor-based independent components analysis
(ICA) usingMultivariate Exploratory Linear Decomposition into
Independent Components (MELODIC) Version 3.10 within FS
(Beckmann and Smith, 2004, 2005). Prior to estimating the ICAs,
we demeaned each participant’s functional data and normalized
the voxel-wise variance to prevent regions with high variability
(e.g., cerebrospinal fluid) from biasing the ICA (Beckmann and
Smith, 2004). The resulting dataset was then whitened and
projected into a 25-dimensional subspace using probabilistic
principal component analysis. Using a fixed-point iteration
technique (Hyvärinen, 1999) to optimize for non-Gaussian
spatial source distributions, the whitened observations were
decomposed into sets of vectors that describe signal variation
across the temporal, spatial, and subject domains (Beckmann and
Smith, 2005). The estimated component maps were thresholded
by dividing the maps by standard deviation of the residual
noise and then fitting a Gaussian-Gamma mixture model to the
histogram of normalized intensity values (Beckmann and Smith,
2004).

Dual-Regression Analyses
To evaluate individual differences in connectivity with spatial
maps identified by the ICA, we employed a dual-regression
analytical approach (Filippini et al., 2009; Murty et al., 2014;
Smith et al., 2014b; Utevsky et al., 2014). The dual-regression
approach first requires a spatial-regression. In this step, spatial
maps are regressed onto each participant’s functional data,
resulting in a T (time points) × C (components) set of
beta coefficients that characterize the within-subject temporal
dynamics of each spatial network. In the second temporal-
regression step, the resulting temporal dynamics from the
first step that describe each network, in each subject, are
regressed onto each subject’s functional data. The output of
this analysis is a set of spatial maps that quantify each voxel’s
connectivity with each network identified with the group
ICA, individually for each subject. Importantly, this analysis
estimates each voxel’s connectivity with each spatial network
while controlling for the influence of other networks---some
of which may reflect artifacts, such as head motion and
physiological noise.

Quantifying Synchrony Between Networks
We adopted a synchrony analysis based on previous research
(Cole et al., 2010). We focused our core analyses on the
synchrony between the ECN and the FSN. First, we used a
spatial correlation to select the independent component map
that best matched the network defined as the ECN in prior
work (Smith et al., 2009),3 and the map that best matched
the contrast for faces relative to scenes from our GLM model,
respectively. Next, the entire set of independent componentmaps
were regressed onto the functional data to reveal participant-
specific time courses for each map. These time courses were
then submitted to a partial correlation analysis to estimate

3See http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
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TABLE 1 | Regions responding to faces relative to scenes.

Probabilistic anatomical x y z Z-stat Number of
label voxels (p)

iLOC (47%), OFG (6%) 48 −76 −16 6.91 10467 (p < 0.001)
iLOC (57%), OFG (5%) 42 −80 −12 6.81
iLOC (47%), OFG (6%) 42 −76 −10 6.76
OFG (39%), iLOC (28%) 40 −70 −18 6.71
iLOC (57%), OFG (14%) −40 −82 −16 6.61
OFG (19%) −40 −72 −22 6.5
Amygdala (71%) 16 −6 −14 6.14 7189 (p < 0.001)
Amygdala (23%) 12 −4 −16 5.98
Amygdala (6%) 18 0 −10 5.96
Amygdala (22%) −18 −2 −12 5.69
aTFC (59%), pTFC (25%) 32 −6 −42 5.62
Amygdala (80%),
Hippocampus (9%)

−18 −10 −14 5.45

ParaCG (18%), SFG (18%),
Frontal Pole (15%)

0 54 22 4.39 1896 (p < 0.001)

Frontal Pole (22%) −18 58 36 4.3
Frontal Pole (45%) −32 56 26 4.29
ParaCG (10%), SFG (10%) −10 52 22 4.25

Listed in the table are regions exhibiting greater activation for faces relative to

scenes, as determined by our general linear model. For clarity, we omitted labels

whose likelihood is less than 5%. Abbreviations: iLOC (lateral occipital cortex,

inferior division); OFG (occipital fusiform gyrus); SFG (superior frontal gyrus);

aTFC (temporal fusiform cortex, anterior division); pTFC (temporal fusiform cortex,

posterior division); ParaCG (paracingulate gyrus).

the synchrony between each network, after accounting for
correlations with all other networks (Figure 2). This technique
allowed us to control for the influence of shared variance with
the other independent components in the functional data, as
well as other potential confounds (e.g., head motion). Taken
together, this analytical approach is analogous to a between-
sessions psychophysical interaction analysis, where functional
connectivity (between networks) can be tested for dependency on
an inter-subject variable (e.g., AQ scores) (Friston, 2011; O’Reilly
et al., 2012).

Results

Identifying Key Sensory and Cognitive Networks
Our analyses focused on the interaction between social and
ECN. To identify these networks, we employed two approaches.
First, we used a general linear model to compare responses
to faces and scenes (see Section Materials and Methods). This
analysis revealed canonical areas implicated in processing visual
stimuli containing faces (Kanwisher et al., 1997) and scenes
(Epstein and Kanwisher, 1998). Specifically, a comparison of
responses evoked by viewing faces relative to those evoked
by viewing scenes revealed activation in the fusiform face
area (Table 1). Likewise, a comparison of responses evoked
by viewing scenes relative to those evoked by viewing
faces revealed activation in the parahippocampal place area
(Table 2).

Next, we used independent components analysis (ICA)
to identify distinct neural networks modulated by our task
(Beckmann and Smith, 2004, 2005; Beckmann, 2012). This

TABLE 2 | Regions responding to scenes relative to faces.

Probabilistic x y z Z-stat Number of
anatomical label voxels (p)

TOFC (60%), pTFC
(13%), LG (5%)

−26 −48 −14 7.11 18018 (p < 0.001)

TOFC (35%), LG
(23%), pTFC (20%),
pPHG (11%)

26 −40 −14 7.08

TOFC (65%), LG (13%) 30 −44 −12 7.07
TOFC (56%) 30 −48 −12 7.07
TOFC (50%) −28 −54 −12 7.04
pPHG (38%), pTFC
(28%), LG (10%),
TOFC (8%)

22 −36 −18 6.98

SFG (25%), MFG
(11%)

−22 6 50 5.09 1887 (p < 0.001)

SFG (40%), MFG
(17%)

−24 4 58 4.5

PG (8%), SFG (6%) −24 −6 44 4.17
SFG (24%), MFG
(15%)

−24 18 42 3.87

Frontal pole (52%) −34 52 2 3.55
Frontal pole (87%) −42 50 8 3.54
SFG (23%) 20 8 52 4.52 583 (p < 0.05)
SFG (44%), MFG (7%) 22 16 54 4.2
SFG (39%), MFG (6%) 22 14 50 4.17
SFG (66%) 20 12 66 3.32

Listed in the table are regions exhibiting greater activation for scenes relative

to faces, as determined by our general linear model. For clarity, we omitted

labels whose likelihood is less than 5%. Abbreviations: iLOC (lateral occipital

cortex, inferior division); PG (precentral gyrus); OFG (occipital fusiform gyrus);

SFG (superior frontal gyrus); MFG (middle frontal gyrus); TOFC (temporal occipital

fusiform cortex); pTFC (temporal fusiform cortex, posterior division), LG (lingual

gyrus), pPHG (parahippocampal gyrus, posterior division).

analysis produced a set of 25 spatial maps, with some maps
resembling artifactual signals (e.g., head motion) and others
reflecting cognitive and sensory networks. These independent
component maps were then compared (using a spatial
correlation analysis) against the contrast image associated
with viewing faces relative to viewing scenes. We selected
the independent component map with the highest spatial
correlation with our contrast image (rmax = 0.71; other maps:
rmean = 0.03); hereafter, we refer to this map as our FSN
(Figure 3, upper left). We applied a similar spatial correlation
approach to identify the ECN identified in prior work (Smith
et al., 2009). This canonical spatial map was similar to one
independent component map in our data (rmax = 0.30; other
maps: rmean = 0.04), which will henceforth be referred to as our
ECN (Figure 3, lower left). (We note that some groups label the
ECN as a salience network; however, the precise name of the
network does not impact our core conclusions because the two
names describe the same neuroanatomical network shown in
Figure 3).

Reduced Synchrony between ECN and FSN
Reflects Increased Autistic Traits
We next examined whether the ECN and FSN contribute to
variation in autistic traits. We predicted autistic traits would be
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FIGURE 3 | Synchrony Between FSN and ECN Reflect Variation in
AQ. Our key analysis focused on synchrony between spatial maps
postulated to involve face-scene processing (Face-Scene Network; FSN)
and executive control (Executive Control Network; ECN). These maps were
selected from our ICA spatial maps using spatial correlation: FSN was
matched to the general-linear model output associated with a contrast of

faces minus scenes; ECN was matched to an independent reference map
derived from another study (Smith et al., 2009). Strikingly, we found that
decreased synchrony between FSN and ECN predicted greater scores on
the Autism Quotient (AQ). Crucially, this result was not explained by
individual differences in head motion, data quality, or personality variables
related to social cognition.

associated with the synchrony between the ECN and FSN. To
test this prediction, we adopted a two-stage analytical approach
(Figure 2; Cole et al., 2010). First, all spatial maps---those
associated with signal and those associated with noise---are
regressed onto each participant’s functional data to recover
participant-specific temporal dynamics associated with each
network. Second, these temporal dynamics are then submitted
to a partial correlation analysis to estimate the participant-
specific synchrony between each map while controlling for the
influence of other, potentially confounding, maps. The resulting
synchrony measures were then correlated with AQ scores. We
found that reduced synchrony between ECN and FSN predicted
increased autistic traits (r(42) = −0.31, p < 0.05; Figure 3, right).
To evaluate the uncertainty associated with this correlation,
we bootstrapped the effect size (N = 10,000) and identified
the 95% confidence interval, which was bounded by −0.05
and −0.55. Although this confidence interval indicates that the
true effect is likely small, we emphasize that a relatively small
effect is to be expected given a large sample and the use of
measures with imperfect reliability (Vul et al., 2009; Yarkoni,
2009).

Thus, to increase our confidence in the validity of our effect
and rule out potentially confounding variables we conducted
a series of post hoc control analyses. We first examined
the relationship between autistic traits and preferences for
faces relative to scenes. Although most subjects exhibited a
slight bias toward choosing faces over scenes (mean = 4.22;
range = −15:15), these preferences were not correlated with

AQ scores (r(42) = 0.18, p = 0.24). Next, we evaluated
whether the relationship between ECN-FSN synchrony and
autistic traits was explained by individual differences in
other, potentially confounding factors related to data quality
and personality characteristics. To do this, we employed
a hierarchical regression method that regressed ECN-FSN
synchrony onto two blocks of factors. First, we included five
regressors relating to individual differences in data quality
(motion spikes and SFNR; Friedman and Glover, 2006),
preferences between faces and scenes, and personality variables
related to social cognition (perspective-taking abilities and
empathic-concern) (Davis, 1983). This set of factors failed to
explain significant variation in ECN-FSN synchrony (r2 = 0.02;
F(5,38) = 0.19, p = 0.96). Second, we added AQ scores to
our regression model. We found that the addition of AQ
scores significantly improved the fit our model (∆ r2 = 0.10;
F(1,37) = 4.30, p< 0.05). In addition, AQ scores were significantly
associated with ECN-FSN synchrony (t(37) = −2.07, p < 0.05)
(Table 3).

In a separate post hoc control analysis, we also examined
the specificity of the relationship between AQ scores and
ECN-FSN synchrony. Although our partial correlation analysis
(Figure 2) estimates inter-network synchrony while controlling
for the influence of potentially confounding variables (e.g., other
networks), it remains possible that the relationship between
AQ scores and network synchrony is driven by responses to
the task. To rule out this explanation, we quantified synchrony
between the FSN and the default-mode network (DMN), an
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TABLE 3 | Regression statistics.

Regressor Beta VIF Standard error t-stat P-value

Motion spikes −1.0141 1.85 1.2740 −0.80 0.431
SFNR −0.0003 1.74 0.0014 −0.20 0.839
Face-scene preference 0.0017 1.06 0.0034 0.51 0.616
Perspective-taking 0.0008 1.25 0.0060 0.14 0.891
Empathy 0.0038 1.21 0.0065 0.58 0.565
Autism-Spectrum −0.0089 1.20 0.0043 −2.07 0.045
quotient

The full regression model included six regressors and an intercept. Supporting

our key finding, we found that synchrony between FSN and ECN was significantly

associated with variation in AQ scores, even after controlling for potentially

confounding variables. We also summarize the severity of multicollinearity for each

regressor using variance inflation factor (VIF). As all VIF values are <5, we can be

confident that multicollinearity did not bias our results (Kutner et al., 2004).

alternative large-scale network implicated in a host of cognitive
processes (Buckner et al., 2008; Mars et al., 2012). We found
that FSN-DMN synchrony was not associated with variation
in AQ scores (r(42) = 0.01, p = 0.95). This observation
therefore increases confidence in the specificity of our key
finding.

For completeness, we also examined whether AQ scores
significantly modulated voxelwise functional connectivity with
either ECN or FSN. To test this relationship, we expanded
our synchrony analysis into a dual-regression analysis by
regressing the time course of each voxel onto the temporal
dynamics for all networks (Filippini et al., 2009; Smith
et al., 2014b; Utevsky et al., 2014) (see Section Methods).
This analysis failed to reveal any voxels whose functional
connectivity with FSN or ECN decreased (or increased) as a
function of AQ scores. Although it is challenging to interpret
the absence of an effect, these observations suggest that the
computations related to AQ and tied to ECN and FSN are
distributed across each network (Friston, 2011; Smith et al.,
2014b).

Discussion

Navigating social interactions is essential in everyday life, yet
even basic social interactions can pose tremendous difficulty
for individuals with ASD---and even for individuals who lack
a formal diagnosis of autism but who share autism spectrum
traits. Researchers investigating the neural bases of autism have
consistently highlighted the importance of atypical connectivity
(Supekar et al., 2013), particularly underconnectivity (i.e.,
reduced connectivity) across brain regions (Just et al., 2004,
2007). We predicted that increased autistic traits would
be associated with reduced synchrony between two distinct
neural networks implicated in cognitive control and face
processing. To test this prediction, we used a model-free
ICA in conjunction with a partial correlation analysis to
characterize synchrony between large-scale neural networks.
We found that reduced synchrony between the ECN and a
FSN correlated with increased AQ scores within a subclinical
population.

Our findings are consistent with previous work linking
underconnectivity to autistic traits (Just et al., 2007; Di Martino
et al., 2011; Müller et al., 2011). Reduced connectivity has
reliably been observed with regions involved in face and
visual information processing (Villalobos et al., 2005; Kleinhans
et al., 2008). In addition, tasks requiring executive control
have revealed that individuals with autism exhibit reduced
connectivity with dorsolateral prefrontal cortex (Koshino et al.,
2005). More recent observations have suggested that increased
autistic traits are also associated with reduced frontostriatal
connectivity (Sims et al., 2014). Although these diverse findings
hint that neither autism nor autistic spectrum traits result
from a single factor in isolation (Happé et al., 2006), recent
work has attempted to understand how underconnectivity
disrupts the integration of information (Just et al., 2004, 2007).
Accordingly, reduced synchrony between the ECN and FSN
networks may suggest difficulty in integrating information
across sensory and cognitive processes. Nevertheless, we note
that other interpretations are also possible. For example,
the association between ECN-FSN synchrony and autistic
traits might reflect an individual’s ability to discern the
emotional states of the faces (Alaerts et al., 2014). Alternatively,
reduced synchrony between ECN and FSN could represent
a decrease in the reward valuation and processing of these
facial images (Sims et al., 2014). While more work is
needed to discern exactly how individual differences in
ECN-FSN connectivity are influencing the behavioral and
personality traits seen in autistic individuals, we believe our
findings fit with other studies linking underconnectivity to
autistic traits.

Unlike the majority of previous work examining functional
underconnectivity and autistic traits, we focused on reduced
connectivity between distinct, large-scale neural networks. Our
approach allowed us to estimate how interactions between
the ECN and FSN contribute to variation in autistic traits
while controlling for potential confounds related to head
motion. Controlling for head motion is crucial in functional
connectivity studies (Power et al., 2012), particularly those
examining between-subject differences (Satterthwaite et al.,
2012), such as variation in autistic traits. Additionally, our
study also expands on the findings of prior observations
that have been limited to resting-state functional connectivity.
Although one previous study has examined resting-state
connectivity between networks in autistic individuals (von dem
Hagen et al., 2013), our task utilized alternating blocks of
social and nonsocial visual stimulation to drive changes in
processing, which may be an important consideration given
the social deficits observed in individual exhibiting a range
of subclinical and clinical autistic traits. Yet, we note that
directly linking task conditions (e.g., social and nonsocial) to
reduced synchrony would require a resting-state control scan
(Utevsky et al., 2014) and/or an alternative paradigm amenable
to modeling task-dependent changes in connectivity using a
beta-series correlation approach (Rissman et al., 2004). While
these considerations could help illuminate how task conditions
influence synchrony, we emphasize that our core conclusion is
agnostic on the role of task conditions and network synchrony.

Frontiers in Human Neuroscience | www.frontiersin.org 7 March 2015 | Volume 9 | Article 146

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Young et al. Network synchrony and subclinical autistic traits

Taken together, our results complement and extend prior work
examining how reduced connectivity contributes to a range of
autistic traits.

Nevertheless, we note that some limitations accompany our
results. First, we did not examine task-dependent changes in
connectivity in this study. Thus, our synchrony results---like
those reported elsewhere (Cole et al., 2010)---could partially
reflect changes in the activation of each network (Friston,
2011). Also, because our FSN arises because of differences in
the brain responses to faces and scenes, we cannot be sure that
our results are driven by neural processing specific to faces.
Future work could build on our results by isolating specific
features or qualities of facial stimuli---such as their emotional
expression (Ashwin et al., 2007), attractiveness (Smith et al.,
2014a), or perceived status (Utevsky and Platt, 2014)---and
showing that variability in those features drives the connectivity
changes we observed. In addition, although we controlled
for head motion and other potential confounds, we note
that other, unmeasured factors may contribute to our
findings. For example, AQ scores have been linked to other
personality variables, including extraversion, neuroticism, and
conscientiousness (Wakabayashi et al., 2006). Other studies
have also found associations between AQ and empathic abilities
and systemizing tendencies (Wheelwright et al., 2006) as
well as social responsiveness (Armstrong and Iarocci, 2013).
Although we did not measure these variables in our study, we
emphasize that our results were not explained by individual
differences in empathetic concern or perceptive-taking subscales
of the interpersonal reactivity index (Davis, 1983). Future
studies could further mitigate these caveats with larger (and
more diverse) samples and a larger array of personality
measures.

In summary, our results suggest that the synchrony between
large-scale neural networks can contribute to the severity of
subclinical autistic traits, as measured by the AQ. Examining
synchrony between large-scale neural networks may provide
enhanced sensitivity for detecting subtle abnormalities associated

with autistic traits (Tyszka et al., 2014). We speculate that
the relationship between large-scale neural networks could
have broad implications for social and cognitive neuroscience.
For instance, network synchrony measures may facilitate
comparative studies of social cognition by grounding questions
on the dynamics of large-scale neural networks (Hecht et al.,
2013). Additionally, our analytic approachmay have implications
for understanding other disorders as well. For example, it
remains unclear how the synchrony between large-scale neural
networks contributes to depression (Greicius et al., 2007),
schizophrenia (Calhoun et al., 2009), and anorexia (Watson et al.,
2010). In the future, clinicians could potentially use network
synchrony measures as a biomarker for the severity of various
personality disorders.
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