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Decision making is commonly conceived to reflect the interplay of mutually antagonistic
systems: executive processes must inhibit affective information to make adaptive choices.
Consistent with this interpretation, prior studies have shown that the dorsolateral
prefrontal cortex (dlPFC) is activated by executive processing and deactivated during
emotional processing, with the reverse pattern found within the ventrolateral prefrontal
cortex (vlPFC). To evaluate whether this pattern generalizes to other affective stimuli – here,
monetary rewards – we modified the emotional oddball task to use behaviorally irrelevant
reward stimuli, while matching analysis methods and task parameters to those of previous
research. Contrary to the double-dissociation model advanced for emotional stimuli, we
found that monetary stimuli produced activations within both the dlPFC and the vlPFC. This
suggests that monetary stimuli are treated like affective stimuli by vlPFC but like task-
relevant target stimuli by dlPFC. Our results suggest differential functional roles in affective
and executive processing for these brain regions: the dlPFC supports contingency
processing, while the vlPFC evaluates affective or conceptual information.
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1. Introduction

Decision making has been often portrayed as a competition
between two systems, with clear-headed judgments following
from cognitive suppression of emotional responses and hot-
headed choices arising from emotional interference with
cognition (BernheimandRangel, 2004; Kahneman and Frederick,
2002; Lowenstein, 1996;Mayberg, 1997). This commontheoretical
conception has led to neuroscience studies that have looked for
the physical basis of this competitive relationship within the
brain (Drevets and Raichle, 1992; McClure et al., 2004; Yamasaki
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et al., 2002), often postulated to reflect interactions between a
dorsal executive network (Fuster, 2000; Goldman-Rakic, 1996)
and a ventral affective network (Adolphs, 2002).

To dissociate between cognitive and affective processing
within the prefrontal cortex (PFC), Yamasaki et al. (2002) created
an “emotional oddball task”. In the traditional oddball task
(Herrmann and Knight, 2001; Picton, 1992), participants view a
series of standard stimuli, most of which require the same
behavioral responses; e.g., squares that require a right-button
press.Whenan infrequent target (or “oddball”) stimulusappears –
such as a circle that requires a left-button response – the
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Fig. 1 – Monetary Oddball Task. (a) On each trial, participants
were presented with a stimulus for 500 ms and responded
with a button press. (b) On 80% of trials, participants were
presented with the standard image (blue square), and an
accurate response was to press the 1st button. On 10% of
trials, participants were presented with a target stimulus
(red circle) and needed to alter their behavioral response
(push the 2nd button). The remaining 10% were divided
between monetary gains (5%, yellow stars worth+$2) and
monetary losses (5%, green trials worth −$1), on which the
participant should continue pressing the 1st button.
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participant must inhibit the prepotent behavioral response and
engageanalternative response.Coincidentwith thesestimuli are
well-characterized neural changes: the target stimuli evoke
increased fast electrophysiological responses that have prefron-
tal and parietal sources (Picton, 1992; Sutton et al., 1965) and
functional magnetic resonance imaging (fMRI) activation in
dorsolateral prefrontal cortex (dlPFC) and posterior parietal
cortex (PPC) (Casey et al., 2001; McCarthy et al., 1997; Strange
et al., 2000). These effects have been shown to reflect the
executive demands specific to the stimulus–behavior contingen-
cies evoked by the targets; e.g., similar patterns of activation can
be evoked by task variants that control for perceptual andmotor
demandsof the targets (Huettel andMcCarthy, 2004). Conversely,
equally infrequent novel stimuli that do not require a change in
behavior (e.g., emotionally neutral photographs of humans) do
not evoke dlPFC activation (Yamasaki et al., 2002).

In their emotional oddball task, Yamasaki et al. (2002)
introduced additional infrequent and behaviorally irrelevant
novel stimuli: emotionally valent photographs. This allowed
them to directly compare the executive processing related to the
standard oddball target stimuli with the affective processing
produced by the task-irrelevant emotional stimuli. Replicating
previous studies, the oddball target stimuli produced activations
within the dorsolateral prefrontal cortex (dlPFC), commonly
associated with the dorsal executive network (Casey et al., 2001;
McCarthy et al., 1997; Strange et al., 2000; Wang et al., 2009). The
newemotional stimuli resulted in activations in the ventrolateral
prefrontal cortex (vlPFC), an area commonly associated with
responses to affective stimuli (Mayberg, 1997). Moreover, there
was a double dissociation within these regions: target stimuli
produced deactivations within the vlPFC and emotional stimuli
deactivated thedlPFC.Thispatternconcurredwith the theoretical
model of competition between the executive and affective
networks.

It remains unclear whether these effects of task-irrelevant
emotional novels – i.e., enhanced activation in vlPFC and
suppressed activation in dlPFC – generalize to other forms of
affective stimuli, like motivational rewards. Emotional images
andmotivational rewards are processed, at least in part, through
different pathways; notably, evaluation of rewards relies heavily
on dopaminergic midbrain neurons and their projection targets
(for reviews, see Dayan and Balleine, 2002; Haber and Knutson,
2010). Yet, substantial similarities also exist. Reactions to
emotional imagesand learningabout rewards relyonoverlapping
neural circuitry that includes the striatum, the amygdala, and the
ventromedial prefrontal cortex (vmPFC) (for reviews, see Balleine
et al., 2007; LeDoux, 2007; Murray et al., 2007, respectively).
Moreover, the emotional and valuative responses to stimuli can
interact. In the phenomenon of selective satiety, the perceived
pleasantness and reward value of a specific food decrease in
tandem with consumption (for review, see Rolls, 2007). Given
these similarities, thepresentationof rewardswithout behavioral
change should result in diminished activation (or deactivations)
of dlPFC, consistent with models of affect–cognition interactions
(Kahneman and Frederick, 2002; Lowenstein, 1996; Mayberg,
1997).

Here, we adapted the emotional oddball task into a
monetary oddball task that used real rewards, including both
monetary gains and losses, which were delivered infrequently
and without requiring a change in behavior. These stimuli
allowed us to separate processes engaged due to alteration of
behavior from those engaged by behaviorally irrelevant
monetary stimuli. We conducted two independent sets of
analyses on fMRI data: whole-brain voxelwise analyses, and
region-of-interest (ROI) analyses using the approach of
Yamasaki et al. (2002). The natural hypothesis is thatmonetary
stimuli shouldproduce the samedouble-dissociationwithinPFC
as found for emotional stimuli. However, our analyses reveal
that monetary stimuli produced activations within both the
dlPFC and vlPFC, inconsistent with this theoretical competitive
relationship.
2. Results

We examined the fMRI data from twenty subjects participating
in a monetary oddball task (Fig. 1), using both whole-brain
regression and time-course analyses (see fMRI data acquisition
and analysis).

2.1. Behavioral data

Average response times and accuracy rates are shown in
Table 1. Target trials resulted in increased response times and
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decreased accuracy, as compared to standard trials (p<0.05,
within-participants' t-tests). Consistent with our description
of the monetary stimuli as behaviorally irrelevant, gains and
losses resulted in no change in accuracy, although an increase
in response time was found for gain trials.

2.2. Whole-brain regression analyses

We found significant activation to targets (targets>baseline)
within regions broadly constituting the dorsal executive
network – the dorsolateral and dorsomedial prefrontal cortex
(dlPFC and dmPFC, respectively), posterior parietal cortex
(PPC), and posterior cingulate cortex (PCC) – in addition to
bilateral anterior insula (aINS) and a small dorsal aspect of
right ventrolateral prefrontal cortex (vlPFC). This pattern of
target-related activation matches that from prior studies
using variants of the oddball task (e.g., Fichtenholtz et al.,
2004; Huettel et al., 2002; Yamasaki et al., 2002). Within all of
these regions, we also found activations to both monetary
gains and losses compared to baseline (Fig. 2, and Table 2),
suggesting that unexpected monetary gains and losses evoke
executive processes overlapping with the executive processes
associated with task-relevant targets.

By contrasting between the different classes of infrequent
(oddball) stimuli, we examined the specific activations
produced by behavioral-relevance (for targets) from those
due to behaviorally irrelevant valuative processing (for gains
and losses). Targets produced greater activation compared to
monetary stimuli (i.e., the intersection of targets> losses and
targets>gains contrasts) in the precentral and postcentral gyri,
consistentwith the specificmotor preparatory demands of the
target trials (Fig. 2 and Table 3). Monetary trials produced
significantly greater activation relative to targets (i.e., the
intersection of gains> targets and losses> targets contrasts),
within the lateral occipital cortex (LOC), precuneus, and
along the border between dlPFC and vlPFC (Fig. 2 and
Table 3). Notably, no voxels within the amygdala exhibited
significant activation to reward novels (main effects of gains or
losses, or for their conjunction), whereas Yamasaki et al. (2002)
found a significant amygdala response to their emotional
novels.

Significant deactivations to targets relative to the standard
baseline were found in the left frontal pole, superior frontal
gyrus (SFG), dlPFC, vlPFC, precuneus, and right precentral
gyrus. Significant deactivations to both gains and losses
(conjunction of gains>baseline and losses>baseline) were
only found in the bilateral occipital pole. In contrast to the
Table 1 – Behavioral response times and accuracy.
Average response times and accuracy rates for each of
the stimuli types. Asterisks (*) indicate significant
difference (paired t-test, p<.05) compared to the Standard
stimulus.

Stimulus type Response time
mean (sd) ms

Accuracy

Standard 380 (71) 99.3%
Targets 482 (91) * 87.2% *
Gains 524 (112) * 97.5%
Losses 465 (120) 98.5%
results of Yamasaki et al. (2002), no deactivated voxels were
found within the dlPFC for the main effects of either gains or
losses, or for their conjunction.

2.3. Time-course analyses

As a stronger comparison of our results to previous findings, we
replicated the analysis methods of Yamasaki et al. (2002). We
used right dlPFC and left vlPFC ROIs, each an 8-mm sphere
centered on the activation centroid reported by Yamasaki and
colleagues (dlPFC: MNI coordinate: x42, y30, z30, and vlPFC: MNI
coordinate: x−51, y33, z6 [converted fromTalairachwithPickatlas,
Wake Forest University]). This ROI-based analysis (Fig. 2 and 3a)
revealed dlPFC activations to targets, gains, and losses (Fig. 3b).
However, within the vlPFC, we found the same dissociation
between executive and valuative stimuli as Yamasaki and
colleagues found between executive (deactivations) and
emotional stimuli (activations), with significant activations to
gains and losses with deactivations for targets (t-tests, p<.05;
Fig. 3c). A Region*Condition interaction test (Poldrack et al., 2008)
allowed us to statistically verify these apparent dissociations —
returning significantmain effects for ROI and condition aswell as
their interaction (2-way repeated measures ANOVA of average
response [window from4.5 to 7.5 s] by ROI and condition, ps<.05).
These results showed that task-irrelevant monetary rewards
produce activations similar to those produced by targets in the
dlPFC, but activations similar to emotional novels within the
vlPFC.

Using additional focused-region-of-interest analyses based
upon Tricomi et al. (2004), we examined executive and reward
processing within the striatum. We extracted time courses
from the caudate in each hemisphere, to dissociate between
our behaviorally-relevant target trials and our reward-relevant
but behaviorally-irrelevant monetary stimuli. In both left and
right caudate, we found activations for targets and gains
(t-tests, p<.05), with weak, non-significant deactivations to
losses (Fig. 3d).We extended these analyses by also examining
the putamen and nucleus accumbens (in each hemisphere),
and found the same pattern of significant activations across
all three striatal nuclei, bilaterally(Fig. 3e–f). This suggests that
these dorsal and ventral striatal nuclei contain signals of both
the behavioral relevance and the behaviorally irrelevant
reward value of stimuli, rather than only the contingent
signals suggested by Tricomi et al. (2004).
3. Discussion

We examined how executive and valuative processes are
dissociated within the prefrontal cortex and striatum through
the use of a monetary oddball task. Our initial analyses
replicated the activations to target stimuli produced in other
instances of the oddball task, with activations throughout the
dorsal executive network – bilaterally through the dlPFC,
dmPFC, PPC, PCC – as well as bilateral aINS and a small dorsal
aspect of right vlPFC (Casey et al., 2001; McCarthy et al., 1997;
Strange et al., 2000; Tricomi et al., 2004;Wang et al., 2009). And,
similarly to prior work, we found that behaviorally irrelevant
monetary stimuli (gains and losses) engage the vlPFC in a
manner similar to that reported to behaviorally irrelevant
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Fig. 2 – Dissociating activations to targets, gains, and losses. Shown are conjunctions and contrasts of neural activations to
targets andmonetary trials. In red are neural regions activated by targets, gains, and losses (conjunction of activations to targets,
gains, and losses). In green are regionswheremonetary trials produced greater activation than targets (intersect of gains> targets
and losses> targets). In blue are regions where targets produced greater activations than monetary trials (intersect of
targets> losses and targets>gains). Black circles designate the locations of the ROIs derived from Yamasaki and colleagues (see
text for details).

56 B R A I N R E S E A R C H 1 3 9 5 ( 2 0 1 1 ) 5 3 – 6 1
emotional stimuli. However, we also found that these
monetary stimuli engage the dlPFC similarly to behaviorally
relevant targets, even though the monetary stimuli are
Table 2 – Activation table for regions that presented
increased activation to the presentation of targets, gains,
and losses. The coordinates of centroids of overlap
activations are presented, with included neural structures
within each cluster, identified using the probabilistic
Harvard-Oxford atlases within FSLview. Included are all
overlap clusters with over 10 voxels.

Cluster centroid
coordinates
(MNI, mm)

Cluster
(# voxels)

Included brain regions x y z

23 L middle frontal gyrus −40 48 8
175 L middle frontal gyrus −40 32 20
2326 R frontal pole 46 24 16

R insula
R middle frontal gyrus
R inferior frontal gyrus
R precentral gyrus

297 R anterior cingulate cortex 6 24 42
R superior frontal gyrus

299 L insula −32 20 −2
266 L middle frontal gyrus −46 10 26
123 R Middle Frontal gyrus 38 6 50
579 Posterior cingulate cortex 2 −28 28
1635 L superior parietal lobule −34 −50 44

L lateral occipital cortex
L supramarginal gyrus
L postcentral gyrus

349 R precuneus 10 −64 46
behaviorally irrelevant; i.e., they do not require changes in
behavioral response or result in diminished behavioral
accuracy.

3.1. dlPFC: contingency detection and recall

Our results suggest that infrequent monetary rewards engage
contingency processing within dlPFC. The dlPFC has long been
implicated in the control processing necessary for learning
Table 3 – Activation table for the regions that presented
significant differences in the contrasts of targets to
monetary stimuli (gains and losses) and the reverse.
Conventions similar to Table 2.

Cluster centroid
coordinates
(MNI, mm)

Cluster
(# voxels)

Included brain
regions

x y z

Targets>gains ∩
targets>losses
938 L precentral gyrus −38 20 52

L postcentral gyrus
Gains>targets ∩
losses>targets
141 L inferior frontal gyrus −52 30 18
511 L inferior frontal gyrus −42 22 20

L middle frontal gyrus
L frontal pole

498 L lateral occipital cortex −32 −66 44
L angular gyrus
L superior parietal lobule

221 Precuneus 2 −62 40
283 R lateral occipital cortex 34 −70 40
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Fig. 3 – Time course comparison of target, gain, and loss activations in the vlPFC, dlPFC, and striatal nuclei. (a) Shown are the
ROIs used to examine the left vlPFC (cyan), right dlPFC (red), the left caudate (purple), left putamen (light green), and nucleus
accumbens (yellow). (b) Time courses ofmodulation of left vlPFC by standard, target, gain, and loss conditions. Error bars indicate
±1 standard error of the mean. The time window of statistical analyses is shown in gray. (c) Time courses of modulation in
dlPFC to standard, target, gain, and loss conditions. (d) Time courses of modulations of left caudate by standard, target, gain, and
loss conditions. (e) Time courses ofmodulations of left putamen by standard, target, gain, and loss conditions. (f) Time courses of
modulations of left nucleus accumbens by standard, target, gain, and loss conditions.
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environmental contingencies and producing appropriate
behavioral responses to unexpected stimuli (Botvinick et al.,
2001; Duncan and Owen, 2000; Goldman-Rakic, 1996; Hon
et al., 2006; Huettel and McCarthy, 2004; Mansouri et al., 2009;
Miller and Cohen, 2001; Mullette-Gillman and Huettel, 2009;
Ridderinkhof et al., 2004; Robbins, 2007; Walton et al., 2004;
Wise et al., 1996). Behaviorally irrelevant and novel emotional
stimuli, as used by Yamasaki and colleagues, evoke no
changes from the current response contingency and no
dlPFC activation (Yamasaki et al., 2002). Conversely, when
emotional stimuli have been presented as behaviorally
relevant targets, they generate dlPFC activation (Fichtenholtz
et al., 2004).

An alternative explanation could be that the dlPFC is
simply engaged by the presence of an unexpected or novel
event. Such an explanation is initially attractive, as it would
explain the activations to all infrequent stimuli found both
within this study and within that of Fichtenholtz and
colleagues (Fichtenholtz et al., 2004), and potentially explain
whywe found twice asmuch activation for gains and losses as
we found for targets (the gains and losses were each half as
frequent and therefore twice as unexpected). However, this
explanation cannot account for the deactivations found by
Yamasaki and colleagues to unexpected behaviorally irrelevant
and novel emotional stimuli (Yamasaki et al., 2002). Of future
interest will be determining under what conditions, if any,
emotional stimuli also produce dlPFC activations, and whether
monetary rewards can generate the dlPFC deactivations of
Yamasaki andcolleagues.Alternatively, thenatureof rewarding
stimuli might result in contingency processing regardless of
their behavioral relevance.

Interestingly,multiple studies have suggested that the dlPFC
is involved invalueprocessing—withactivationsmodulatedby
the presence or level of rewards (Plassmann et al., 2010;
Savine and Braver, 2010). Our activations to monetary gains
concur with this view. However, our found activations to
monetary losses suggests that the level of dlPFC activation
may reflect the motivational salience of stimuli, with motiva-
tion to achieve gains or avoid losses, rather than a monotonic
value function across losses and gains (salience and valence).
Such salience-modulation of dlPFC is further supported by the
activations we find for target trials, which are certainly salient
although they present no external rewards or losses.

3.2. vlPFC: conceptual processing, including affective
concepts

Within the vlPFC, we found that monetary gains and losses
producedactivationssimilarly to theemotionalnovelspresented
by Yamasaki et al. (2002), whereas targets produced deactivation.
These results indicate that this anterior vlPFC activation is
produced by both monetary and emotional affective stimuli.
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Previous studies have suggested that this region ismodulated by
the value of available options during goal-directed choice (Hare
et al., 2008), and that deactivations of this region reflect self-
control processing to inhibit value signals of undesired actions
(Camus et al., 2009; Hare et al., 2009). We find activations to both
positive and negative rewards, suggesting this region may
encode the affective magnitude, an affective signal that does
not differentiate between positive and negative stimuli. Our
deactivationsduring target trials are compatiblewith the idea that
this region receives inhibitory signals from the executive system
(Camuset al., 2009;Hare et al., 2009). Yet, our results argueagainst
any simple opposition between dorsal and ventral PFC regions,
given that monetary gains and losses activated both aspects.

An alternative explanation of vlPFC function arises from
studies of conceptual mnemonic retrieval, which suggest that
the vlPFC is engaged by higher order contingency processing of
semantic information (Badre and Wagner, 2007; Buckner and
Koutstaal, 1998; Dobbins and Wagner, 2005; McDermott et al.,
2000). In non-affective memory tasks, activations of the vlPFC
occur during episodic retrieval of conceptual information, with
deactivations during simple perceptual or novelty-detection
tasks (for example, see Dobbins and Wagner, 2005). These
results suggest that the vlPFC is not processing affective
information, but rather co-occurring semantic information.
Their results concur with our vlPFC activations for monetary
stimuli (which would engage conceptual processing) and
deactivations for target stimuli (similarly to that found for
novelty-detection). This interpretation also concurs with recent
suggestions of level-of-processing differences between the
dlPFC and vlPFC (for reviews, see Badre and Wagner, 2007;
Badre and D'Esposito, 2009), with the dlPFC engaged by simple
contingency processes to identify stimuli and determine the
behavioral response, while the vlPFC is engaged during abstract
conceptual processing. However, such a depth of processing
account does not suggest an explanation for the deactivations
found in the vlPFC during target presentation.

3.3. Striatum: integration of value and action

Tricomi and colleagues investigated caudate function using
variants of the oddball task that incorporated behaviorally
relevant monetary rewards (Tricomi et al., 2004). They found
that caudate activation was evoked by stimuli in which there
was a contingency between action and reward. Vitally, these
experiments did not dissociate between reward evaluation
and behavioral response processing, so their data cannot
predict caudate responses to behaviorally irrelevant rewards
or behavioral processing in the absence of a reward.

We found that striatal regions were engaged both by targets
(i.e., behavioral change without a reward) and monetary gains
(i.e., rewards without behavioral change). In concurrence with
this, Lau and Glimcher (2007, 2008) examined ventral striatum
neurons while non-human primates performed a reward
foraging task (Lau and Glimcher, 2007; Lau and Glimcher, 2008).
Lau found that individual neurons exhibited tuning properties
modulated by both the received reward and the action taken.
Parallel striatal responsivity to rewards and behavioral changes
concurs with previous accounts of involvement of the striatum
in action-outcome learning (for reviews, see Balleine et al., 2007;
Seger, 2008), and with previous studies showing alterations of
striatal responsivityduring learning (Delgadoetal., 2005;Tricomi
et al., 2009). Note that the potential dissociation within the
striatum – increased activation to gains, but neutral or decreased
activation to losses – is consistent with prior studies (Delgado
et al., 2000; Breiter, et al., 2001; Delgado, et al., 2003; Tom et al.,
2007).

3.4. Summary

We examined a reported dissociation between executive and
emotional signals in PFC, during performance of an oddball task
(Yamasaki et al., 2002). We found that while responses in
anterior vlPFCdogeneralize tomonetary rewards, the responses
in the dlPFC do not. Rather, monetary rewards evoke increased
activation in thevlPFC, like emotional stimuli, butalso increased
activation in the dlPFC, like task-relevant targets. Combined, our
results suggest differential functional roles for these brain
regions inaffectiveandexecutiveprocessing: thedlPFCsupports
simple contingency processing (with salience-modulation), the
vlPFC evaluates affective or conceptual information, and the
striatum learns relationships between actions and their
rewards.
4. Experimental procedures

4.1. Participants

Twenty-ninehealthy, right-handedyoung adults participated in
this experiment (age range: 18–36 years; mean age: 24 years; 16
female). Data from 9 participants were excluded prior to data
analysis (scanner error, 2 participants; head movement of
greater than one voxel, 3 participants; task accuracy below
60%, 4 participants), leaving data from 20 individuals in the
reported sample. Participants were compensated based upon
stimuli presentation during their fMRI session (as described
below), and received an additional $5 for achieving 95%accuracy
in theirbehavioral responses.Meanpaymentacrossparticipants
was approximately $45. All participants provided informed
consent under a protocol approved by the Institutional Review
Board of Duke University Medical Center.

4.2. Task

In our monetary oddball task, participants viewed a rapidly
presented series of colored shapes, each displayed for 500 ms
with a stimulus-onset asynchrony of 3000±600 ms (Fig. 1a). The
shape of the presented stimulus determined whether the
participant should press Button-1 or Button-2 (index or middle
finger on right hand; Fig. 1b). Most trials were of standard stimuli
(80%); i.e., squares that required a Button-1 response. The
remaining trials contained three types of infrequent stimuli. On
target trials (10%), a circle appeared and required a Button-2
response. The final 10% of trials were divided between financial
gains ($2, indicated by a star) and losses (−$1, indicated by a
triangle). Importantly, the gain and loss trials required that the
participantpressButton-1,maintaining thebehavioral response
from the frequent standard trials. To equate their affective
magnitudes, we used a 2:1 ratio between gains and losses as an
approximation of the population median in loss aversion
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(Camerer, 1998; KahnemanandTversky, 1979;Koszegi andRabin,
2006).

Both standards and targets varied in color and size across
stimuli to prevent visual habituation, while gain and loss
stimuli remained constant to maximize their discriminability.
Participants performed 5 or 6 runs (mean: 5.6) of 140 trials
each. All stimuli were viewed through LCD goggles (Resonance
Technologies, Inc.), and all button presseswere recorded using
a custom fiber-optic response box.

4.3. FMRI data acquisition and analysis

FMRI data were collected with a gradient-echo inverse-spiral
pulse sequence (TR=1500 ms, TE=31ms, 34 axial slices parallel
to the AC–PC plane, 3.75*3.75*3.8 mm) on a GE 4T scanner with
an eight-channel phased-array head coil. High-resolution 3D
full-brain SPGR images were acquired to aid in normalization
and coregistration. Headmotion was restricted using a vacuum
cushion and tape.

We performed two types of analyses: regression using the
general linearmodel and time-course evaluation.Our regression
analyses used FEAT (FMRI Expert Analysis Tool) version 5.98,
part of the FSL package (Smith et al., 2004; Woolrich et al., 2009).
The following pre-processing steps were applied: motion
correction using MCFLIRT, slice-timing correction, removal of
non-brain voxels using BET (Smith, 2002), spatial smoothing
with a Gaussian kernel of full-width-half-maximum of 6mm,
and 50 s high-pass temporal filtering. Registration to high
resolution and standard images was carried out using FLIRT
(Jenkinson and Smith, 2001).

Our first-level FEAT model contained 3 regressors, one for
each of the rare stimuli types (e.g., targets, gains, and losses). To
construct each regressor, we defined impulse functions of unit
duration and unit weight at the onset of each stimulus, and
convolved the resulting timecourse with a double-gamma
hemodynamic response function. Of note, this model uses the
standard trials asa task-relatedbaseline to control for processing
associated with visual perception and motor responses.

Second-level FEAT analyses combined across runs for each
participant using a fixed-effects model. Third-level, across-
participants analyses used a FLAME (stage 1) random-effects
analysis, with automatic outlier de-weighting (Woolrich, 2008).
All statistical inferences, including data visualization, are
whole-brain corrected (cluster-significance threshold corrected
to p<0.05; voxel z>2.3). Regions of interest (ROI) masks were
created, and centroids of overlap activations were calculated
using MRIcron (Rorden et al., 2007).

Our time-course analyses replicated the procedures of
Yamasaki et al. (2002). The dlPFC ROI was an 8 mm sphere
around the activation centroid reported by Yamasaki and
colleagues (MNI coordinate: x42, y30, z30). The vlPFC ROI was
an 8 mm sphere centered on the coordinate found by
Yamasaki and colleagues (MNI coordinate: x−51, y33, z6,
converted from Talariach with Pickatlas, Wake Forest Univer-
sity). Additional anatomical ROIs were defined in the caudate,
putamen, and nucleus accumbens – based on prior literature
indicating specific effects of behaviorally relevant rewards in
those regions (Tricomi et al., 2004) – all derived from the
probabilistic Harvard-Oxford atlas within FSLview. Each ROI
was constructed by thresholding the probabilistic map for each
structureat≥25%probability (threshold selected tomaximize the
apparent spatial coverage while minimizing the overlap across
regions). After the preprocessing steps above, we extracted the
temporal waveforms within each designated ROI time-locked to
the onset for each of the target, gain, and loss stimuli within each
run. Each peri-stimulus epoch comprised 11 time points from3 s
before stimulus onset through 12 s after stimulus onset, using
1.5 s steps. To test for changes in activation, we used t-tests to
contrast the average hemodynamic responses from 4.5 to 7 s
after stimulus onset, combining these time points across
participants.
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