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Analyzing distributed patterns of brain activation using multivariate pattern analysis (MVPA) has become a
popular approach for using functional magnetic resonance imaging (fMRI) data to predict mental states.
While the majority of studies currently build separate classifiers for each participant in the sample, in
principle a single classifier can be derived from and tested on data from all participants. These two
approaches, within- and cross-participant classification, rely on potentially different sources of variability
and thus may provide distinct information about brain function. Here, we used both approaches to identify
brain regions that contain information about passively received monetary rewards (i.e., images of currency
that influenced participant payment) and social rewards (i.e., images of human faces). Our within-
participant analyses implicated regions in the ventral visual processing stream—including fusiform gyrus and
primary visual cortex—and ventromedial prefrontal cortex (VMPFC). Two key results indicate these regions
may contain statistically discriminable patterns that contain different informational representations. First,
cross-participant analyses implicated additional brain regions, including striatum and anterior insula. The
cross-participant analyses also revealed systematic changes in predictive power across brain regions, with
the pattern of change consistent with the functional properties of regions. Second, individual differences in
classifier performance in VMPFC were related to individual differences in preferences between our two
reward modalities. We interpret these results as reflecting a distinction between patterns showing
participant-specific functional organization and those indicating aspects of brain organization that generalize
across individuals.
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Introduction

Humans can rapidly identify, categorize, and evaluate environ-
mental stimuli. Identifying the neural mechanisms that underlie
stimulus evaluation is a fundamental goal of cognitive neuroscience.
Part of that research agenda includes the identification of functional
changes in the brain that predict the characteristics of perceived
stimuli. An important recent approach involves analyzing functional
magnetic resonance imaging (fMRI) data for task-related patterns of
information (Kriegeskorte and Bandettini, 2007), often through the
application of techniques from machine learning, called multivariate
pattern analysis (MVPA). Although still less popular than standard
univariate techniques, MVPA continues to grow in scope, as evidenced
by recent overviews (Haynes and Rees, 2006; Mitchell et al., 2004;
Norman et al., 2006; O'Toole et al., 2007), tutorials (Etzel et al., 2009;
Mur et al., 2009; Pereira et al., 2009), and consideration of potential
applications (deCharms, 2007; Friston, 2009; Haynes, 2009; Spiers
and Maguire, 2007).

Studies employing MVPA now cover a diverse set of topics. The
earliest and most-common targets were feature representations and
topographies in the visual cortex (Carlson et al., 2003; Cox and Savoy,
2003; Haynes and Rees, 2005; Kamitani and Tong, 2005). More recent
studies have broadened the application of MVPA to many other types
of information: hidden intentions (Haynes et al., 2007), free will
(Soon et al., 2008), odor processing (Howard et al., 2009), scene
categorization (Peelen et al., 2009), components of working memory
(Harrison and Tong, 2009), individual differences in perception
(Raizada et al., 2010), basic choices (Hampton and O'Doherty,
2007), purchasing decisions (Grosenick et al., 2008), and economic
value (Clithero et al., 2009; Krajbich et al., 2009). In striking examples,
feature spaces determined usingMVPA have been extended to decode
the content of complex brain states, such as identifying specific
pictures (Kay et al., 2008) and reconstructing the contents of visual
experience (Miyawaki et al., 2008; Naselaris et al., 2009).

Nearly all MVPA studies that employ classifiers build an indepen-
dent classification model for each participant, based on the trial-to-
trial variability in the fMRI signal. This approach is well-suited to
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Fig. 1. Experimental task. Participants passively viewed a randomized sequence of
images of faces and ofmonetary rewards (2 s event duration; variable fixation interval).
The face images varied in valence from very attractive to very unattractive, based on
ratings from an independent group of participants. The monetary rewards were drawn
from four different values (+$5, +$1, −$1, and −$5) and influenced the participant's
overall payout from the experiment. To ensure task engagement, participants
responded to infrequent visual targets that appeared as small yellow borders around
the image. Shown is the uncued-trial condition; the cued-trial condition had similar
structure, but also included a preceding square cue that indicated whether a face or
monetary amount was upcoming.
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identify brain regions that play a consistent functional role within-
participants, but it cannot make claims about common cross-
participant representation. While relatively few studies have adopted
the latter approach, some early applications have targeted deception
(Davatzikos et al., 2005), different object categories (Shinkareva et al.,
2008), mental states that are consistent across a wide variety of tasks
(Poldrack et al., 2009), attention (Mourao-Miranda et al., 2005),
biomarkers for psychosis (Sun et al., 2009), and Alzheimer's disease
(Vemuri et al., 2008). To date, however, no study has systematically
evaluated whether within- and cross-participant analyses provide
distinct information about brain function.

Theremay be important functional differences between the results
of within- and cross-participant MVPA. The popularity and promise of
MVPA stems from the notion that its analyses go beyond demon-
strating the involvement of a region in a particular task; they provide
important information about the representational content of brain
regions (Mur et al., 2009). Accordingly, joint examination of within-
and cross-participants patterns may clarify how information is
represented within a region. Regions that contribute to the same
task may do so for different reasons. One may be consistently
recruited but represent participant-specific information, while
another's functional organization may reflect both common recruit-
ment and common information across individuals. The objective of
the current study was to provide such comparisons in brain regions
whose functional contributions to a task might reflect general or
idiosyncratic effects, across individuals.

Here, we employed the “searchlight” method (Kriegeskorte et al.,
2006) to extract local spatial information from small spheres of brain
voxels while measuring fMRI activation in participants who passively
received monetary and social rewards (Hayden et al., 2007; Smith
et al., 2010). We then employed a popular machine-learning
implementation, support vector machines (SVM), to generate and
evaluate classifiers for searchlights throughout the brain. Our goals
were to identify the brain regions that contain information that can
distinguish the reward modality of each trial, and then to identify
potential functional organization within those regions based on the
relative classification power and information content of within- and
cross-participant analyses.

Materials and methods

Participants

Twenty healthy participants (mean age: 23 years, range: 18–
30 years) completed a session involving both behavioral and fMRI
data collection. All participants were male and indicated a hetero-
sexual orientation, via self-report. Four of these participants were
dropped from the sample prior to data analyses: three for excessive
head motion and one because of equipment failure, leaving a final
sample of 16 participants. Prescreening excluded individuals with
prior psychiatric or neurological illness. Participants gave written
informed consent as part of a protocol approved by the Institutional
Review Board of Duke University Medical Center.

Tasks

While in the scanner, participants performed a simple incentive-
compatible reward task (Smith et al., 2010). Each trial involved the
presentation of one of two equally frequent reward modalities:
monetary or social (Fig. 1). Monetary rewards involved four different
values of real gains and losses:+$5,+$1,−$1, or−$5. Social rewards
were images of female faces that had been previously rated, by an
independent group of participants, into four categories of attractive-
ness: 1 to 4 stars (see Supplementary Materials). To ensure that the
participants maintained vigilance throughout the scanner task, a
target yellow border infrequently appeared around the stimuli (b5%
trials). Accurate detection of these targets (via button press) could
earn the participant a bonus of $5. Trials on which the target was
presented were excluded from subsequent analyses.

We presented these stimuli in both uncued and cued trials. Uncued
trials involved presentation of each reward stimulus for 2 s, followed
by a jittered intertrial interval (ITI) of 4 to 8 s. Cued trials added an
initial 1 s cue (in the form of a blue or yellow square) that indicated
the upcoming reward modality, followed by a 1 to 5 s interstimulus
interval (ISI), a 2 s reward stimulus, and a 4 to 8 s ITI. To minimize
participant confusion, we separated these trial types into distinct
runs: three uncued runs of 468 s each and two cued runs of 596 s each.
In the present analyses, we found no systematic differences in
modality-related activation between the uncued and cued trials, and
thus we collapse over both trial types hereafter (see Supplementary
Materials).

Following completion of the fMRI session, participants rated the
attractiveness of the viewed faces on an eight-point scale (1=“low
attractiveness” to 8=“high attractiveness”). Second, participants
completed an economic exchange task in which they repeatedly
chose whether to spend more money to view a novel high
attractiveness face or less money to view a novel low attractiveness
face (Fig. S1, Supplementary Materials).

All tasks were presented using the Psychophysics Toolbox 2.54
(Brainard, 1997) in MATLAB (The MathWorks, Inc.). Cash payment
was based on a randomly chosen run from the scanner session.
Participants rolled dice to determine the run whose cumulative total
would be added to the base payment of $50. Participants received an
average of $16 for their bonus reward, and spent an average of $2 to
view new faces in the post-fMRI economic exchange task, resulting in
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a total mean payment of $66 (range $53 to $92). Participants were
provided full information about the payment procedure prior to the
scanning session.

Image acquisition

We acquired fMRI data on a General Electric 3.0 T MRI Scanner
with a multi-channel (eight-coil) parallel imaging system. Initial
localizer images identified each participant's head position within the
scanner. Whole-brain high-resolution T1-weighted coplanar FSPGR
structural scans with voxel size 1*1*2 mm were acquired for
normalizing and coregistering the fMRI data. Images sensitive to
blood-oxygenation-level-dependent (BOLD) contrast were acquired
using a gradient-echo echo-planar imaging (EPI) sequence [repetition
time (TR)=2000 ms; echo time (TE)=27 ms; matrix=64×64; field
of view (FOV)=240 mm; voxel size=3.75*3.75*3.8 mm; 34 axial
slices] parallel to the axial plane connecting the anterior and posterior
commissures. We used an initial saturation buffer of seven volumes.

Preprocessing

Functional imageswerefirst reoriented and then skull strippedusing
the FSL Brain Extraction Tool (BET) (Smith, 2002). All imageswere then
corrected for intervolume head motion using FMRIB's Linear Image
Registration Tool (MCFLIRT) (Jenkinson et al., 2002), slice-time
corrected, subjected to a high-pass temporal filter of 100 s, and
normalized into a standard stereotaxic space (Montreal Neurological
Institute, MNI) using FSL 4.1.4 (Smith et al., 2004). We maintained the
original voxel size and left the data unsmoothed to preserve local voxel
information. Importantly, we transformed the data into standard space
for both within-participant and cross-participant analyses, so that the
same voxels and features were used in both classifications. We
constructed a whole-brain mask (n=27,102 voxels) from each
participant’s fMRI runs to ensure that the voxels included in MVPA
contained BOLD signal across all participants and all runs.

Multivariate pattern analysis

For each voxel in each trial, we estimated the change in BOLD
signal intensity associated with each reward by taking the mean
signal across two consecutive volumes lagged by 5 s following
stimulus onset (to account for hemodynamic delay). These values
were then detrended using a constant term and transformed into z-
scores in PyMVPA 0.4.3 (Hanke et al., 2009a; Hanke et al., 2009b). We
used the temporally compressed signal in specific voxels to construct
pattern classifiers from searchlights (Clithero et al., 2009; Krieges-
korte et al., 2006). For every voxel in the whole-brain mask, we
constructed a searchlight corresponding to a spherical cluster of
12 mm radius (i.e., up to 123 voxels).

We then used PyMVPA to implement a linear SVM with a fixed
regularization parameter of C=1 (Haynes et al., 2007; Soon et al.,
2008). Classification within PyMVPA was performed using the
LIBSVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm). For
cross-participant analyses, we used custom scripts in MATLAB and
Python to construct the feature spaces (searchlights) before imple-
menting LIBSVM. Importantly, the same features were used for
within- and cross-participant analyses. To account for run-to-run
differences in mean BOLD signal, we scaled each voxel's BOLD signal
so that it had the same average signal on each run. Moreover, we also
ensured that any differences between within-participant and cross-
participant models were not an artifact of PyMVPA, through a
replication of the core analyses using a within-participant approach
previously reported by our laboratory (Clithero et al., 2009). The
results of this analysis did not differ significantly from that
implemented within PyMVPA, and thus we hereafter describe the
within-participant results from PyMVPA.
Classifier performance

Performance was judged based on n-fold cross-validation (CV),
which provides evidence for howwell a SVMwill be able to accurately
classify new data drawn from the sample's underlying population. For
the within-participant model, the training set combined all trials from
all but one of the n runs, leaving the trials from the unselected run as
the testing set. This process was repeated five times for each
participant, with the average performance across the five tests
providing the SVM's CV percentage. One benefit of using a linear
SVM implementation for within-participant analyses is that it
provides weights for each feature (i.e., voxel) in the classifier. Here,
we reported individual voxel weights based on the average weighting
across all folds of the classifier. For the cross-participant model, we
employed a similar approach for the n=16 participants (i.e., we used
16-fold, rather than 5-fold, cross-validation). Importantly, both types
of analyses were compared on a common metric: the CV for trial-to-
trial predictions of reward modality.

Statistical testing

For evaluation of the significance of individual searchlights, we
calculated the average CV across participants and then implemented a
one-tailed binomial test for each searchlight (Pereira et al., 2009),
comparing CV performance to chance (50%). Comparisons of
performance between within-participant and cross-participant clas-
sifiers used a two-tailed binomial test for each searchlight. All claims
of significance refer to pb0.05, corrected for multiple comparisons
across all searchlights in the brainmask, by taking brainmask size and
dividing by the average searchlight size, an approximation to a
Bonferroni correction based on the number of resels in the whole-
brain mask. Brain images of CV performance and significance were
generated using MRIcron (Rorden et al., 2007). All coordinates in the
manuscript are reported in MNI space.

We note that our results were robust to two other thresholding
approaches (see Supplementary Materials): a full Bonferroni correc-
tion over all voxels in the whole-brain mask, and false discovery rate
(FDR) correction (q=0.05) using FSL (Genovese et al., 2002).

Results

Behavior

Participants performed well on the background target-detection
task (average hit rate of 84.2%). The post-scanning ratings of face
attractiveness were highly correlatedwith those from an independent
sample (mean r=0.71, range 0.50 to 0.85; see Supplementary
Materials), supporting our a priori division of stimuli into attractive-
ness categories. Moreover, on a large fraction of trials during the
exchange task, participants were willing to sacrifice money to see a
face with a higher attractiveness rating (average fraction ofwilling-to-
pay trials was 0.42), with significant interparticipant variability
(range 0.10 to 0.80). Participants spent an average of 4.5¢ per trial
(45 trials, minimum participant average=3.8¢, maximum aver-
age=6.0¢) to view more attractive faces. Data from one functional
run in one participant were not recorded because of a collection error;
all remaining participants had the full complement of five runs.

Within-participant classification: reward modality

We first classified trials according to reward modality using
within-participant classifiers. The average searchlight classifier
performance across the entire brain was 56.7% (standard deviation
5.7%), with significant searchlights (n=4131 out of 27,102) primarily
constrained to regions associated with visual perception and reward
evaluation (Fig. 2A). There were four maxima (Table 1): visual cortex
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Fig. 2. Cross-validation (CV) performance for within-participant models. (A) Using classifiers that were built on individual participants, we identified four local maxima, in three regions
of interest (early visual cortex, VC; the left and right fusiform face area, LFFA and RFFA; and ventromedial prefrontal cortex, VMPFC). The searchlight with the highest average CV, the
global maximum, was located in VC. (B) The CV percentage for each individual participant is plotted for the three regions of interest (VC, RFFA, and VMPFC), with participants
arranged in descending order based on performance in the VC. Average CV percentages across participants are also plotted for reference.
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centered around the calcarine sulcus (VC, global max 83.6%), left
fusiform face area (LFFA, local max 77.6%), right fusiform face area
(RFFA, local max 79.7%) and ventromedial prefrontal cortex (VMPFC,
local max 61.6%). We also note—consistent with previous findings
(McCarthy et al., 1997)—that for most participants RFFA was more
predictive than LFFA (one-tailed paired difference test, t(15)=1.98,
pb0.03). For simplicity, we targeted key analyses to these three
regions of interest (ROIs; VC, RFFA, VMPFC), all of which were also
local maxima identified through univariate analyses (see Supplemen-
taryMaterials). In general, VC and RFFA both outperformed VMPFC for
each participant (Fig. 2B). There was considerable interparticipant
variability in global maximum values (95.50% to 75.32%) and average
searchlight performance (68.21% to 51.15%) (Fig. S2, Supplementary
Materials). As a check on our multiple-comparisons correction, we
also performed a correction using FDR (Fig. S3A, Supplementary
Materials), and a full Bonferroni (Fig. S3B, Supplementary Materials).
All of our regions of interest survived the FDR correction, whereas
VMPFC did not survive the more stringent Bonferroni correction.

Although equal category sizes (monetary and social rewards)
justify the use of a binomial test, we confirmed these results using a
permutation test. For each participant, we performed permutation
tests on each of the three targeted searchlight ROIs. We generated
10,000 permutations of the feature labels and repeated the SVM
construction and cross-validation processes, for each. For both RFFA
and VC, all participants' searchlight performance was significant at
pb0.01, meaning fewer than 1% of the permutation iterations yielded
a CV higher than the observed CV for the correct labels. For the peak
Table 1
Local maxima for searchlights from within-participant models. MNI coordinates (mm), CV
percentage, and brain region for the best-performing searchlights (see also Fig. 2).
There were four local maxima after conducting a binomial test for significant
performance above chance (50%). The maximum CV for all searchlights (84%) was
observed within visual cortex.

Within-participant model

Region MNI CV

Visual cortex (2,−86,0) 83.6
Right fusiform face area (40,−61,−14) 79.7
Left fusiform face area (−38,−67,−11) 77.6
Ventromedial prefrontal cortex (2,42,−4) 61.6
VMPFC searchlight, 11 out of 16 participants' permutation tests
yielded pb0.05 (2 of the remaining 5 were pb0.10).

Within-participant classification: relation to choice preferences

Observed differences among ROIs with respect to average perfor-
mance can correspond to behavioral differences (Raizada et al., 2010;
Williams et al., 2007). As a measure of reward preference, we used the
relative value between the two reward modalities; i.e., the fraction of
willing-to-pay choices each participant made during the exchange task
(Smith et al., 2010). Strikingly, this individualmeasurewas significantly
correlated with the difference in VMPFC performance (r(14)=0.59,
pb0.02) but was not a function of overall individual decoding
performance throughout the brain (r(14)=0.06, pN0.83; Fig. 3). In
contrast, no such correlation was observed for VC (r(14)=0.37,
pN0.16) or for RFFA (r(14)=−0.14, pN0.61).
Fig. 3. Relative valuation coding in VMPFC. The normalized searchlight CV performance
in each participant's VMPFC, defined by subtracting the whole-brain mean performance
from the local searchlight performance, was a significant predictor of each participant's
willingness to trademoney for social rewards (r(14)=0.59, pb0.02). Each participant's
point's color indicates the mean CV across the entire brain, which was not itself
predictive of exchange proportion.
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Within-participant analyses: similarity of ROI information

One of the primary advantages of MVPA is that it gives access to fine
spatial information normally unavailable within univariate analyses
(e.g., general linear models). To determine whether local spatial
patternswithinourROIswere specific toor commonacrossparticipants,
we extracted voxelwise SVM weights (LaConte et al., 2005) from the
peak searchlights in VC, RFFA, and VMPFC. The top 10 voxels in terms of
mean absolute weight were used to construct similarity matrices
(Aguirre, 2007; Kriegeskorte et al., 2008). Although larger weights
indicated important voxels, we recognize that other voxels contributed
to the classifier, and thus correlated voxels will necessarily have smaller
weights (Pereira et al., 2009). We computed first-order similarity
matrices according to the Pearson correlation between the weight
values of each participant and those of the other participants (Fig. S4,
Supplementary Materials). The second-order similarity between the
first-ordermatrices for two regions provided an index of whether those
regions encoded similar sorts of information, across individuals
(Kriegeskorte et al., 2008). As the matrix is symmetric, we excluded
the lower triangle and diagonal cells from similarity calculations. All
three pairs of regions revealed non-zero second-order similarity (Fig. 4
and Table S1, Supplementary Materials): RFFA–VC=−0.18, RFFA–
VMPFC=0.26, and VMPFC–VC=−0.11.
Fig. 4. Regions of interest have distinct local patterns of information. At left, histograms indicate th
blue), right fusiform face area (RFFA, green), and ventromedial prefrontal cortex (VMPFC, red)
compared ROIs: RFFA–VMPFC (cyan), RFFA–VC (magenta), and VMPFC–VC (yellow). At rig
permutation testing,with actual values indicatedusing the same color scheme. Eachcross-ROI co
weights across participants. This provides evidence that the high decoding accuracies for diffe
We used permutation analyses to evaluate the robustness of these
between-region similarities. We ran 10,000 permutations that each
selected 10 different voxel weights from the same ROI (Fig. 4).
Comparing the measured similarity values to the permutation distri-
bution, we found that there was a significant negative correspondence
between RFFA and VC (pb0.002), and non-significant trends for the
other pairs (RFFA–VMPFC: pb0.091, VMPFC–VC: pb0.0918). We
repeated these tests for sets of 5 voxels, which yielded convergent
results (RFFA–VC: pb0.017, RFFA–VMPFC: pb0.061, VMPFC–VC:
pb0.006). This result provides evidence not only that each of these
regions provides high decoding accuracy for reward modality, but also
that the optimal classifiers for each region use different information to
distinguish reward modalities (e.g., VC may be tracking different
information, across individuals, compared to the other two regions).

Cross-participant analyses: reward modality

We repeated the analyses from the previous sections using cross-
participant classifiers derived from models trained on n−1 participants
and tested on the remaining participant. Importantly, our significance
thresholding takes into account the increases in training and test set size,
allowingdirect comparison to thewithin-participant classification results.
Significant classification power was observed in multiple regions (Fig. 5
e similarity values (across participants) formodel weights for each ROI: (visual cortex (VC,
. Mean values of similarity for model weights across ROIs are shown between each pair of
ht, histograms show the distribution of cross-ROI similarity comparisons obtained by
mparison shows significantdifferences between regions in thepattern of underlyingvoxel
rent reward modalities reflect different information in the three regions.



Fig. 5. Cross-validation (CV) performance for cross-participant model. Local maxima in CV performance were found in early visual cortex (VC), right and left fusiform face area (RFFA,
LFFA), ventromedial prefrontal cortex (VMPFC), ventral striatum (VSTR), and anterior insular cortex (AINS). In this analysis, the global maximum was located in RFFA.
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and Table 2), including RFFA (global max 62.1%), VMPFC (local max
54.5%), anterior insula (AINS, local max 55.8%), and ventral striatum
(VSTR, local max 54.7%). Average performance was 51.7% (standard
deviation 2.06%). However, given the nature of our searchlights
(approximately 110 voxels, on average, with a radius of 12 mm), we
qualify the structural specificity of some of these local maxima (e.g.,
some basal ganglia searchlight voxels overlap with some VMPFC
searchlight voxels). The presence of separate local maxima, though,
suggests that both regions are implicated in distinguishing reward
modality. As we did on the within-participant models, we performed
checks on our multiple-comparisons correction, using FDR (Fig. S5A,
Supplementary Materials), and a full Bonferroni (Fig. S5B, Supple-
mentary Materials). All of our cross-participant results were robust
to both of these additional statistical tests.
Comparing within-participant and cross-participant models

We conducted searchlight-by-searchlight comparisons of relative
performance of the within- and cross-participant models. If moving
from the within-participant to the cross-participant models intro-
duces similar sorts of variability throughout the brain, then the two
models should exhibit similar global maxima, and those maxima
should exhibit a similar proportional decrease in prediction accuracy.
Conversely, differences in the regions that exhibit maximal predictive
Table 2
Local maxima for searchlights in cross-participant model. MNI coordinates (mm), CV
percentage, and brain region for the best-performing searchlights (see also Fig. 5). There
were 10 local maxima after conducting a binomial test for significant performance above
chance (50%). The maximum CV for all searchlights (62%) was observed within right
fusiform face area (RFFA).

Cross-participant model

Region MNI CV

Right fusiform face area (36,−51,−18) 62.1
Left fusiform face area (−30,−61,−15) 58.7
Visual cortex (−8,−98,−2) 57.6
Left posterior parietal (−26,−73,40) 56.9
Inferior parietal lobe (40,−42,39) 56.5
Inferior parietal lobe (54,−40,52) 56.2
Anterior insular cortex (38,21,−7) 55.8
Orbitofrontal cortex (−12,−21,−14) 55.5
Ventral striatum (−9,10,−12) 54.7
Middle frontal gyrus (36,40,−18) 54.5
power in each analysis type would argue that within- and cross-
participant analyses encode distinct patterns of information.

Our results argue strongly for the latter conclusion. We first
compared the global maxima for the two analyses. The maxima were
non-overlapping and located in distinct portions of the distribution of
results (Fig. 6). In other words, the searchlights that MVPA found to be
most informative about reward modality were in different brain regions
for the different model types. For the within-participant models, the
most informative searchlights were within VC, with RFFA searchlights
being less predictive overall. Strikingly different results were observed
for the cross-participantmodel: Themost informative searchlightswere
all within RFFA, while the searchlights in VC hadmuch lower predictive
power (e.g., many were less than the whole-brain average).

Next, we computed a map of the CV difference between the two
models. Consistent with other studies (Shinkareva et al., 2008),
Fig. 6. Predictive power differs based on the form of classification. To compare the two sets
of results, thewithin- and cross-participant performance of all 27,102 searchlights were
plotted, with the searchlights in and adjacent to the three ROIs indicated in color. RFFA
and VC searchlights are highlighted based on searchlights constrained to the global
maximum. Note that there is complete separation between these ROIs: the searchlights
with maximal performance in one model have much reduced relative performance in
another model, and no searchlights from other regions had similar performance to the
ROI maxima. VMPFC searchlights that were significant are highlighted. Horizontal and
vertical dotted lines represent the minimum CV for significant searchlights in each case
(53% in cyan for cross-participant model and 61% in magenta for within-participants
models, respectively).
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moving from a within- to cross-participant model led to an average
decrease in CV across all searchlights in the whole-brain mask
(average decrease: 4.0%; maximal decrease: 25.3%; maximal in-
crease: 3.3%). We masked the difference map using the significant
searchlights from the within-participant models (Fig. 7A), which
revealed that the searchlights that exhibited the greatest within- to
cross-participant CV decreases were located within VC (−22.8% for
the local maximum; Fig. 7B). A smaller decrease was found for the
RFFA maximum (−11.8%), and only a minimal change was observed
in VMPFC (−2.85%, less than themean for the entire brain). So, while
there was a negative trend across the entire brain in terms of
predictive performance, the lower tail of the distribution of changes
in predictive power was contained within early visual cortex.

Discussion

Our results support a novel conclusion: within-participant and
cross-participant MVPA classification implicate distinct sets of brain
regions. When classifying social and non-social rewards, both models
identified key regions for the perception and valuation of social
information. Regions showing maximal classification performance
(e.g., VC, FFA, and VMPFC) have been implicated in previous studies of
face and object recognition (Grill-Spector and Malach, 2004; Tsao and
Livingstone, 2008), as well as studies of reward valuation (Montague
et al., 2006). In our study, though, the relative predictive power of brain
regions changed according to the mode of classification. Depending on
the goals of an experiment—potentially, whether to identify features
that represent common or idiosyncratic information—different model-
ing approachesmay bemore or less effective. Hereafter,we consider the
implications of our results in the context of the different patterns
observed in each of our key regions of interest.

Invariant discrimination of reward modalities: fusiform gyrus

Our within-participant classification of reward modality identi-
fied a distributed set of brain regions, most of which were contained
within the ventral visual processing stream (Haxby et al., 2004). This
result is consistent with the literature on face processing (Haxby
et al., 1994; Kanwisher et al., 1997; Puce et al., 1995; Tsao et al.,
Fig. 7. Regions differ in the relative information carried by within- and cross-participant models.
within-participant information to a model that builds a classifier across the participant set (ma
significant drops in CV were constrained to medial parts of visual cortex, shown in these slic
classificationpower,plottedaccording to the relativedropwhenmoving to thecross-participant
—blue oval, RFFA—green oval, VMPFC—red oval). Of those three, only VCwasmore than two sta
in CV across all searchlights (−4.0%).
2006), including the observed right-lateralization in FFA (McCarthy
et al., 1997). While a within-participant model can state that the
general representation of faces in fusiform gyrus was stable within a
participant, a cross-participant model can make the additional
argument that the representation was stable on a trial-to-trial basis
with respect to the participant sample, analogous to the difference
between fixed- and mixed-effects analyses (Friston et al., 2005).
However, in the case of MVPA, this distinction allows us to identify
differences in local computations. Significant prediction in a cross-
participant model provides evidence that the stimulus-related
information provided by a voxel remains fairly invariant over time
and participants (Kay et al., 2008). Given the limited number of cross-
participant, trial-to-trial MVPA studies, this result provides an
important proof-of-concept for the stability of local functional
patterns.

Importantly, we are not arguing that FFA coded information
specific to the representation of monetary rewards, given that
variability in FFA performance across participants was not correlated
with their post-scanner exchanges between the reward types. More
plausibly, the monetary rewards and their early, object-based
recognition lead to distributed processing throughout the ventral
visual cortex (Haxby et al., 2004; Op de Beeck et al., 2008), in contrast
to the more focal representation of the social rewards in FFA. One
provocative interpretation of our two analyses is that the cross-
participant model captures only the common representations in FFA,
whereas the within-participant models capture both the common
and idiosyncratic representations of faces (Hasson et al., 2004). We
cannot distinguish the two latter components within the current
study. Dissociation could be possible, however, through a paradigm
that incorporated an additional set of stimuli with well-known
neural responses, such as perception of natural scenes (Epstein and
Kanwisher, 1998) or reward-related stimuli that motivate learning
and updating (O'Doherty et al., 2003b).

Idiosyncratic discrimination of reward modalities: visual cortex

Our within-participant MVPA models revealed high decoding
accuracy in large portions of VC (over 90% for many participants),
consistent with numerous prior studies (Cox and Savoy, 2003; Haynes
(A) Shown is the relative decrease in performance when moving from a model based on
sked for searchlights that showed a significant effect in the within-participantmodels). All
es for illustration. (B) A histogram of all searchlights with significant within-participant
model. Thedifferencevalues for thepeak searchlights in theROIs fromFig. 2 are shown(VC
ndard deviations away from the average drop. The dotted line represents average decrease
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and Rees, 2005; Kamitani and Tong, 2005). Our cross-participant
model, in contrast, was not robust to testing sets from new
participants; i.e., performance was only slightly above chance. These
results are analogous to a previous study that looked at both within-
participant and cross-participant results when distinguishing tools
versus dwellings (Shinkareva et al., 2008), finding that information
contained in within-participant models may be idiosyncratic to
individual participants, yet located within similar regions across
participants. Cross-participant MVPA classifier models, by their very
nature, face additional sources of variability in their features:
differences in participant anatomy or functional organization, session-
to-session variation in scanner stability, differences in preprocessing
success, and state and trait differences among participants. The
observation that cross-participant models can provide not only robust
predictive power, but also perhaps greater functional specificity,
emphasizes the real power of MVPA techniques.

One speculation is that participant-specific information might
reflect effects associated with unique stages in processing. Neural
activity relating to the representation of faces and objects does not
occur within only a single short-latency interval, but is distributed
over several distinct time periods with identifiable functional
contributions (Allison et al., 1999). Earlier and later processing of
facial and monetary stimuli may occur in different regions (Liu et al.,
2002; Thorpe et al., 1996) or with different spatial distributions based
on the time period of activation (Haxby et al., 2004). Under this
conception, the extensive involvement of ventral visual stream in the
within-participant models may be a reflection of idiosyncratic
interactions between ongoing neural activity and the associated
hemodynamic responses.

Our similarity analyses also support the notion that fMRI activation
in VC reflects largely idiosyncratic representations (Fig. 4 and Fig. S2,
Supplementary Materials). Some supporting evidence comes from a
study of shape representations in lateral occipital cortex (LOC) that
employed similarity analyses (Drucker and Aguirre, 2009), which
found evidence for sparse spatial coding in lateral LOC and more
specific tuning in ventral LOC. Additionally, given the recent finding
that reward history can modulate activity in visual cortex (Serences,
2008), individual variability in reward sensitivity could easily
contribute to downstream idiosyncratic differences in the within-
participant classifiers.

Individual reward preferences: ventromedial prefrontal cortex

Although human face stimuli have been a frequent target of MVPA,
prior studies have not embedded those stimuli in a reward context.
Recent work using standard fMRI analysis techniques (i.e., general
linear modeling) has identified neural correlates of social rewards,
including faces, both in isolation (Cloutier et al., 2008; O'Doherty et al.,
2003a), and in comparison tomonetary rewards (Behrens et al., 2008;
Izuma et al., 2008; Smith et al., 2010). The fact that VMPFC exhibited
different patterns for these two types of rewards supports the
conception that this region evaluates a range of rewarding stimuli
(Rangel et al., 2008). Further corroboration comes from two more
specific results: that the relative value between the two modalities
was strongly correlated with individual differences in VMPFC
predictive power (Fig. 3) and that this VMPFC region was not
identified by univariate analyses (see Supplementary Materials).

The significance of VMPFC for reward-based decision making has
been borne out in a growing number of recent studies (Behrens et al.,
2008; Hare et al., 2008; Lebreton et al., 2009). Considerable prior
neuroimaging and electrophysiological work has implicated VMPFC in
the assignment of value to environmental stimuli (Kringelbach and
Rolls, 2004; Rushworth and Behrens, 2008). In our paradigm, even
though participants were passively receiving the rewards on each
trial, it is possible that valuation was occurring (Lebreton et al., 2009).
As others have worked to tie predictive fMRI patterns to behavior
(Raizada et al., 2010;Williams et al., 2007), we believe it is reasonable
to intuit that individual differences in preferences—and hence
computations taking place in VMPFC—could subsequently influence
a classifier's ability to decode BOLD signal corresponding to rewards.
Our mapping between individual preferences and the statistical
discriminability of neural patterns (Fig. 3) is a step beyond those
previous studies—which were concerned with participant perceptual
ability—and demonstrates that fine-grained neural patterns can be
informative about complex phenomena such as choice behavior.

Alternative explanations and future considerations

Although the patterns of significant classification performance are
quite distinct between within- and cross-participant models (Figs. 2
and 5), one might argue that the difference in prediction performance
(i.e., cross-validation) reflects a difference in thresholding. Direct
comparison of each searchlight's performance in the two models
(Fig. 6) eliminates this possibility. Another contributor, at least in
principle, could be differential sensitivity to classifier parameters. The
training set for the cross-participant model is much larger than that for
any single within-participant model, and thus it may be the case that
different kernels, or even different classifiers, might be more appropri-
ate in one case. To our knowledge, this question of classification
parameters and fMRI data has not been extensively explored.

Another possibility is that our stimuli—and not the sensitivity of
MVPA—may have contributed to our results in VMPFC. It is reasonable
to suppose that the comparison of faces and monetary amounts could
have broad neural effects. Accordingly, if the stimuli had been
presented in blocks or mini-blocks, the relative differences between
categories might not have been represented in VMPFC (Padoa-
Schioppa and Assad, 2008), consistent with other context effects
(Cloutier et al., 2008; Seymour and McClure, 2008). Given that our
cross-participant model also implicated VMPFC and that other studies
tie individual differences to classifier differences (Raizada et al., 2010),
we believe this result would be robust to other reward environments.

Feature space is also an important consideration. For example, our
choice of searchlight size (a radius of three voxels)may have influenced
the within- and cross-participant differences in decoding performance.
The searchlight approach serves as a spatialfilter, because the classifier's
decoding results are attributed to the center voxel. Thus, a larger radius
for cross-participant testing could boost classifier performance by
providing a larger number of dimensions to fit the larger system. Such a
conclusion would be analogous to the matched filter theorem: the
optimal amount of information for cross-participantmodels is likely at a
different resolution (i.e., searchlight size) than for within-participant
models (Rosenfeld and Kak, 1982). Increasing searchlight size might
also alleviate registration heterogeneities across participants (Brett
et al., 2002). Importantly, the size of the searchlight implemented
should coincide with the size of the anatomical region(s) of interest
(Kriegeskorte et al., 2006), as spatial specificity is clearly sacrificed if a
searchlight encompasses voxels from neighboring anatomical regions.
Indeed, different information is likely to be uncovered at different
spatial scales (Kamitani and Sawahata, 2010; Swisher et al., 2010).

Our results point to several directions for future work. A first
extension comes from the use of a searchlight method for feature
selection. Although classification performance tends to asymptote as a
function of voxel number (Cox and Savoy, 2003; Haynes and Rees,
2005), combining searchlights—or voxels from multiple searchlights—
across ROIs (Clithero et al., 2009; Hampton and O'Doherty, 2007)might
compensate for reduced performance of cross-participant classification.
A related topic—as alluded to in the previous paragraph—would be a full
exploration of appropriate searchlight size (Kriegeskorte et al., 2006).
Another possible avenue for explorationwould be the discrimination of
individual reward stimuli. Outside of the reward context, there has
already been successful within-category identification of simple man-
made objects (teapots and chairs) accomplished using signal from the
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lateral occipital cortex (Eger et al., 2008), as well as single image
identification in early visual cortex (Kay et al., 2008). So, pruning from
large reward classes (e.g., money or faces) is a natural progression from
the current study. Additionally, cross-participant models make it
possible to test group differences (e.g., depressed individuals) in reward
representation. Many rewards share similar features (e.g., magnitude,
valence), yet the relative sensitivity to those features may differ across
participant groups.

Conclusion

Using machine-learning techniques and multivariate pattern
analysis of fMRI data, we demonstrated that classifier performance
differs between within-participant and cross-participant training. We
emphasize that we are not concerned with the level changes in
classifier performance; there are obvious additional sources of
variability for cross-participant classification. Instead, our results
indicate that relative classifier sensitivity may reflect the contribu-
tions of different brain regions to different computational purposes.
As a key example, the statistical discriminability of neural patterns in
ventromedial prefrontal cortex for reward modalities was predictive
of participants' willingness to trade one of those rewardmodalities for
the other (i.e., money for social rewards). Given the increasing
popularity of both correlational and decoding multivariate analyses in
cognitive neuroscience, we believe researchers should exploremodels
aimed at trial-to-trial prediction that use both within-participant and
cross-participant neural patterns.
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