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Abstract
For effective decision making, individuals must be able to form subjective values from many types
of information. Yet, the neural mechanisms that underlie potential differences in value computation
across different decision scenarios are incompletely understood. Here, we used functional magnetic
resonance imaging (fMRI), in conjunction with the machine learning technique of support vector
machines (SVM), to identify brain regions that contain unique local information associated with
different types of valuation. We used a combinatoric approach that evaluated the unique contributions
of different brain regions to model generalization strength. Local voxel patterns in left posterior
parietal cortex contained unique information differentiating probabilistic and intertemporal
valuation, a result that was not accessible using standard fMRI analyses. We conclude that the early
valuation phases for these reward types differ on a fine spatial scale, suggesting the existence of
computational topographies along the value construction pathway.
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Introduction
Understanding the mechanisms that underlie the construction of value is a central goal of
neuroeconomic research (Camerer et al., 2005; Glimcher and Rustichini, 2004; Rangel et al.,
2008). In the current study, we investigated the neural systems underlying the valuation of
economic outcomes through the application of alternative analytic techniques to functional
magnetic resonance imaging (fMRI) data.

Recent work has delineated neural systems that underlie valuation processes, both in human
(Hare et al., 2008; Kable and Glimcher, 2007; Plassmann et al., 2007) and nonhuman primates
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(Padoa-Schioppa and Assad, 2006; Roesch and Olson, 2004), as summarized in comprehensive
reviews (Montague and Berns, 2002; Padoa-Schioppa, 2007; Wallis, 2007). These and earlier
works (Delgado et al., 2000; Knutson et al., 2000; Schultz et al., 1997) have focused on the
ventral striatum (VSTR) and medial prefrontal cortex (MPFC)/orbitofrontal cortex (OFC),
based on demonstrations that these regions encode anticipated value and chosen value,
respectively. Together, these regions may convert a broad range of rewards into a common
currency that expedites choice, with OFC ultimately playing the central role in comparison
(Montague and Berns, 2002).

Although there is mounting evidence to support the role of OFC in representing subjective
value and guiding economic choice, relatively little is known about how other regions may
support the construction of value based on different underlying information (Rangel et al.,
2008). For example, parietal cortex has been discussed in some models of value computation,
specifically with regard to evaluating and integrating the value of potential actions (Glimcher
et al., 2005; Sugrue et al., 2004). Even if OFC represents the value of choice options, across a
wide range of information, there may still be processing differences associated with different
forms of valuation, most likely in earlier regions that support particular computations necessary
for some decision variables, but not others. These differences may not be reflected in the overall
metabolic demand within a given region, and thus could be inaccessible via standard
neuroimaging analysis methods. To identify local information associated with the construction
of value, we used statistical analyses from the emerging field of machine learning.

Machine learning refers to a set of statistical learning methods, a subset of which are commonly
called “pattern classifiers”, which uses the characteristics of known examples to develop
feature sets that can classify new examples into categories (Vapnik and Lerner, 1963).
Although machine learning algorithms represent a relatively new approach to fMRI data
analysis, their use is increasing rapidly (Haynes and Rees, 2006; Norman et al., 2006; O’Toole
et al., 2007). Support vector machines (SVM) underlie the most common approaches (Cortes
and Vapnik, 1995), although other techniques have been applied (Friston et al., 2008; Haynes
and Rees, 2005; Mitchell et al., 2004). Given a binary classification problem, an SVM finds
the maximum-separating hyperplane for a pattern, while minimizing the upper bound on the
generalization error of the classifier. Unlike univariate analyses that evaluate the overall change
in activation of a cluster of voxels, pattern classification employs a multivariate approach that
includes information derived from the joint changes in activation across voxels. The most
common application has been to decode various feature representations and demonstrate the
existence of topographies in visual cortex (Cox and Savoy, 2003; Haynes and Rees, 2005;
Kamitani and Tong, 2005; Kay et al., 2008). Yet, pattern classification has also shown potential
for evaluating covert and subjective experiences: lie detection (Davatzikos et al., 2005),
prediction of conscious decisions about emotional faces (Pessoa and Padmala, 2005), attending
to specific features (Serences and Boynton, 2007), hidden intentions (Haynes et al., 2007), free
will (Soon et al., 2008) and basic choices (Hampton and O’Doherty, 2007). Here, by comparing
the valuations of different types of rewards, we aimed to provide new information about the
value construction process.

Two common types of valuations involve outcomes that only occur with some probability or
after some time delay. A vast body of theoretical and behavioral research has provided
descriptive and prescriptive theories of decision making in probabilistic and intertemporal
settings (Frederick et al., 2002; Starmer, 2000). Many behavioral phenomena are similar across
these two domains, leading to theoretical models of intertemporal and probabilistic choice that
account for these commonalities (Green and Myerson, 2004; Prelec and Loewenstein, 1991).
Each has, at least independently, been a target of neuroscience research. For neuroimaging
studies of uncertainty (Critchley et al., 2001; Hsu et al., 2005; Huettel et al., 2005; Huettel et
al., 2006; Knutson and Peterson, 2005; Kuhnen and Knutson, 2005; Paulus et al., 2003;
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Preuschoff et al., 2006), most have implicated insular cortex (INS), posterior parietal cortex
(PPAR), inferior prefrontal cortex (IPFC), and OFC in processes used to evaluate and choose
between uncertain prospects. There is a comparatively smaller collection of neuroimaging
studies of intertemporal choice (Hariri et al., 2006; Kable and Glimcher, 2007; McClure et al.,
2007; McClure et al., 2004; Tanaka et al., 2004; Weber and Huettel, 2008). These studies point
to a variety of regions: VSTR, MPFC, medial orbitofrontal cortex (MOFC), anterior cingulate
cortex (ACC), posterior cingulate cortex (PCC), PPAR, and dorsolateral prefrontal cortex
(DLPFC). When considered as a whole, these studies have identified a set of candidate regions
that may support value construction.

We report here functional neuroimaging data collected while participants valued probabilistic
and intertemporal rewards. Whereas traditional machine learning analyses are concerned with
the absolute predictive power of a model, our analyses sought to identify the specific brain
regions that – when added to a classifier – contributed most to relative changes in predictive
power. The localization of this unique information provides a robust measure for the
contributions of neural patterns to brain states. Specifically, our results point to potential neural
topographies involving explicit intertemporal or probabilistic value computations.

Materials and Methods
Participants

Thirteen (four male) healthy participants (mean: 23 ± 5 years, range: 18–35) participated in an
experimental session involving collection of both behavioral and fMRI data. Two of these
individuals were dropped from the sample prior to data analyses: one for excessive head motion
and one due to a data collection error, leaving a final sample of eleven participants. All
participants were prescreened to exclude individuals with prior psychiatric or neurological
illness. Participants gave written informed consent as part of a protocol approved by the
Institutional Review Board of Duke University Medical Center.

Task
Each trial began with the presentation of a probabilistic or intertemporal economic prize (Fig.
1, presented in grayscale). For the probabilistic trials, outcome probabilities ranged
continuously from 0.25 to 0.75 and prize values ranged from $20 to $75. Both the prize and
its probability were drawn pseudo-randomly from uniform distributions, constrained so that
expected value ranged from $15 to $50. The probability of winning the prize was represented
by the green area of the rectangle, which was always on top. The alternate outcome was $0 on
all trials. For the intertemporal trials, the period until delivery ranged from one to sixteen weeks,
and the prize ranged from $15 to $50 (integer values only). The delay and prize were both
drawn randomly from uniform distributions. Here, length of delay was represented by the gray
portion of the rectangle, meaning the green area represented the fraction of the sixteen weeks
that the participant would not have to wait. Thus, our two types of trials were matched as closely
as possible in their visual representations.

In a pre-scanning session, participants faced 12 trials of each type (24 total). All gambles were
presented in pseudo-random order, with no more than two of the same type appearing
consecutively. Each gamble was initially shown for 7 s, then participants were given unlimited
time to type their subjective value (i.e., certainty or immediacy equivalent) for that prize. This
initial session served two purposes. First, it familiarized the participants with the task before
the later scanner session. Second, it allowed us to calculate preliminary estimates of risk- and
delay-sensitivity that guided selection of the potential response values within the fMRI session.
Participants completed a second, short, practice run during the collection of the anatomical
images within the scanner.
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In the scanner session, participants completed eight runs, each with 24 valuation trials. The
timing was the same as the practice run: prizes were visible for 7 s, followed by a 4 s response
window. Eight potential values were presented for each prize, and participants selected the
value closest to their subjective rating by pressing one of eight buttons. The potential response
values were presented in ascending or descending order (randomized across trials), with the
predicted response for each participant randomly placed between button three and button six.
Once a button was pressed, a blue rectangle was displayed around the selected value (Fig. 1)
for a brief interval (0.2 s). Trials were separated by a varying interval of 0.2 s to 0.5 s. The
experiment was presented using the Psychophysics Toolbox (Brainard, 1997) in MATLAB
(MathWorks).

Payment
Participants were compensated entirely with Amazon.com gift cards. They were guaranteed at
least $30 in gift cards, although it was possible that a fraction (including all) of their payment
could be delayed by up to 16 weeks. Non-cash payment was chosen to ensure accurate delayed
payment (all payments were sent via an email confirmation) and to maintain a single currency
throughout the experiment (no cash amount was paid; the guaranteed amount was built into
minimum values for the intertemporal and probabilistic prizes). Participants were informed of
all of these conditions prior to agreeing to participate.

Payment was based on two randomly-chosen trials from the scanner session. First, the
participants rolled an eight-sided die twice, once for a probabilistic trial and once for an
intertemporal trial, to determine the two runs from which a computer would randomly select
the trials for payment. Once the trials were chosen, we used a Becker-DeGroot-Marschak
procedure (Becker et al., 1964) to determine payment. For each trial, the computer randomly
drew an integer from a uniform distribution of values between zero and the expected value of
the chosen trial’s gamble. If the random integer was less than the stated subjective value for
that trial, then the gamble was carried out. If it was greater than the participant’s value
equivalent, they were given a gift certificate (payable immediately) equivalent to the integer
value, in dollars. Average gift-certificate payout was $55 ± $22.

Image Acquisition and Preprocessing
We acquired fMRI data on a General Electric 3.0 Tesla MRI Scanner with a multi-channel
(eight-coil) parallel imaging system. Images sensitive to blood-oxygenation-level-dependent
(BOLD) contrast were acquired using a gradient echo-planar imaging (EPI) sequence (TR =
2000 ms; TE = 27 ms; FOV = 256 mm; voxel size = 4*4*4 mm) at 30 axial slices parallel to
the line connecting the anterior and posterior commissures. For each participant we collected
8 runs consisting of 182 images (except for one participant with 178), with an initial saturation
buffer of ten images. Whole-brain high-resolution T1-weighted structural scans with voxel size
1*1*2 mm were acquired from each participant for normalizing and coregistering data.

Functional images were corrected for motion using MCFLIRT (Motion Correction using
FMRIB’s Linear Image Registration Tool) (Jenkinson et al., 2002), were slice-time corrected,
and were normalized into a standard stereotaxic space (Montreal Neurological Institute, MNI)
using FSL 4.0 (Smith et al., 2004), maintaining a resolution of 4*4*4-mm for pattern
classification. We note that data were left unsmoothed to preserve local voxel information.

Regions of Interest Selection
We selected anatomically distinct regions of interest (ROIs) based on recent fMRI studies of
probabilistic or intertemporal outcome environments (Huettel et al., 2005; Huettel et al.,
2006; McClure et al., 2007) and on the existing literature on executive function and decision
making (Hampton and O’Doherty, 2007). Each ROI was made up of several voxel spheres
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centered on various (x, y, z) MNI coordinates. ROI masks were constructed using the Wake
Forest University PickAtlas 2.4.

Behavioral Analysis
All behavioral analysis was carried out in MATLAB. Participants’ discounting rate was
estimated using the standard hyperbolic function (Frederick et al., 2002),

(1)

where V is the participant’s reported value for prize Z with delay W in weeks. The discounting
rate is then k. A perfectly delay-neutral individual would have k = 0. For the probabilistic trials,
we assume the subjective value V of a monetary prize Z can be modeled as a simple power
function (Huettel et al., 2006),

(2)

where a determines whether a participant is risk-averse (a < 1), risk-neutral (a = 1), or risk-
seeking (a > 1). Given our probabilistic prizes, we also assumed participants’ preferences have
an expected utility representation.

Pattern Classification
Following preprocessing, we identified an estimate of mean signal intensity within every voxel
for every trial, defined as the mean signal across three consecutive volumes within the valuation
period (lagged by 5 s following valuation onset). The goal was to capture BOLD signal that
corresponded to the early phases of the valuation part of the task, specifically avoiding activity
associated with the response. We then used the signal in specific voxels to construct pattern
classifiers from four sets of feature data: ROI global, ROI local, searchlight global, and
searchlight local (Fig. 2). The ROI global signal was calculated by taking the mean signal
across all N voxels in the ROI. The ROI local signal was obtained by subtracting the ROI global
signal from each individual voxel’s signal, resulting in an N-dimensional pattern vector for
each trial pair, where N depends upon the ROI or combination of ROIs. For both of these types
of ROI data, we used SVM to determine whether local information decoded trials of
intertemporal valuation versus probabilistic valuation. In all cases, the classifier was a linear
SVM using a radial basis set. A grid search was used to optimize the tradeoffs among error,
margin, and the radial basis function used.

In order to check the robustness of our ROI analyses and to reduce the size of our feature spaces
used to train the classifiers, our third and fourth sets (Fig. 2) used searchlight feature sets
(Kriegeskorte et al., 2006). These datasets are also more spatially specific; we might be able
to identify individual voxels that are driving ROI local or ROI global performance. For every
voxel in each ROI, we constructed a searchlight corresponding to a spherical cluster of radius
12 mm that contained M voxels (up to 123, depending on the distance between that voxel and
the ROI boundary). The searchlight global classifier was defined as the mean signal of all
voxels in the searchlight, while the searchlight local classifier was obtained (as for the larger
ROIs) by subtracting the searchlight global signal from the activation of every voxel in the
ROI.
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Prediction performance was judged based on five-fold cross-validation (CV), a common
method for evaluating the reliability of a pattern classifier (Mitchell et al., 2004). We repeatedly
selected four-fifths of the trials to train the SVM, with the remaining portion of trials used as
the test set of trial pairs. This process was repeated five times, and the average performance
across the five tests was the SVM’s CV rate. For any SVM, a high CV is indicative of a flexible
learning algorithm that is more likely to accurately classify additional data. Classification was
performed using the LIBSVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm). For
statistical testing of individual ROIs and searchlights, we tested CV against performance of a
chance classifier (50%). All claims of significance refer to p < 0.05, corrected for multiple
comparisons using False Discovery Rate (FDR), where the correction is over the number of
classifiers being compared (e.g., for single ROIs, there were 13). As an additional test for our
classifier accuracy, we also used LIBSVM to generate receiver operating characteristic (ROC)
curves, which can describe the relationship between the fraction of correct predictions for one
trial-type (e.g. risk) and the fraction of incorrect predictions for the other trial-type (e.g. delay),
for each participant and ROI.

Combinatoric Analysis of Regions of Interest
For the ROI local classifiers, we also constructed classifiers using all possible combinations
of two, three, and four ROIs. This resulted in 1092 SVMs for each participant. To compare the
performance of these classifiers to each other, we took their CV rates and ranked them (within
each participant) from 1 to 1092. This process allowed us to control for differences across
participants in the mean performance of all classifiers (i.e., overall better classification across
all ROIs). The average ranks of each possible ROI combination across participants were then
used for paired-difference rank-order tests. For statistical testing of individual ROI
contributions to combinations, we tested increases or decreases against no change (0%). Images
of CV performance were generated using MRICron (Rorden et al., 2007).

General Linear Model Analysis
Analysis using a general linear model (GLM) was carried out using FEAT (FMRI Expert
Analysis Tool) 5.92 in FSL 4.0. First, MELODIC 3.0 (Beckmann and Smith, 2004) was used
to identify scanner artifacts, and an automated and unbiased process was implemented to
remove them from each run for all participants. Motion correction was done using MCFLIRT,
non-brain removal using BET, the high pass filter cutoff was set to 100, and the data were
spatially smoothed with a Gaussian kernel of 8 mm. Registration to MNI space was carried
out using FLIRT.

The model was constructed with four explanatory variables: two for intertemporal trials and
two for probabilistic trials. Within each valuation type, one explanatory variable represented
the valuation period, and a second represented the response period. Each of the two valuation
regressors was modeled for the full 7 s valuation interval, time-locked to the onset of the
presentation of the gamble or delayed prize, and convolved with the canonical double-gamma
hemodynamic response function. Regressors were constructed similarly for the response
period, although that interval was modeled for its 4 s interval. Initial multiple regressions were
conducted on each of the eight individual runs for our eleven participants. Data were combined
across runs using a fixed-effect analysis, and data were combined across participants using
random-effects analysis via FSL’s FLAME algorithm. These third-level analyses used the
standard cluster significance threshold of p = 0.05, corrected for multiple comparisons using
FDR across the whole brain. We report both whole-brain analyses and analyses masked by our
a priori ROIs (i.e., with a smaller number of voxels and thus fewer statistical comparisons).
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Results
Behavior

Participants successfully indicated their subjective value on nearly all trials, with ten of eleven
hitting an average of 99.6% of 192 trials; the remaining participant missed 16%. (We note that
all reported analyses were robust to elimination of this participant, or of any other participant,
and that this subject’s preferences did not differ from those of other participants when responses
were made). Across all trials, there were no systematic biases toward responding with one
hand. Responses were balanced across the eight possible values for each trial, with the most
responses occurring near the middle values, reflecting our pre-estimation procedure. There was
no significant difference in number of responses between the two trial types for any of the
eleven participants. Mean response time (RT) for the intertemporal condition (1.8 ± 0.5 s) was
significantly faster (paired difference, p < 0.01) than that for the probabilistic condition (2.1 ±
0.4 s). This may reflect a greater difficulty in locating the chosen value on the reporting screen,
not necessarily an increased time spent valuing the gamble, given that participants were
allocated seven seconds to complete valuation before the response screen was even displayed.
Using RT as a one-dimensional classification rule, we found an average CV of 64.1% across
participants. This indicates that RT contains some valuation-relevant information (no relevant
information would have place the classifier CV at 50%), providing a useful baseline for
performance.

We also obtained measures of delay and risk preferences for each of our participants (Table
S1, Supplementary Material) using the data from the eight scanning runs. Individual
preferences were estimated using Equations 1 and 2. Our participants ranged from delay-
neutral to quite delay-averse, with all participants’ behavior fit well by a hyperbolic discounting
function (median r2 = 0.97; Fig. S1, Supplementary Material). Participants were risk-neutral
to slightly risk-seeking, with their choices generally well fit by a power model for risk (median
r2 = 0.84; Fig. S1, Supplementary Material). Risk and delay preferences were not correlated
across participants [r (9) = 0.07, p = 0.84].

Local Information Contains Value Information
Our initial analyses evaluated the degree to which overall activation in ROIs predicted the type
of valuation: probabilistic or intertemporal. All thirteen of our a priori chosen ROIs performed
significantly above chance when the pattern classifier used local information; i.e., the pattern
of increases and decreases across voxels from the average ROI signal (Fig. 3). The top
performing local signal region was the left posterior parietal cortex (LPPAR; CV of 76.2%,
p < 0.001). In contrast, none performed significantly above chance when the pattern classifier
used our control feature space, global information; i.e., the average signal across all voxels in
the ROI. For average signal, the highest was in PCC (54.0%); after correcting for multiple
comparisons, this effect was not significantly different from chance. For all regions, the local
signal encoded significantly more information than the global signal, with the greatest
difference again found in LPPAR (local signal CV was 24.8% greater than global signal CV,
p < 0.001).

Our ROC curves for the ROI local classifiers provide further supporting evidence that LPPAR
contains unique valuation information. Using the area under the curve (AUC) as our measure
of classifier performance (Fawcett, 2006) across all possible thresholds, we found that the
average AUC for LPPAR was 0.79 (p < 0.001), the highest of the 13 ROIs. Further, this measure
of classifier accuracy led to similar conclusions as CV performance about the relative
information carried by the different ROIs (Fig. 3, circles).
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A concern intrinsic to fMRI data is that this differential classifier performance could depend
on functional signal-to-noise ratio (fSNR), which could itself vary across regions based on
scanner properties (e.g., distance from receiver coils in the phased array). We determined the
fSNR for every ROI and found that fSNR differences explained less than 6% of all variance
across ROIs. This indicates that differences in fMRI data sensitivity can only account for a
minimal portion of our variance in predictive power across regions.

Pattern Classification using Combinatoric Analysis of ROIs
To evaluate the unique local information contained within each region, we combined data from
all combinations of one, two, three, and four regions, resulting in a total of 1092 classifiers for
each participant. By using rankings of the ROI combinations to perform our statistical tests
(see Materials and Methods), we can assess how these combinations perform with respect to
each other, while controlling for interindividual differences in absolute predictive power.
Across participants, the best-performing pair was LPPAR-RPPAR, with an average CV of
76.1%. The triple combination of LPPAR-PCC-RPPAR (average CV of 77.7%) was the best-
performing of all possible combinations. This group was significantly better (p < 0.05) than
all other combinations of three or four ROIs that did not contain two of those three regions.
Interestingly, this combination of three is significantly better at predicting valuation type than
either PCC or RPPAR on their own (p < 0.01), but not significantly better than LPPAR by
itself (p = 0.32). Finally, the top two combinations of four ROIs were DSTR-LPPAR-PCC-
RPPAR (76.6%) and INS-LPPAR-PCC-RPPAR (76.3%); note that neither of these
outperformed the best combination of three ROIs.

Our results showed that local information in LPPAR was a better predictor of the form of
valuation than local information from any other region. LPPAR by itself significantly
outperformed all other combinations (p < 0.05) that did not contain at least one of LPPAR,
PCC, or RPPAR, and was not significantly outperformed by any combination of regions.
Moreover, when considering all of the 1092 possible classifiers, LPPAR consistently does
better than PCC (p < 0.02) and RPPAR (p < 0.001). Thus, our data indicated that LPPAR
provided the greatest amount of unique information differentiating probabilistic and
intertemporal valuations.

LPPAR Provides Unique Local Information about Valuation Process
To illustrate the independent contributions of the chosen ROIs, Fig. 4A shows increases or
decreases in CV of a specific ROI when one of the other twelve ROIs was paired with it. For
example, when LPPAR was paired with AMYG (lower left of Fig. 4A) the resulting classifier
increased CV by 15% when compared to AMYG alone. Yet, as shown in the upper-right corner,
the combined ROIs actually performed worse (i.e., a reduction in CV by 5%) than LPPAR
alone. Fig. 4B collapses across rows of Fig. 4A to demonstrate that, on average, LPPAR
(average 9.3%, p < 0.001), PCC (6.6%, p < 0.001), RPPAR (5.9%, p < 0.001), and DLPFC
(5.5%, p < 0.003) all added predictive power to the other twelve ROIs. When collapsing across
columns for combinations of two ROIs (Fig. 4C), the CV rates of many of those regions were
either unaffected or improved by the addition of a second ROI. The exception is LPPAR, which
evinced a significant decrease in CV when paired with any another ROI (−2.9%, p < 0.001).
That is, the addition of other ROIs to LPPAR consistently decreases the new classifier’s CV.
No other ROI exhibited similar decreases when paired with other regions.

These results held even when considering larger combinations of three or four ROIs (Fig. S2,
Supplementary Material). The addition of LPPAR to other combinations of ROIs still
consistently improved the overall predictive power, whereas the additions of other ROIs to
combinations that contained LPPAR tended to reduce predictive power. Thus, data from these
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combinations of ROIs converges upon a robust conclusion: voxels within LPPAR contained
unique information that differentiates probabilistic from intertemporal valuation.

Pattern Classification using Searchlight Methods
While ROI-based approaches have many advantages for fMRI research (e.g., reducing the
number of statistical tests), they risk misidentifying functional regions, especially if the voxels
carrying meaningful signal are included within models that incorporate a large number of
noisier voxels. As a check on our primary ROI results, we can assess the predictive power
associated with sub-regions within our ROIs: we created pattern classifiers from smaller
searchlights (Fig. 2B), defined as ~100-voxel spheres surrounding each voxel in the ROI
(Haynes et al., 2007;Kriegeskorte et al., 2006). The process for constructing the global and
local classifiers was analogous to the process for each ROI. We tested the predictive power
present in a given searchlight using the same five-fold CV procedure as with the ROIs.

Searchlight results are summarized in Table 1. The only region containing searchlights with
predictive accuracy greater than 70% was LPPAR (Fig. 5A), within which more than 23% of
all voxels passed that level (maximum searchlight CV of 78.6%). We note that this
performance, which reflects contributions from a small set of contiguous voxels in one brain
region, was roughly equivalent to the best combination of local information across multiple
ROIs. For every ROI, the mean global signal classifier performance fell between chance and
~55%, although each ROI had at least one local searchlight and one global searchlight with a
CV significantly above chance. Moreover, the greatest difference between local and global
searchlights (~39%) is again found in LPPAR (Fig. 5B) indicating that LPPAR contains the
greatest amount of local information. These findings are in line with the ROI results (Fig. 3
and Fig. 4).

Also interesting was the observation that the peak global searchlight in MPFC (66.7%) was
higher than the peak local searchlight in MPFC (64.9%), indicating that local information made
minimal contributions (if any) compared to the average signal within that region.

Analyses using Standard Regression Modeling
As a check on our pattern classification data, we used standard fMRI analysis methods based
on the GLM to identify activation clusters that differentiated probabilistic and intertemporal
valuation (local maxima for all contrasts are listed in Table S2, Supplementary Material). For
valuation of intertemporal delays (D), we found significant activation in both ACC and medial
frontal cortex. On trials involving probabilistic risk (R), significant activation was also found
in ACC, as well as in the superior frontal gyrus, and along with portions of LPPAR, with a
local maximum in the superior parietal lobule. Importantly, the CV for the local searchlight
about that local maximum was 57.7%, indicating a discrepancy between the coordinates of
maximal global and local information in LPPAR. We also identified regions that were
significantly more active for intertemporal valuations compared to probabilistic valuations
(D>R) or for probabilistic compared to intertemporal (R>D). For D>R, significant differences
were found in MOFC and several other cortical regions. The only cortical regions that proved
significant for the R>D contrast were regions of visual cortex.

As an additional check for our ROIs, we repeated our GLM analyses using our ROIs as a
volume mask before thresholding and correcting for multiple comparisons (Table S3,
Supplementary Material). We found the same ACC activation for both intertemporal and
probabilistic valuations. Both valuation processes also recruited left IPFC, anterior INS, and
bilateral PPAR. For D>R, ACC, bilateral DLPFC, MOFC, MPFC, and PCC all were
significant. Importantly, none of the ROIs were significant for R>D, and PPAR did not
distinguish either trial type from the other. Thus, we conclude that the use of pattern
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classification methods here provided novel information about the neural systems
differentiating forms of economic valuation; i.e., information that was not available within
standard fMRI analysis methods.

Discussion
Convergent evidence from several forms of machine learning analyses indicated that unique
information about value construction was provided by the pattern of local activation within
LPPAR. The most-predictive voxels in LPPAR were located in the more posterior part of the
superior parietal lobule, along the intraparietal sulcus, within the left hemisphere. These local
computational maps were not evident when examining the results of standard fMRI analysis,
perhaps because we used a simple valuation task that controlled for several possible confounds,
including value range, motor preparation, and visual features. Our interpretation is that while
the valuation processes of different rewards and sets of information may involve a similar
system of brain regions, there is differential recruitment of local circuitry within at least one
of those regions, posterior parietal cortex (PPAR).

Combinatoric Approach Identifies Unique Information in Posterior Parietal Cortex
Our standard fMRI analyses revealed brain regions typically implicated in decision making
under uncertainty: aINS, lateral PFC, and PPAR, among others (Table S3, Supplementary
Material). This result supports the inference that participants were treating the probabilistic
and intertemporal valuations as meaningful decisions. For both valuation processes, we also
observed significant dorsal ACC activation, which may be relevant to task and choice
representation (Rushworth et al., 2007). Yet, when we examined the regression contrast
between probabilistic and intertemporal valuation, no significant differences were observed in
PPAR. Our pattern classification data, however, led us to a different conclusion: the local
pattern of voxel activation within PPAR provides unique and highly predictive information
about the form of valuation being attempted by the individual.

A recent study used an ascending search of ROI combinations to try to identify an optimal
classifier in an executive function task (Hampton and O’Doherty, 2007). Our interest in the
present study was not to correctly classify the largest percentage of our data, but rather to
identify unique information that can form the basis of robust models of computation. We used
a full combinatoric approach that developed classifiers from all combinations of up to four
regions. This allowed measurement of the unique information within a given region that could
contribute to a general model of value construction. We also used increases or decreases in
cross-validation, rather than model prediction, as our measure of performance. This second
step is crucial; regions that lead to increases in cross-validation reveal useful information and
serve to construct a more robust model. Based on examination of all combinations of two,
three, and four ROIs, we found that LPPAR consistently added the most information, regardless
of combination size. Even though PCC and RPPAR also increased the predictive power of ROI
combinations, these improvements disappeared when LPPAR was already present in the
classifier, as is demonstrated in Fig. 4A. This conclusion was further supported by our
searchlight analysis (Fig. 5 and Table 1). So, local information encoded in other brain regions
was redundant with the information encoded in LPPAR, which further suggests that there are
elements of value construction unique to PPAR.

That pattern classification identifies local patterns associated with distinct forms of valuation
is by itself unsurprising. Indeed, neural differences between the processing of probabilistic and
intertemporal decisions have been recently identified (Weber and Huettel, 2008). More critical
is our finding that LPPAR contains unique local information that is not present elsewhere
within the decision making system. One potential interpretation of this result is that it reflects
a computational topography within that specific region, similar to topographies demonstrated
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using fMRI pattern classification for features (e.g., orientation) within the primary visual cortex
(Haynes and Rees, 2005; Kamitani and Tong, 2005). Consistent with this speculation, lateral
intraparietal areas have been postulated to provide maps of salience (Gottlieb, 2007) and
subjective value (Glimcher et al., 2005). Alternatively, local patterns could reflect separate
projections to other regions where other computations can be performed. We consider these
possibilities in more detail in the following section.

Discrimination of Value Construction in Posterior Parietal Cortex
Prior research has implicated parietal cortex, particularly the lateral intraparietal area, in the
construction of value (Glimcher et al., 2005; Sugrue et al., 2005). This region may reflect an
early stage in processing, one well before distinct classes of rewards are represented within a
common currency (Montague and Berns, 2002). Despite the common assumption of fMRI
analyses that the function of an ROI is homogenous, our searchlight analyses provided strong
evidence for fine-scale heterogeneity within PPAR. We found that voxels within a 12 mm
radius differentiated intertemporal and probabilistic trials; it was striking that these two
valuations evoked different and reproducible patterns of activation within highly localized
regions of PPAR.

Just as stimulus features like orientation (Haynes and Rees, 2005; Kamitani and Tong, 2005)
and object category (Shinkareva et al., 2008) are represented by spatial topographies within
specific regions, there may be a similar topography in parietal cortex based on the sorts of
computations (e.g., distinct mathematical operations) necessary for economic valuations. Such
spatial proximity could provide efficiencies for valuation of complex stimuli that require
different subsets of local computations, as frequently would be the case for real-world decision
stimuli (e.g., purchasing tradeoffs). These potential computational efficiencies may be
described by two non-exclusive hypotheses. First, both forms of valuation, even if other aspects
may differ, could require a common computation, and thus spatial proximity may reflect a need
for common operations used to compute risk and delay. Second, spatial proximity could
facilitate comparisons between these different valuation types (and perhaps others) within
PPAR as may be required in many real-world decisions but not in the present study.

Given that our task design contained separate valuation and response phases, we can be
confident that the observed effects in PPAR do not confound decision and motor preparation
processes. Equally important is that our task differs considerably from those of previous fMRI
studies using pattern classification. As examples, prior studies have asked participants to add
or subtract (Haynes et al., 2007), to switch or stay in an executive function task (Hampton and
O’Doherty, 2007), or to be honest or deceitful (Davatzikos et al., 2005). Our task, for
comparison, presents participants with a serious of prizes and asks them to evaluate each one
independently, not to choose between prizes. This is a more introspective procedure and hence
provides novel information about subjective valuation, instead of distinguishing between types
of choices themselves.

Thus, we conclude that PPAR plays a key role in the valuation process via preliminary
information representation and integration prior to, but still necessary for, computing economic
value. Because this PPAR information is likely upstream of other regions that ultimately encode
subjective value in the context of choice (Padoa-Schioppa, 2007; Rangel et al., 2008), future
models of both value computation and choice should account for what computational output
PPAR might provide VSTR and OFC. While our task was not designed to parse out specific
stages of value construction (e.g. probability and reward magnitude), some exploratory
classification results indicated that many of our ROIs, including PCC, contain local patterns
that can be used to discern high-probability from low-probability trials and short-delay from
long-delay trials. This within-valuation class analysis provides further evidence of
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computational topographies that would play a role in early parts of reward presentation and
value computation.

Alternative Explanations
A common concern for neuroimaging experiments is that observed effects could reflect
differences in degree (i.e., magnitude of neuronal activity), but not kind (i.e., population or
pattern of neuronal activity). Considering our experiment, if participants were relatively delay-
neutral (as they were in our study) and used a simple heuristic for those trials, probabilistic
valuations could more strongly recruit brain regions involved in calculation and perhaps lead
to more activation (in general) throughout cortex. Subregions of PPAR are widely-
demonstrated to be involved in numerical computation and the representation of numerical
information, particularly along the intraparietal sulcus (Cantlon et al., 2006; Dehaene et al.,
2003) as well as approximate calculation (Piazza et al., 2004). If we interpret response time
differences as the result of calculation time differences, then our data support this hypothesis,
as both valuation types recruited PPAR within the GLM analyses (Table S3, Supplementary
Material). However, there is evidence arguing against this possibility. Our searchlight data
demonstrated that local patterns of voxel activation reliably discriminated the two forms of
valuation, even after the global activation level across that searchlight was removed. We note,
however, that other regions, including visual cortex, were significantly more active on
probabilistic trials than on intertemporal trials (Table S2 and Fig. S3, Supplementary Material),
consistent with overall computational or arousal effects in those regions.

Our posited role for PPAR in value construction could also reflect a cognitive process specific
to our experimental design, but not general to economic valuation. Left parietal cortex
(including the intraparietal sulcus) has been found to increase in activation when mediating
representations of potential responses (Bunge et al., 2002), and PPAR activation scales with
representational difficulty (Anderson et al., 2005). Our robust ACC activation in both valuation
types is consistent with the task switching literature (Liston et al., 2006) which also frequently
implicates PPAR as sensitive to stimulus representation conflict. Also, some of our participants
demonstrated “aversive” or “neutral” preferences on one trial type (intertemporal) and
“seeking” preferences on another trial type (probabilistic). A possible heuristic-based
explanation might also apply here: a difference in how participants treat the two types of prizes,
not in how they value them, could potentially lead to neural differences that were decoded by
our classifiers. Importantly, we note that LPPAR remained the best discriminator of economic
valuation even if we examined only the delay-averse participants or only the non risk-seeking
participants (Fig. S4, Supplementary Material). Our results were also robust to removal of any
one participants from the analyses. Finally, we note that LPPAR was either the most or second-
most predictive region in every participant within the sample.

Future Considerations
Our findings indicate several avenues for further investigations of the mechanisms – both
psychological and neural – that underlie value construction. Many of our participants exhibited
risk-neutral to risk-seeking behavior on probabilistic decision making trials. While such
preferences are uncommon, we note that risk-seeking behavior has been sometimes reported
both in neuroscience studies (Kuhnen and Knutson, 2005) and in behavioral research,
particularly when stakes are small (Weber and Chapman, 2005). Moreover, our presentation-
style was novel (visual representations were nearly identical across both trial-types) and our
payments were entirely in Amazon.com dollars. One or both of these facets of our design may
have changed the relative valuation (or set aspiration levels) across prizes. Economics
frequently explores the effects of fungibility on value (Thaler, 1990), but further research would
be required to evaluate the effects of prize modality upon risk preferences. We note that changes
in the relative valuation of the prizes, even seemingly maladaptive changes to risk-seeking
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behavior, do not obviate conclusions drawn about the differential valuation of probability and
delay.

Our study also raises questions about the existence of computational topographies involving
components of subjective value. Future modifications of our task and methods could validate
or refute our claims of differences in the early phases of value construction. Consider a task
that involves choosing between two rewards, one probabilistic and one intertemporal. Under
the first alternative above, similar activity in PPAR would be expected regardless of whether
a participant faces a mixed-type trial or a same-type trial, as there is only a common
computation to perform (another region, however, could show differences in activation
associated with the comparison process). But, under the second alternative, PPAR activation
patterns would discriminate whether a participant was choosing between the above two rewards
versus two rewards of the same type, providing evidence of the comparison computation. The
use of connectivity analyses (Buchel and Friston, 1997; Friston et al., 2003) or a more precise
temporal classification process (Mourao-Miranda et al., 2007; Soon et al., 2008) could provide
important information about differences in the input to and output from PPAR associated with
valuation type. A more comprehensive understanding of the role of PPAR in valuation will
then be informative for understanding and modeling the general valuation pathway (Rangel et
al., 2008).

Conclusion
Using pattern classification, we demonstrated that local voxel information provides novel and
independent evidence for neural regions of interest associated with economic valuation. We
developed simple measures of predictive power, based on combinatoric measures, that identify
the unique information provided by specific regions. We used convergent analyses to reach
our primary objective: gaining insight into the neural processing of reward valuation. Notably,
posterior parietal cortex (and, secondarily, posterior cingulate cortex) encoded information
about whether participants were making an intertemporal valuation or a probabilistic valuation,
and much of this information is not available from analyses of the mean activation across
voxels. These results suggest a potential computational topography in posterior parietal cortex,
a possibility worthy of future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Probabilistic and Intertemporal Valuation Task
Probabilistic and intertemporal prizes were displayed using a common graphical
representation, shown here in grayscale. For the probabilistic valuations (left), the probability
of winning the positive-value prize was represented by a green area on top, while the probability
of winning nothing was represented by the gray area on bottom. For the intertemporal
valuations (right), the length of delay was represented by the gray portion of the rectangle,
leaving the green area to represent the fraction of the sixteen weeks that the participant would
not have to wait. In the example intertemporal trial (bottom), a fixation screen (0.2 s to 0.5 s,
not shown in figure) would be followed by the presentation of the delayed prize ($39 in the
example) for 7 s. During that interval, participants determined their subjective value, and then
found the closest value out of eight available during the response phase (4 s). The selected
value was then briefly highlighted (0.2 s).
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Fig. 2. Feature Spaces used for Pattern Classification
To predict probabilistic or intertemporal valuations, we identified the following four feature
spaces for training sets and testing sets. We estimated fMRI signal amplitude for each voxel
on each trial. Then, we extracted four types of feature sets: (1) ROI local, (2) ROI global, (3)
searchlight local, and (4) searchlight global. Shown as examples are (A) our inferior prefrontal
cortex ROI, comprising n = 928 voxels, and (B) one of its spherical searchlights, comprising
m = ~100 voxels. For each of these feature sets, we used an iterated cross-validation technique
to evaluate whether a classifier derived from training data could predict whether, on a given
trial, the participant was valuing a probabilistic or intertemporal outcome.

Clithero et al. Page 18

Neuroimage. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3. Local information in LPPAR ROI Outperforms Other ROIs
Classification accuracy in each ROI, plotted in descending order based upon local performance
(error bars indicate s.e.m.). Models built from local information in each ROI perform
significantly above chance and consistently better than models based on the global signal from
the ROI. LPPAR provided the best local information for classification (76%, p < 0.0001).
LPPAR also had the greatest gain in performance from global to local (25%, p < 0.0001). We
additionally constructed receiver operating characteristic (ROC) curves for every region by
varying the classifier response thresholds. From measurements of the area under each ROC
curve, we found that LPPAR is the most likely to correctly classify a trial, regardless of the
allowed response threshold (0.79, p < 0.001). We summarize the ROC-based classification
performance, for each ROI, with a filled circle indicating the area under the curve (AUC) of
each ROC curve.
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Fig. 4. Cross-Validation Performance for Combinations of Regions of Interest
Shown in (A) is the increase (red) or decrease (blue) in CV performance when local information
from one ROI combined with local information from another. Significant changes in CV
performance are displayed in solid colors. (B) Average increase in CV from the addition of a
given ROI, plotted in descending order (error bars indicate s.e.m.). Each reported value in the
bar graph is the average of the corresponding column in Fig. 4A. (C) Average amount the CV
increases when local information from another ROI is added (error bars indicate s.e.m.). This
provides a measure of how much predictive power a region has on its own, since regions that
perform poorly on their own will always benefit from the addition of other regions. Each
reported value in the bar graph is the average of a row in Fig. 4A.
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Fig. 5. Cross-Validation Performance for Local Searchlights within Regions of Interest
(A) CV performance for models utilizing local information. Only LPPAR contained voxels
with searchlights with CV over 70%, with a maximum of 78.6%. (B) The performance
difference between models using local information and those using global information. The
only searchlights with more than a 15% difference between local and global CV were in PCC
and LPPAR. The maximum again was in LPPAR (38.6%).
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Table 1
Peak Performance for Searchlights with Regions of Interest.
MNI coordinates and CV rate for the best-performing local searchlights in each of the ROIs (see also Fig. 5). The
average CV for all local searchlights within each ROI and the standard deviation are also shown. The maximum CV
for local signal searchlights was observed within LPPAR.

ROI Peak (MNI) CV (max) CV (mean) CV (std)

LPPAR −18, −78, 50 78.6 65.1 6.6

MOFC 2, 38, −34 69.6 60.2 4.0

ACC −10, 30, 26 68.5 57.4 3.8

PCC 14, −58, 6 67.9 55.7 4.1

DLPFC 42, −2, 46 67.9 54.1 3.3

RPPAR 22, −62, 46 67.3 53.1 4.8

AMYG 26, 6, −22 66.7 56.6 3.5

INS 46, 26, −2 66.7 56.2 2.9

IPFC 46, 26, −2 66.7 55.5 3.1

MPFC 6, 42, 26 64.9 53.5 2.9

DSTR 6, 10, 6 63.7 57.3 2.5

VSTR 22, 6, −18 63.1 55.5 3.3

LOFC 14, 54, −14 61.9 54.5 2.5
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