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We used fMRI to investigate how the information content of a sti-
mulus in£uences activity in brain systems that support decision
making. Subjects learned decision rules that were based upon the
color, shape, or ¢ll pattern of a series of stimuli. Each stimulus was
classi¢ed by its information content, de¢ned formally by the deci-
sion rules it excluded. While activity in dorsolateral prefrontal
cortex (dlPFC) increased with increasing stimulus information,

activity in the striatum did not. In contrast, within both the stria-
tum and dlPFC, stimuli consistent with the rule evokedgreater ac-
tivity than stimuli inconsistent with the rule. This dissociation
indicates that dlPFC supports modi¢cation of sets of stimulus-re-
sponse contingencieswhile the striatum supports stimulus-speci¢c
learning. NeuroReport15:1883^1886�c 2004 LippincottWilliams&
Wilkins.
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INTRODUCTION
To control behavior flexibly, organisms create and alter
decision rules based upon sensory experience. One common
form of decision making is classification, or partitioning
a set of stimuli into distinct response categories [1,2].
The success of classification rests on the information
available to the decider. For example, if one knows nothi-
ng about the provenance of two paintings, it may be diffi-
cult to guess which was created by Michelangelo and
which by Titian. Some additional facts, such as that one
was painted by an Italian master, provide no new informa-
tion. However, learning that one was painted in Florence
and the other in Venice might lead to an informed decision.
In a formal sense, the information provided by a stimulus
is defined by the proportion of uncertainty it reduces,
where each bit of information reflects the halving of
uncertainty.
To investigate the neural systems sensitive to decision

information, we measured changes in brain activity using
fMRI while subjects performed a novel classification task
(Fig. 1). The classification rule changed infrequently, as in
paradigms like the Wisconsin Card Sorting Task (WCST) [3],
and subjects were required to recognize the active rule as
rapidly as possible. However, unlike in the WCST and
similar paradigms, subjects responded only to infrequent
probe stimuli so that we could control the amount of
information provided by each stimulus.
Based on previous studies, we identified two brain

regions as likely candidates for information sensitivity.
The first was dorsolateral prefrontal cortex (dlPFC), which
supports response selection, working memory, and other
processes related to the development and modification of
behavioral rules [4]. Neuropsychological studies of explicit

rule-learning tasks, including the WCST, have shown that
patients with dlPFC damage have difficulty learning
decision rules [5,6]. Likewise, single-unit studies have
shown that dlPFC neurons exhibit rule selectivity [7].
A second candidate system includes striatal regions,

which have been postulated to support the learning of
categorical relations between stimuli and adaptive behavior
[8–10]. The striatum receives significant afferent projections
from midbrain dopaminergic neurons, whose activity codes
for the difference between expected and observed outcomes
[11]. Deficits in striatal function, as found in patients with
Parkinson’s disease, impair the use of complex decision
rules [12]. Although the striatum and dlPFC are highly
interconnected and are frequently coactive, recent neuro-
imaging data suggest a possible distinction: the striatum
modifies representations of specific objects while dlPFC
modifies abstract task rules [13]. Thus, investigating the
sensitivity of these regions to stimulus information is
of considerable importance for theories of executive
function.

MATERIALS AND METHODS
Subjects: Eight adult subjects (five females, three males;
mean age 23 years) participated. None reported any prior
neurological condition. All had o1 voxel maximum head
motion and had acceptable behavioral performance (see
below). Data from an additional five subjects were excluded
prior to analysis due to unacceptable head motion or
inability to perform the experimental task. All subjects
provided written informed consent, and the experiment
was approved by the Institutional Review Board of Duke
University.
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Stimuli and experimental design: Subjects learned classifi-
cation rules and responded to infrequent probe stimuli that
tested those rules (Fig. 1). A fixed set of 27 stimuli was
created from the combination of three shapes (circle, square,
or triangle), colors (red, green, or blue), and patterns (solid,
striped, or dotted). Each classification rule was based on one
feature (e.g. red stimuli). The task was presented using
CIGAL [14].
In the scanner, subjects viewed the stimuli using LCD

goggles (Resonance Technologies); each stimulus subtended
about 41, and the total field of view was about 20� 161.
Stimuli were presented in a pseudo-random sequence
(duration 1500ms; interstimulus interval 1000ms). The
position of each stimulus indicated whether it was
consistent with the rule. Stimuli that were consistent with
the rule, or ‘targets’, were presented in one of the four
corners of the display. Stimuli that were inconsistent
with the rule, or ‘non-targets’, were presented in the center
of the display. Each rule was active for 18–22 stimuli before
a new rule was chosen randomly. There was no explicit
indication of the rule transitions; they were inferred by
subjects when stimuli violated the previous rule. Within
each rule block, 25% of stimuli were targets and 75% were
non-targets.
Subjects did not respond to any of the targets or non-

targets, nor did they respond at rule transitions. Instead,
they only responded to infrequent (10% of total) and
randomly presented ‘probes’. The probes were much larger
than the other stimuli (91 visual angle) and were thus
visually distinct. When a probe was presented, the subject
pressed one of two buttons to signal whether it was
consistent or inconsistent with the active rule (50% were
consistent, 50% were inconsistent).
Subjects first practiced the task for 30min outside of the

scanner. During the fMRI session, subjects participated in
6–9 experimental runs (mean 7.5), each lasting 8min. On
average, subjects viewed about 1440 stimuli and 75 rule
changes.

Imaging parameters: fMRI scans were acquired on a 4.0 T
GE Signa NVi scanner using a spiral gradient-echo sequence
sensitive to blood-oxygenation-level dependent (BOLD)
contrast. Each volume consisted of 28 slices parallel to the
axial plane containing the anterior and posterior commis-
sures (TR 1250ms; TE 35ms; voxel size 3.75�3.75�3.8mm),
and 380 volumes were collected in each run. To aid in
normalization of the functional images, high-resolution T1-
weighted SPGR images were acquired at the same orienta-
tion (voxel size: 0.9375� 0.9375� 1.9mm).

fMRI data analysis: Initial preprocessing used SPM (Well-
come Department of Cognitive Neurology) to correct for
time of slice acquisition, to minimize head motion, to
normalize into a stereotaxic space (Montreal Neurological
Institute), and to smooth using a Gaussian kernel (8mm
FWHM). Quadratic detrending used custom MATLAB
(Mathworks) scripts.

We created separate design matrices for the stimuli and
for the information they carried. The stimulus design matrix
had four model factors: targets, non-targets, probes, and
rule transitions. Stimulus contrasts of interest included
targets vs non-targets, probes vs baseline, and rule transi-
tions vs baseline.

For the information design matrix, we coded each
stimulus by how many rules it could exclude. For example,
if an optimal decision maker knew that the rule was red
stimuli, a red target or a green non-target would exclude 0
rules. However, if an optimal decision maker had narrowed
down the possible rules to red stimuli or blue stimuli, a red
target would exclude 1 rule. Because most stimuli provided
relatively little information, we used five model factors:
exclusion of 0 rules, 1 rule, 2 rules, 3 rules, and 4 or more
rules, each weighted by the number of rules excluded
(e.g. stimuli that excluded more rules were hypothesized to
have a larger BOLD effect). Our contrast of interest was
informative stimuli vs non-informative stimuli. To eliminate
a potential confound, we excluded all rule transition events
from this second design matrix.

Fig. 1. Design of the experiment. Subjects performed a rule learning
task while being scanned using fMRI. Stimuli were simple shapes pre-
sented one at a time for 1500ms with a 1000ms interstimulus interval.
The stimuli could vary in shape, color, or pattern.The subjects’ task was
to learn a rule that separated targets presented in the periphery from
non-targets presented at ¢xation.For example, if a subject ¢rst saw a so-
lid green circle that was a target, the subject could narrow down the ac-
tive rule to three possibilities (e.g. solid, green, or circle). No additional
information would be provided by a subsequent non-target dotted red
square, but a solid blue triangle non-target would eliminate one possible
rule, leaving green and circle. If a solid green triangle non-targetwas then
presented, it would eliminate one more rule, leaving only circles are tar-
gets.We coded the information each stimulus provided by counting how
many rules it excluded.The subjects indicated their knowledge of the ac-
tive rule by responding to infrequent probes.The rules changed periodi-
cally and without warning; subjects inferred these rule transitions by
noting stimuli whose position violated the previous rule.

Fig. 2. Dissociationbetween striatal and dorsolateral prefrontal cortex
activity to informative events. (a)We identi¢edbrainregionswhose activ-
ity increased proportionally to the amount of information conveyed by
each stimulus. E¡ects signi¢cant by random-e¡ects analysis are shown
using a red-to-yellow color map (po0.001 to po0.0001). E¡ects of infor-
mation content were observed in dorsolateral prefrontal cortex, but not
in the striatum. (b) We also identi¢ed voxels that exhibited signi¢cantly
greater activity to stimuli consistent with the active rule (targets) than
to stimuli inconsistent with the active rule (non-targets). Signi¢cant tar-
get-related activity was observed inboth the dorsal striatum and the dor-
solateral prefrontal cortex.
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Each contrast was subjected to a second-level random-
effects analysis across subjects. Clusters with more than 6
contiguous active voxels (ao0.001) are reported in Table 1.

RESULTS
Behavioral data: Because the probe stimuli could occur at
any time during the experimental runs (e.g. before sufficient
information to specify a new rule), not even an optimal
decision maker could respond correctly to all probe trials.
For this reason, we calculated d’ measures for all subjects to
assess discrimination performance independently of any
response biases. For the subjects included in the sample,
mean d’ was 1.76 (range 0.85–2.70), indicating that they
were able to learn the decision rules effectively.
Responses from one button were not recorded for two

subjects due to a technical problem. However, both subjects
had high hit rates (0.83 and 0.90) and neither subject had
any false alarms. Therefore, we conclude that they were
performing the task at a near-optimal level, consistent with
the other subjects.

fMRI data: Regions exhibiting significant positive activity
in our experimental analyses are indicated in Table 1. Our
primary analysis identified regions whose activity increased
with increasing information provided by a stimulus. We
found significant positive effects of stimulus information in
the posterior dlPFC, bilaterally, and in the right intraparietal
sulcus (Fig. 2a). Significant negative effects were observed in
the medial frontal lobe and in the posterior insula.

Significantly greater activity to targets than non-targets
was found in the dorsal striatum (both putamen and
caudate; Fig. 2b) and the posterior dlPFC, as well as in
occipital and superior frontal cortices. Increased activity to
rule transitions was observed in posterior dlPFC and the
superior frontal lobe, as well as in the occipitoparietal
cortex. Note that rule transitions were never explicitly
indicated to the subjects, and thus this activity must reflect
the subjects’ inferences that a rule has changed. Finally, we
found significant activity associated with the response
probes in dlPFC, the striatum (restricted to the putamen),
the medial frontal gyrus, and the cingulate gyrus.

DISCUSSION
Our experimental task was designed to deconfound the
effects of the information content of stimuli from the effects
of their perceptual and response requirements. We found
strong evidence that activity within dlPFC is modulated by
the information content of stimuli, both to stimuli that
resolve uncertainty about behavioral rules (e.g. increased
information) and to stimuli that generate such uncertainty
(e.g. rule transitions). Within dlPFC, targets also evoked
greater activity than non-targets; the former were typically
more informative. Common across these experimental
conditions is the requirement to modify a set of stimulus-
response contingencies based upon moment-to-moment
information from the sensory environment [15].
In contrast, we found significant striatal activity only for

the comparison of targets and non-targets, which differed in
two ways beside informativeness. First, the targets were

Table1. Clusters of signi¢cant positive activity. All regions indicated in this table hadmore than 6 contiguous suprathreshold voxels (t44.5). For regions
active bilaterally, the coordinates of the highest t-value are indicated.

MNIcentroid

Laterality x y z Max t #Voxels

Information increase
Middle frontal gyrus R4L 42 18 25 9.2 24/81
Intraparietal sulcus R 39 �67 32 7.7 9

Targets4non-targets
Calcarine sulcus B 0 �84 0 10.5 358
Dorsal striatum L4R �21 21 7 7.6 99/18
Inferior frontal sulcus L �56 14 35 7.2 26
Middle frontal gyrus L �49 4 42 7.0 23
Lateral occipital gyrus R 39 �67 14 6.6 34
Supramarginal gyrus L4R �35 �49 42 6.2 33/24
Intraparietal sulcus R4L 28 �81 32 6.2 94/158
Lateral occipital gyrus R 53 �60 �11 6.1 33
Inferior frontal sulcus L �49 32 18 5.2 16
Superior frontal sulcus R 32 4 49 5.2 24

Rule transitions4baseline
Precentral gyrus L �32 �4 53 11.2 47
Lateral occipital gyrus R4L 35 �77 11 7.4 21/33
Medial frontal gyrus L �4 35 46 6.4 8
Middle frontal gyrus R 42 11 35 5.9 22
Postcentral gyrus L �42 �39 49 5.9 12
Superior frontal sulcus R 32 7 53 5.8 48
Middle frontal gyrus R 49 25 39 5.2 7

Probes4baseline
Middle frontal gyrus R4L 39 25 25 14.7 9/55
Putamen L �25 14 7 6.7 10
Medial frontal gyrus L �11 14 60 6.6 8
Cingulate gyrus R 14 18 39 5.2 9
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spatially distinct from the non-targets, and thus subjects
covertly shifted attention or moved their eyes to fixate the
targets. While these shifts may account for the observed
activity in superior frontal and occipital cortices, they are
unlikely to cause the striatal activity. Recent studies of
caudate activity in visual discrimination tasks have indi-
cated that it supports the reward-based control of attention,
not eye movements or attentional shifts themselves [16].
Second, the targets provided confirmatory evidence about
the rule, while the non-targets provided disconfirmatory
evidence. In a wide variety of reasoning tasks, confirmatory
evidence is weighted more heavily than disconfirmatory
evidence, reflecting the tendency for hypothesis formation
and testing [1]. Thus, we interpret the striatal activity in this
task to be restricted to stimulus-specific learning that is
distinct from the development of explicit behavioral rules
mediated by PFC [10,13].
Although our results clearly demonstrated an effect of

stimulus information upon dlPFC activity, they raised
additional issues. First, while previous studies have impli-
cated the anterior dlPFC (BA 46) in behavioral selection, we
observed effects of stimulus information within posterior
dlPFC (BA 9). This area of activity was inferior to the
postulated location of the frontal eye fields and was anterior
to premotor cortex, so we do not believe it reflects attention,
eye movements, or motor preparation. Rule learning tasks
with more-explicit selection requirements will be necessary to
directly compare anterior and posterior dlPFC functions. Of
additional note were the superior frontal lobe activity to rule
transitions, which may reflect the control of eye movements
by the frontal eye fields [17], and the peri-calcarine activity to
targets, which may result from increased visual processing of
the targets compared with the less-relevant non-targets.
A second issue resulted from the nature of our rule

learning task, which did not require responses for each
stimulus. Therefore, we could not know the learning
strategies used by subjects or the exact information provided
by stimuli. Given our subjects’ creditable performance, the
observed significant activity is likely to reflect true contribu-
tions of stimulus information. It remains possible, however,
that an improved model would have revealed activity in
additional regions. One avenue for future investigations is
hypothesis-testing behavior; i.e. that subjects form expecta-
tions about possible decision rules and seek evidence to
confirm or reject those expectations. Early cognitive psycho-
logical studies indicated hypothesis testing is used during
rule learning in order to reduce task complexity [1]. There-
fore, additional behavioral evidence about subjects’ strategies
would allow further generalization of neuroimaging results.
Nevertheless, the very measurement of subjects’ knowl-

edge of a decision rule evokes activity in regions that
support behavioral control, since subjects must select the
appropriate response to the probe stimulus. Thus, conver-
ging evidence from explicit and implicit decision tasks will
be necessary to identify the brain systems associated with
the learning and execution of rules for behavior.

CONCLUSION
Using a novel rule learning task, we found that activity
within dlPFC was modulated by the amount of information
provided by an individual stimulus. Stimuli that reduced
uncertainty about the decision rule, or that signaled a
change from one rule to the next, evoked significant dlPFC
activity. In contrast, activity within the dorsal striatum was
greater to stimuli consistent with the decision rule than to
stimuli inconsistent with the decision rule. These results
emphasize the dynamic nature of prefrontal and striatal
contributions to executive control of behavior, with the
former supporting the explicit modification of sets of
stimulus-response contingencies and the latter supporting
implicit stimulus-specific learning.
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