
Evaluating U.S. Electoral Representation with a Joint Statistical
Model of Congressional Roll-Calls, Legislative Text, and Voter

Registration Data
Zhengming Xing

Criteo Labs
Palo Alto, CA 94301
zh.xing@criteo.com

Sunshine Hillygus
Political Science
Duke University

Durham, NC 27708
hillygus@duke.edu

Lawrence Carin
Department of Electrical and

Computer Engineering
Duke University

Durham, NC
lcarin@duke.edu

ABSTRACT
Extensive information on 3 million randomly sampled United States
citizens is used to construct a statistical model of constituent pref-
erences for each U.S. congressional district. This model is linked
to the legislative voting record of the legislator from each district,
yielding an integrated model for constituency data, legislative roll-
call votes, and the text of the legislation. The model is used to
examine the extent to which legislators’ voting records are aligned
with constituent preferences, and the implications of that alignment
(or lack thereof) on subsequent election outcomes. The analysis is
based on a Bayesian formalism, with fast inference via a stochastic
variational Bayesian analysis.
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1 INTRODUCTION
One of the fundamental research topics in political science is the
extent to which elected o�cials represent the preferences of the
citizens who elect them. Although democratic theorists assume an
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electoral connection between representatives and their constituents,
data limitations have historically made it di�cult to empirically
evaluate both legislators and the public within the same policy space.
A long line of research has estimated the ideological preferences of
legislators from their voting records, using an “ideal point” model [8,
16]. Such a model typically assumes each legislator and each piece of
legislation can be represented by a point in a one-dimensional latent
space. More recently [10, 19, 20, 24–26] have o�ered approaches
for incorporating information beyond roll-call votes. For example,
in [10, 24] a latent factor model is proposed to jointly analyze
the congressional votes and the legislative text. In [11] the authors
improve the model by allowing the ideological position of legislators
to vary on speci�c issues. Further, in [20, 25] a spatio-temporal
model is proposed, accounting for the time of the votes and the
spatial location of the legislators’ districts. However, these methods
do not explicitly account for properties of the constituents living
within a given electoral district.

Estimating the ideological preferences of a member’s ideological
district is far more di�cult. Some researchers rely on crude proxies
such as presidential vote share [7]. More recently, scholars have
turned to public opinion polls – often pooling many di�erent na-
tional surveys to increase sample sizes [2, 9, 13]. For example, in
[13] over 100 surveys are aggregated to estimate state-level ideo-
logical preferences. Unfortunately, these works are limited by the
relatively small number of survey respondents, which causes in-
accuracy in parameter estimation, while also hindering access to
�ner-scale (district level) constituency information.

Motivated by these challenges, we propose a new scalable Bayesian
model to jointly analyze individual-level constituency information,
congressional roll-call votes, and associated legislative text. For the
constituent information, we leverage a random, de-identi�ed sam-
ple of 3 million individuals from the political data vendor Catalist,
which collects, maintains, and updates a database with political,
demographic, and commercial characteristics on 280 million Amer-
icans. Matrix factorization [18] is integrated with the hierarchical
Dirichlet process (HDP) [22], yielding a statistical characterization
of people living within each US congressional district. Further, a
topic model is employed on the text of the legislation. The inferred
district-level feature vectors of the people living in each district and
the topic distribution on a given piece of legislation are employed
to infer roll-call votes. Within the model is a novel component that
allows inference of the degree to which a given legislator votes in
a manner aligned with the interests of his/her constituents. The
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inferred value of this parameter is examined in the context of the
success of the legislator in the next election, yielding a new means to
evaluate the relationship between legislative behavior, constituent
preferences, and electoral outcomes. To address the massive scale
of the constituency data, stochastic variational Bayesian inference
[6, 12, 23] is utilized.

While the explicit data considered here are associated with poli-
tics, the basic model setup is more general. One may envision trying
to assess whether speci�c individuals, from a region or group with
particular demographics, will like/dislike given products. The bi-
nary legislative votes are analogous to like/dislike of particular
products (here legislation), targeted toward speci�c people. The
text of the legislation is like a document describing the product in
question. Given a new product/legislation, with an associated text
description, we wish to predict whether it will be liked/disliked by
particular people (here, whether legislators will vote yes/no on a
new piece of legislation).

2 MODEL CONSTRUCTION
2.1 Data and notation
We jointly analyze congressional roll call votes and constituent in-
formation for the J = 435 congressional districts across the United
States. Individual-level constituent information comes from Catalist,
a political data vendor (www.catalist.us). An academic subscription
provided a 1% random sample of their database (3 million cases)
in 2012, and includes a wide range of demographic, political, and
commercial characteristics about each individual. For each (anony-
mous) individual in the Catalist data, there is an associated vector
of attributes, describing personal information, such as race, income,
education level and voting-turnout history; these features are mixed,
real and binary. Let Xj ∈ R

P r×Nj denote real-valued attributes for
individuals in district j ∈ {1, . . . , J }, where Nj denotes the number
of individuals from district j for whom we have Catalist data, and
Pr represents the number of real attributes. Let Bj ∈ {0, 1}P

b×Nj

denote the binary attributes for the same individuals. Additionally,
we have a series of Congressional votes on pieces of legislation, for
legislators elected around the time the Catalist data were collected
(we consider roll-call data in 2009-2011). Let R ∈ {0, 1} J×L denote
Congressional roll-call votes on bills reaching the House �oor (there
are 6% missing votes). Finally, for each piece of legislation, we have
the associated text of the bill. The lth piece of legislation is denoted
wl , wherewl ∈ Z

V
+ represents the count of each word in the text (a

vector of nonnegative integers), where the vocabulary dimension
is V .

2.2 Matrix factorization of constituent data
The matrix of real-valued individual-level data from people in dis-
trict j is factorized as

Xj = DrΛr Srj + E
r
j , (1)

where Dr ∈ RP
r×K r

, Srj ∈ R
K r×Nj , Λr = diag(λr1, . . . , λ

r
K r ), and

Erj ∈ R
P r×Nj . Each column of Erj is drawn from N (0,σ−1

j I) and a
di�use gamma prior is placed on σj , i .e ., Ga(10−6, 10−6). Note that
Dr and Λr are shared for all districts j . Each column of Dr is drawn
from N (0, IP r ), where IP r is the Pr × Pr identity matrix. We wish

to impose that |λrk | decreases as index k increases; hence, while
we truncate the model to Kr factors, through the λrk we infer the
subset of factors that are needed to represent the data. To achieve
this, we employ the multiplicative gamma process (MGP) proposed
in [4]: λrk ∼ N (0, 1/τ rk ), τ

r
k ∼

∏k
h=1 φ

r
h , and φrh ∼ Ga(a1, 1). By

choosing a1 > 1, E(φrh ) > 1, encouraging τ rk to increase with k ;
this in turn results in increasing encouragement of shrinking the
amplitude of λrk as k increases.

For the observed matrix of binary data for people in district j,
Bj , we employ a probit model, and a latent B̃j ∈ RP

b×Nj [1]. Let
b̃jpn be element (p,n) in B̃j and let bjpn represent element (p,n) in
Bj ; these are related via the probit link: bjpn = 0 if b̃jpn + ϵbjpn ≥ 0,
and bjpn = 1 if b̃jpn +ϵbjpn < 0, where ϵbjpn ∼ N (0, 1). We factorize

the latent matrix as B̃j = DbΛbSbj , where Db ∈ RP
b×Kb

and Sbj ∈

RK
b×Nj . The columns of Db are drawn with the same class prior

as employed above for Dr , and the MPG prior is employed for
Λb = diag(λb1 , . . . , λ

b
Kb ).

2.3 Clustering the constituency latent features
Individual n sampled from district j is characterized by the nth
column of Srj and Sbj . Assuming that people are likely clustered
with respect to the attributes included in the Catalist database,
we develop a joint mixture model for the columns of Srj and Sbj .
Let srjn and sbjn denote the nth columns of Srj and Sbj , respectively.
We impose the following hierarchical Dirichlet process (HDP) [22]
model:

srjn ∼ f (θ jn ), s
b
jn ∼ f (ψ jn ), {θ jn ,ψ jn } ∼ G j , (2)

G j ∼ DP(κ,G0), G0 ∼ DP(κ0,H )

where H (θ ,ψ) = Hr (θ )Hb (ψ), and therefore G0 =
∑
t νtδ (θ ∗t ,ψ∗t )

,
with νt > 0,

∑
t νt = 1 and δ (θ ∗t ,ψ∗t ) a unit point measure concen-

trated at the pair (θ∗t ,ψ∗t ). The distribution f (·) here corresponds
to multivariate Gaussian, and Hr and Hb are each Normal-Wishart
distributions. Di�use gamma priors are placed on κ and κ0. We
employ the stick-breaking representation [21] of the HDP devel-
oped in [22] and a point estimate of ν = (ν1,ν2, . . . )T [6, 14] to
simplify the variational derivations (discussed in Section 3). The
number of components (“sticks”) used to approximate G0 and each
of the G j is truncated to T . Each district j is characterized by
G j =

∑T
t=1 πjtδ (θ ∗t ,ψ∗t ) . The “atoms” {θ∗t ,ψ∗t } are shared across

all J districts, and hence the jth district is distinguished by the
probability vector π j = (πj1, . . . ,πjT )

T .

2.4 Modeling the text of legislation
Consider a corpus of L pieces of legislation, voted on during a
Congressional session. A probability vector βl is inferred to rep-
resent the lth piece of legislation. Speci�cally, we employ a basic
topic model, latent Dirichlet allocation (LDA) [5] to model each
of the L documents, from which we constitute βl , a probability
vector over topics (assumed here to be truncated to K topics). Topic
k ∈ {1, . . . ,K } is characterized by a V -dimensional probability vec-
tor ϕk , and a word from document/legislation l is associated with
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topic k with probability βlk . If a word is drawn from topic k , the
speci�c word is drawn Mult(1,ϕk ) [5].

The vote of the jth legislator on bill l is modeled in terms of
π j and βl , coupling the constituency data and the text of legisla-
tion to predict roll-call votes. Rather than predicting roll-call votes
directly based on π j and βl (the doing of which signi�cantly com-
plicates inference), we introduce surrogates for π j and βl [15].
Speci�cally, individual n ∈ {1, . . . ,Nj } in district j has an asso-
ciated latent variable c jn ∈ {1, . . . ,T }, identifying which model
parameters (θ∗c jn ,ψ

∗
c jn ) are used for his/her representation. This

assigns individual n in district j to a cluster, with cluster t charac-
terized by (θ∗t ,ψ

∗
t ). The VB analysis yields the expected probability

of which of the T clusters person n in district j is associated with,
this probability vector denoted π̃ jn .

Similarly, we introduce latent variable zil ∈ {1, ...,K }, assign-
ing a topic to word i in document l . Within the VB inference of
LDA, we manifest β̃l i , the expected probability vector for which
topic word i in document l is associated with. We predict the roll
call vote associated with district j for legislation l in terms of the
two probability vectors π̃ j =

1
Nj

∑Nj
n=1 π̃ jn and β̃l =

1
Wl

∑Wl
i=1 β̃l i ,

assumingWl total words in document l .

2.5 Coupling constituency characteristics and
legislative text: Roll-call analysis

Like for the binary attributes Bj discussed above, for the binary roll-
call votes we assume a latent matrix R̃ ∈ RJ×L which we factorize
as R̃ = D`Λ`S` + E` . The MPG prior is imposed for the elements
of the diagonal matrix Λ` .

Row j of D` , denoted by the column vector d`
j , is a feature vec-

tor associated with district j, from the standpoint of voting on
legislation. The lth column of S` , denoted by the column vector
s`l , is similarly a feature vector for legislation l (from the stand-
point of how the text a�ects the voting). We connect the voting
characteristics of the legislators from district j to the constituency
characteristics of his/her district by modeling d j in terms of π̃ j .
Similarly, we connect votes to the properties (text) of the legislation
by modeling s`l in terms of β̃l . Speci�cally, we impose the models

d`
j = Ud π̃ j + d

`
0 + ξ j , s

`
l = Us β̃l + s

`
0 , (3)

where Ud ∈ RK
`×T , ξ j ∈ RK

`
, d`

0 ∈ R
K `

, Us ∈ RK
`×K and

s`0 ∈ R
K `

. The elements of Ud , d`
0 , Us and s`0 and are drawn i.i.d.

from, respectively,N (0,α−1
d ),N (0,α−1

d0 ),N (0,α−1
s ) andN (0,α−1

s0 ),
with di�use gamma priors on αd , αd0, αs and αs0.

The vector ξ j is employed to identify legislators who may be
voting against the interests of their constituents, as de�ned by the
attributes in the Catalist database. Since it is hoped that most of
d`
j is captured by these features, we impose a prior on ξ j that

encourages (near) sparsity. Therefore, we impose the hierarchical
shrinkage prior ξ jk ∼ N (0,α−1

jk ), α jk ∼ InvGa(1,γjk/2), γjk ∼
Ga(10−6, 10−6).

The matrix E` ∈ RJ×L models “random e�ects.” Let E`jl represent
component (j, l ) of E` . We impose E`jl = δl + δjl , where δl is a
random e�ect associated with legislation l and δjl is a random

e�ect associated with the legislation-legislator pair. We further
connect δl to the legislative text by modeling it in terms of β̃l :
δl = wT β̃l +w0, where w ∈ RK and w0 ∈ R are i.i.d draw from
N (0,α−1

w ) and N (0,α−1
w0). Di�use gamma prior is placed on αw

and αw0. There are ceremonial pieces of legislation, for which
every legislator tends to vote “yes,” and for such legislation δl tends
to be large and positive. There are also pieces of legislation l for
which the jth legislator may vote idiosyncratically, for which δjl
may be large negative or positive (meaning that legislator votes
uncharacteristically “no” or “yes,” respectively). We don’t assume a
random e�ect δj , which would imply that the jth legislator tends to
always vote one way (“yes” or “no”), independent of the legislation.

We expect {δjl } to be sparse (or nearly sparse), and therefore on
each we impose a shrinkage prior (in the same hierarchical manner
discussed above for ξ j ). We could impose similar random e�ects
on the demographic data model, for representation of B̃j , but this
proved unnecessary, as there we were model binary traits (e .д.,
gender), rather than votes.

2.6 Model summary
Figure 1 provides a graphical representation of the model, with
shaded and unshaded nodes indicating observed and latent vari-
ables, respectively. To assist with understanding the multiple com-
ponents of the model, and their motivations, we provide an overar-
ching summary below.

jnX

jnb

ilvjlr

Figure 1: Graphical representation of the model.

The demographic data from distict j are represented by matrix
factorizations (factor analysis), where column n of the factor-score
matrices Srj (real data) and Sbj (binary data) characterize person
n in district j. For both matrix factorizations, the multiplicative
gamma process is employed to encourage that only a relatively
small number of factors are expected to de�ne person choices.

We assume that the people (columns of Srj and Sbj ) in each district
will cluster into types of preferences. A truncated HDP is employed
to infer this clustering. The probability of each of the T clusters
is represented for district j by probability vector π j ; {θ∗t ,ψ∗t }t=1,T
represent the cluster-dependent parameters.

The vote r jl ∈ {0, 1} of congressman j on legislation l is char-
acterized, via a probit matrix factorization, as an inner product
between a feature vector for legislator j, d`

j , and a feature vector
for legislation l , s`l . To infer the relationship between how the con-
gressman from district j votes relative to the interests of her/his
constituents, we relate d`

j to π j via linear regression. We similarly
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wish to relate feature vector legislation s`l to the text of the asso-
ciated legislation; in this case a regression is performed between
s`l and βl , the latter the text-dependent distribution over topics
(inferred here for simplicity via LDA, but any topic model may be
used).

A key novelty of the model is a term ξ j , constituting a “random
e�ect” in the regression between π j and d`

j ; ξ j allows inference
of the degree to which the congressman from district j appears to
vote in a manner inconsistent with the preferences of her/his con-
stituents. A random e�ect δl also allows identi�cation of atypical
legislation, linked to the text of the legislation via βl .

The regressions above were discussed in terms of π j and βl .
For technical reasons, discussed in the preceding sections, it is
signi�cantly more convenient to employ closely related surrogates
π̃ j and β̃l ; these are de�ned in terms of the relative counts of
indicator variables c jn and zil , for person n in district j , and word i
in document/legislation l .

3 SCALING UP: VARIATIONAL BAYES AND
STOCHASTIC GRADIENT DESCENT
INFERENCE

The Catalist data considers 2,969,925 people, and to handle data
of this size we employ a mini-batch-based inference algorithm,
stochastic variational Bayesian (VB) analysis [6, 12, 23]. Unlike
traditional VB inference [3], which includes the whole dataset
when updating the parameters, the stochastic variational inference
method samples a subset of the data (mini-batch), and calculates a
noisy natural gradient to optimize the variational objective function.
Speci�cally, the individuals in the Catalist data are partitioned into
N ∗ = 15 mini-batches, and each mini-batch contains individuals
from all J = 435 congressional districts. The congressional votes and
associate text are considered as a whole, since the size of that data is
relatively small. The variational parameters speci�c to each individ-
ual mini-batch (in our case, the variational parameters associated
with {srjn , s

b
jn , c jn }), are called “local” parameters, denoted Θl . The

remaining variational parameters, not speci�c to the mini-batch,
are called “global” parameters, denoted Θд . At the hth iteration, the
hth mini-batch is selected, and local variational parameters of the
mini-batch Θl are optimized; intermediate global parameters Θ̃д

are then estimated with the most recent mini-batch. The new esti-
mated global parameters are updated by computing the weighted
average of previous value and Θ̃

д , Θд ← (1−ωh )Θд+ωhΘ̃
д , where

ωh ∈ (0, 1) is the weight given to each new batch, and also called
the learning rate. Following [12], we let ωh = (a3 + h)−b3 , where
b3 ∈ (0.5, 1] controls the rate of decay of the contribution from old
mini-batches and a3 ≥ 0 serves to slow down the decay rate for
initial iterations. In the experiments, we set a3 = 1 and b3 = 0.8.
One may employ the method proposed in [17] to adapt the learning
step.

Details of the VB update equations are presented in the Appen-
dix. In the following, we examine two of the update equations, as
they provide insight into how di�erent parts of model relate to one
another.
Variational Distribution for c jn : The posterior-approximating
distribution for the indicator variable c jn , q(c jn ), is a categorical

distribution with parameter π̃ jn , the components of which satisfy
π̃jnt ∝ exp{E[logp (srjn |θ

∗
t )] + E[logp (sbjn |ψ

∗
t )] + E[log(πjt )] +∑L

l=1 E[logp (r̃ jl |c jn = t ,−)]}. The term E[log(πjt )] characterizes
the clustering characteristics of district j, where p (srjn |θ

∗
t ) and

p (sbjn |ψ
∗
t ) characterize the properties of cluster t . The termp (r̃ jl |c jn =

t ,−) characterizes the latent real matrix associated with the binary
legislative votes of the representative from district j on all L pieces
of legislation.
Variational Distribution for zil : The approximating distribu-
tion for the latent topic associated with word i in legislation l ,
q(zil ), is a categorical distribution with parameter β̃il , and β̃ilk ∝
ϕvil ,k exp{E[log βlk ] +

∑J
j=1 E[logp (r̃ jl |zil = k,−)]}. Note that

this update equation is a�ected by the �t of the word to the topic
(�rst term) plus the impact of that topic to the roll-call votes from
the J legislators (second term).

4 EXPERIMENTAL RESULTS
We employ the proposed model on the Catalist data discussed above
(Pr = 28 and Pb = 51; 2,969,925 total people across the J = 435
Congressional districts, with typically 5,000 to 7,000 people from
each district). The roll-call data are from the 111th US Congress
(January 3, 2009 - January 3, 2011), consistent with the time period
of the Catalist data. Roll-call votes on a total of L = 802 bills are
considered. For the text of the bill, we follow the n-gram prepro-
cessing procedure described in [10], and obtain a bag of words with
vocabulary size V = 4743.

The election for the 112th Congress took place on November 2,
2010, and we used votes on bills in the 111th Congress that occurred
before then to examine the party a�liation of each winner of that
election, and examine the vote share, relative to the roll-call data.

For model initialization, we �rst consider each data source sepa-
rately. For example, we take a subset of the Catalist data, to infer
Dr , Db , Λr and Λb . Then K-means was performed on the learned
latent features for the individuals, to initialize the HDP model. Sim-
ilarly, LDA was �rst applied to the legislative text to infer initial
topics. The results are repeatable for di�erent related forms of this
initialization.

We set K = 30, T = 15, Kr = Kb = 20, K l = 10 and the MGP
hyperparameter is a1 = 2. The Catalist data are randomly parti-
tioned into 15 mini-batches, each of size 197,995. We implemented
the proposed model in MATLAB, and ran the code on a PC with
8 cores, 3.2GHz CPU, and 128 GB memory. We considered 40 VB
iterations per mini batch, and the total computation time for these
data was 16 hours.

4.1 Inferred district-level characteristics and
Congressional election results

Using the full model, we infer E[π j ], the expected probability of de-
mographic clusters for district j . The characteristics of cluster t may
be interpreted by mapping the cluster center {E[θ µ∗t ],E[ψµ∗t ]} back
to the original data space {E[DrΛrθ

µ∗
t ],Φ(E[DbΛbψ

µ∗
t ])}, where

Φ(·) is the cumulative probability function of standard normal (from
the probit model). In Figure 2, we plot E[πt j ] of four example clus-
ters, for 432 congressional districts (excluding Alaska and Hawaii).
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Cluster 1

Cluster 3 Cluster 4

Cluster 2

Figure 2: The expected probability of demographic clusters E[πt j ] (t = 1, 2, 3, 4) for the 432 congressional districts across US
(excluding Alaska and Hawaii).

Table 1: Center of clusters in original space {Φ(E[DbΛbθ µ∗]),E[DrΛrψµ∗]}. First 7 columns are the probability of answer “yes"
for the corresponding attributes.

Cluster Male 2006 Election 2008 Election Black Caucasian Hispanic Democrat Republican Age Purchase Power
1 0.38 0.07 0.27 0.57 0.19 0.18 0.93 0.01 52 11509
2 0.39 0.63 0.87 0.29 0.55 0.08 0.93 0.04 49 76843
3 0.49 0.09 0.27 0.03 0.90 0.05 0.10 0.36 28 59999
4 0.49 0.07 0.22 0.04 0.88 0.06 0.11 0.34 48 74286

The corresponding {E[DrΛrθ
µ∗
t ],Φ(E[DbΛbψ

µ∗
t ]} are shown in

Table 1 (this table provides mean values of a subset of Catalist
parameters). From Table 1 and Figure 2, individuals in Clusters 1
and 2 are more likely to be Democrats. Cluster 1 seems to capture
low-income Black and Hispanic Democrats, with poor turnout in
the past election. In contrast, Cluster 2 is more likely to include
high-income Democrats, with high turnout in previous elections.
Cluster 1 is found to have high probability in many of the southern
districts, especially these close to the border. Cluster 2 tends to
appear in metropolitan areas, such as San Francisco, Los Angels,
DC and New York. In a similar manner, Clusters 3 and 4 are more
likely to include whites and Republicans (or undeclared voters). Age
and purchasing power (in U.S. dollars) seem to distinguish Clusters
3 and 4 from Clusters 1 and 2.

To further assess how well the latent estimates capture con-
stituent preferences, we examine the ability of the model to predict
the party a�liation of the district’s House member, based on the
constituent characteristics in the Catalist data�le. Speci�cally, we
use E[π j ] as a feature vector, and build a linear probit-regression

classi�er (similar results can be obtained with other probabilistic
classi�ers), where shrinkage is imposed on the regression weights,
using the same prior as imposed in the full model on ξ j .

In Figure 3, we plot the probit-regression-based probability that
a given district will select a Democratic legislator, and along the
vertical axis is plotted the fraction of vote share received in the
district for the Democratic candidate (in the 2010 election). We
consider the 406 (of 435) districts for which there was a contested
election, with two candidates. We partitioned the districts into 5
folds, and iteratively train on 4 folds and test on the rest. Note,
for example, when the model predicted that the probability of a
Democratic win was 0.5, the fraction of vote received on average
was about 50%. In the table in Figure 3, we note that the predictions
of the model are in close alignment with actual district-level voting.
These results indicate that the characterization of people in each
district based on the Catalist data is a good representation of voter
preferences. This provides further insight into why the Catalist
data are useful for inferring more-con�dent prediction of roll call
votes based on held-out text of the legislation (see Table 2), and also
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Figure 3: Left column: Probability of Democratic win vs the vote share received for Democratic candidates. The solid line is a linear regression
�t with vote share and predicted probability. Right column: Actual (empirical) probability of Democratic candidates win in each predicted
probability bin.
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why a legislator tends to perform poorly in the next election when
her voting record is inconsistent with the district-level preferences
(re�ected by large ξ j , as depicted in Figure 7).
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0.3
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0.5

Figure 5: (E[diag(Λ` )].

It is of interest to examine the quality of the model as a function
of the number of people per district we have demographic data

from. Speci�cally, we train the whole model with a subset of ran-
domly selected voters from Catalist dataset. We use E[π j ] inferred
from the subset as a feature vector, and perform the same predic-
tion experiment discussed above. AUC (area under ROC curve) is
employed as the metric for assessing the performance. In Figure 4,
we plot the AUC as a function of average number of voters selected
per district. The result is the average of 5 runs, and the error bar
correspond to one standard deviation.

4.2 Insights on relationships between
constituents and representatives

In the political science literature [8] and in recent machine learning
research [10], it has been assumed that the latent space of the legisla-
tors and legislation is one-dimensional based on roll call votes (i .e .,
feature vectors like d`

j and s`l are assumed to be one-dimensional).
Via the MPG prior on Λ` , we may infer the dimensions of these vec-
tors. In Figure 5, we depict E[diag(Λ` )], which indicates that there
is indeed one dominant latent dimension, but also two additional
weaker dimensions.

To illustrate the connection of the dominant latent feature dimen-
sion to the characteristics of the representatives in each district, and
to the characteristics of the people they represent, in Figure 6(a) we
plot the principal dimension of d`

j for each legislator, and note that
Democrats tend to be positive in this dimension and Republicans
negative. This result agrees with the ideal point obtained with the
model in [8, 10]. In Figure 6(b) we plot the principal dimension of
E[Ud π̃ j +d

`
0 ], which within the model captures the roll-call-related

preferences of the people who live in district j . Note that the Repub-
lican representatives (Figure 6(a)) appear to often be more negative
in this dimension than their constituents (Figure 6(b)). Finally, in
Figure 6(c) we plot E[ξ j ] in the principal dimension. Recall that ξ j
in d`

j = Ud π̃ j + d
`
0 + ξ j controls the degree to which the feature

vector d`
j associated with legislator j deviates from the character-

istics of her constituents, re�ected by π̃ j . Moreover, a shrinkage
prior was imposed on ξ j , and therefore large |ξ j | is re�ective of
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`
0 ]. (c): Principal dimension of E[ξ j ].

legislators who may be voting in a manner that is not well linked
to the people who live in their district (from the standpoint of the
Catalist data). Note that ξ j tends to be sparse, implying that repre-
sentatives typically vote in line with their constituents, but there
are also often signi�cant non-zero ξ j .
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Figure 7: Vote share received for two groups of Democratic con-
gressmen: those with |E[ξ1j ] | ≥ 0.1 and those with |E[ξ1j ] | < 0.1.

We further examine the relationship between principal dimen-
sion of ξ j (denoted ξ1j ) and the fraction of voter share for the
jth legislator in the 2010 election. We focus on Democratic House
members, as these were the ones for which there was signi�cant
turnover in that election. In Figure 7, we use box plots for two
groups of Democratic representatives: those with |E[ξ1j ]| ≥ 0.1
and those with |E[ξ1j ]| < 0.1. The 0.1 threshold is illustrative, and
many related small thresholds yield similar results. Members who
voted in a way that the model infers as aligned with the interests of
their constituents (small |E[ξ1j ]|) on average received a 15% larger
share of the election vote than those legislators with relatively
large |E[ξ1j ]|. Notice a small number of legislators with high value
of E[ξ1j ] also receive high vote share. These representatives are
mainly from the less competitive districts. For example, Nydia Ve-
lazquez (NY-12), one of the two outliers, was challenged only by a
third party candidate.

4.3 Analysis of the legislative topics in latent
space

We examine the relationship between the topics of the legislation
and the latent space associated with the roll-call vote. Speci�cally,
δl = wT β̃l + w0 is a random e�ect associated with legislation l ,
and note that it is directly linked to the topic distribution on the
legislation β̃l . The feature vector associated with the legislation is
s`l = Us β̃l + s

`
0 , and we here consider E[sl ] in the dominant (�rst)

dimension, denoted E[s1l ]. Based on Figure 6(a), positive values of
E[s1l ] imply that the legislation is typically favored by Democrats,
and negative values by Republicans.

The kth component of the �rst row of Us , denoted U s
1k , dictates

the degree to which topic k contributes to s1l . Further, component
k of w , wk , dictates the degree to which topic k contributes to δl .
Positive/negative values of U s

1k correspond to topics favored by
Democrats/Republicans, and positive/negative wk correspond to
topics that most congressman tend to vote “yes”/“no.”

In Figure 8 we show the topics in the space (E[U s
1k ],E[wk ]), and

also depict most-probable words associated with six example topics.
During this time period, the Iraq and Afghanistan wars, which were
started under a Republican president, tended to be aligned with
the interest of the Republican Party (negative (E[U s

1k ]); see Topic
3. By contrast, Topic 20, about health care, children and military
veterans, tended to be favored irrespective of party (large positive
E[wk ]).

4.4 Prediction based on legislative text
We consider prediction of the votes of each legislator on held-out
legislation, where the votes are predicted entirely by the text of the
held-out legislation (the topic model infers β̃l for new legislation,
from which s`l and δl are estimated, and used to predict the proba-
bility of a particular vote). This experiment serves as a measure of
model �tness.

In [10] the authors developed a model like that in (3), except that
they did not have access to district-level constituency characteris-
tics, like the Catalist data considered here. Therefore, in [10] the
authors used the model in (3), except that d`

j was drawn i.i.d. from
a symmetric multivariate Gaussian distribution, rather than being
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Table 2: Comparison between proposed method and ideal point probit model from [10]. Shown are the number of votes in each probability
bin, and the empirical probability of being correct in the prediction.

Proposed model Ideal point probit model
Probit Con�dence Bin Votes in Con�dence Bin Empirical Probability Votes in Con�dence Bin Empirical Probability

0.5-0.6 15821 0.54 16231 0.54
0.6-0.7 15241 0.63 17339 0.61
0.7-0.8 15170 0.7 17793 0.72
0.8-0.9 21756 0.81 22998 0.84
0.9-1 258367 0.98 251994 0.98

Pred. log-likelihood -0.197 -0.204

related to the constituency information (the latter implemented in
the proposed model by relating d`

j in (3) to π j ). As the ideal point
model in [8, 11], latent space sll and the random e�ect δl are not
associated with the legislative text, thus we cannot evaluate how
well these two models predict votes for hold out legislations.

The roll call votes and associated text of legislation of the 111th
US House of Representatives are partitioned into 6 folds. We it-
eratively train the model using �ve folds, and test on the sixth.
The presented result is an aggregation of all six folds. Prediction
con�dence [20] and accuracy are employed as metrics. Speci�cally,
for each held-out vote by legislator j on legislation l , the model
yields a probability of “yes" , p (r jl = 1|−) and a probability of “no",
1 − p (r jl = 1|−). We take max {p (r jl = 1|−), 1 − p (r jl = 1|−)} for
each held out vote, irrespective of whether the actual prediction is
“yes" or “no," and place them into the corresponding probability bin,
with bins ranging from [0.5 − 0.6] to [0.9 − 1]. We wish to examine
whether the prediction con�dence matches empirical results. For
example, if we examine all votes for which the model predicts the
vote with con�dence in the range [0.7 − 0.8), we would expect the
model should be able to correctly predict the vote between 70%-80%
of the time. For the test legislations, we also compute the predictive
log-likelihood logp (rtest |rtrain ), which averaged for all six folds.
In Table 2, we compare the prediction con�dence and of the pro-
posed model and that in [10] (probit link instead of logistic link).
We observe that both models are “correct," in that the predicted
con�dence of the vote matches the empirical data (e .д., for the
proposed model, 258,367 of the held-out votes were predicted with

a con�dence of 0.9 to 1, and the model was correct in its predic-
tion 98% of the time). In comparing the proposed model and that
in [10], note that the former places 6,000 more votes in the 0.9 to
1 con�dence bin and the predictive log-likelihood also improved,
suggesting that the use of constituency (Catalist) data yields more
con�dent predictions in legislator votes, and that con�dence is
vindicated experimentally.

Improvement manifested by our model is most prominent for
contested legislation and unusual districts. Speci�cally, most of the
6,000 votes discussed above are for closely contested bills (those
receiving less than 400 "yea" votes, corresponding to 267 out of
802 bills). The congressmen for which the model provides most
improvement in vote prediction are among Republicans in districts
dominated by Democratic constituents, such as Ileana Ros-Lehtinen
(FL-18) and Michael Castle (DE). Their district-level characteristics
(larger proportion of Democratic voters) adjust the ideal points
toward Democratics, yielding more-con�dent predictions.

5 CONCLUSIONS
Binary matrix factorization is employed for analysis of roll-call
data, with latent features associated with legislation informed by a
topic model of the legislative text, and the latent features of each
legislator informed by a statistical model of the people living in
their district. The model is employed in a new manner to uncover
insights into the workings of electoral representation, based on
large-scale data, here speci�c to the U.S. Congress. The model
is shown to produce improved prediction of votes on held-out
legislation based on the text of the legislations, and demonstrates
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the electoral consequences of legislators failing to represent the
preferences of their constituents.

A APPENDIX
The stochastic variational Bayesian method for the proposed model
is summarized in Algorithm 1.

Algorithm 1 Stochastic Variational Bayesian Analysis for Pro-
posed Model

Partition X and B into N ∗ mini-batches.
De�ne local parameters Θl and global parameters Θд .
Initialize Θд by running model on a mini-batch
for h = 1 to N ∗ do

ωh = (a3 + h)−b3
while stop criterion is not met do

for j = 1 to J do
for n = 1 to N ∗j do

Estimate Θl (Detailed in Appendix A.1)
end for

end for
end while
Compute Θ̃

д
(Detailed in Appendix A.2)

Update Θд ← (1 − ωh )Θд + ωh Θ̃
д

end for

.

A.1 Updates equations for local parameters
In this model, the local parametersΘl = {µsrjn

, Σsrjn , µsbjn
, Σsbjn

, π̃ jn }

are the ones related with srjn , s
b
jn , c jn . Let us denote number of vot-

ers in district j within one mini-batch as N ′j .
Update equations for srjn

q(srjn ) ∼ N (µsrjn
, Σsrjn )

where the mean and covariance matrix are as following
Σs rjn = (E[σj ]E[ΛrDr TDrΛr ] + I)−1

µrs jn = Σs rjn (E[σj ]E[ΛrDr ]x jn +
∑T
t=1 π̃jntE[θ∗t ])

The related expectation is
E[ΛrDrDrΛr ] =∑P r

p=1 (E[drp ]E[drp ]+ Σd r
p
) � (E[λr ])E[λr ]T +Diaд(Σλr1 , ..., ΣλrK ))

Update equations for sbjn
The update equations for sbjn is similar with srjn . We can obtain the
updates by replacing the superscript r , E[σj ] and x jn with b,1 and
E[b̃ jn], respectively. The related expectation is as following,

E[b̃jnp ] =




E[db Tp Λbsbjn] +
ϕ (d b T

p Λbsbjn )

1−Φ(d b T
p Λbsbjn )

if bjnp = 1

E[db Tp Λbsbjn] −
ϕ (d b T

p Λbsbjn )

Φ(d b T
p Λbsbjn )

] if bjnp = 0

Update equations for c jn
See in section 3

A.2 Updates equations for global parameters
The remaining variational parameters are considered as global
parameters Θд . We list the main update equations to calculate
these intermediate global variational parameters Θ̃д as following.
Update equations for drp

q(drp ) ∼ N (µd r
p
, Σd r

p
)

where the mean and covariance matrix are as following

µd r
p
= E[σj ]Σd r

p
(
∑J
j=1

Nj
N ′j

∑N ′j
n=1 E[Λr ]E[srjn]x jnp )

Σd r
p
= (
∑J
j=1

Nj
N ′j

∑N ′j
n E[Λrsrjns

r T
jn Λr T ]E[σj ])−1

The related expectation is
E[Λrsrjns

r T
jn Λr T ] =

(Σs rjn + E[srjn]E[srjn]) � (E[λr ]E[λr ]T + Diaд(Σλr1 , ..., ΣλrK )).

where � is the Hadamard product and λr = [λr1, ..., λ
r
K ]T

Update equations for λrk
q(λrk ) ∼ (µλrk

, Σλrk
)

The mean and variance are as following

Σλrk
= (
∑J
j=1

Nj
N ′j

∑Nj
n=1 E[σj ]E[dr Tk drks

r 2
jnk ] + τ rk )

−1

µλrk
= Σλrk

(
∑J
j=1

Nj
N ′j

∑Nj
n=1 E[sjnk ]E[dk ]T x̂ jn )

The related expectation and equations are
E[dr Tk drks

r 2
jnk ] = (E[drk ]T E[drk ] + tr (Σdrk )) (E[srjnk ]2 + Σsrjnk

)

x̂ jn = x jn −
∑K r

k̄=1, k̄,k
E[dr

k̄
]E[sjnk̄ ]λr

k̄

Update equations of φrh
q(φrh ) ∼ Gamma(aφrh

,bφrh
)

where the shape and scale parameters are as following
aφrh
= a1 +

K r−h+1
2

bφrh
= 1 +

∑K r

k=h

E[λr 2
k ]
∏k
h̄=1,h̄,h E[φr

h̄
]

2 I (k ≥ h)

Update equations for θ∗t
q(θ∗t ) ∼ N (µθ ∗t , Σθ

∗
t
)

where the mean and covariance matrix are

Σθ ∗t = (Σr0 +
∑J
j=1

Nj
N ′j

∑N ′j
n=1 π̃jnt I)

−1

µθ ∗t = Σθ ∗t (µ
r
0 +
∑J
j=1

Nj
N ′j

∑N ′j
n=1 π̃jntE[srjn])

Update equations for dbp , λbk , λ
b
h ,ψ

∗
t

The update equations fordbp , λbk , λ
b
h ,ψ

∗
t are similar todrp , λrk , λ

r
h ,θ
∗
t ,

respectively. We can obtain these update equations by replacing
the superscript r , E[σj ] and x jn with b,1 and E[b̃ jn], respectively.
Update equations for σj

q(σj ) ∼ Gamma(aσj ,bσj )

aσj = ar0 + P
rNj/2

bσj = b
r
0 +

Nj
N ′j

∑N ′j
n=1 (x

T
jnx jn + E[sr Tjn ΛrDr TDrΛrsrjn] −

2xTjnE[Dr ]E[Λr ]E[srjn])

The related expectation is
E[sr Tjn ΛrDr TDrΛrsrjn] = tr ((

∑P r
p=1 (E[drp ]E[dr Tp ] + Σdrp ) �

E[λrλr )T ]) (E[srjn]E[sr Tjn ] + Σs rjn ))

Update equations for π j

q(π j ) ∼ Dir (θπ j )

θπ j = κν +
Nj
N ′j

∑N ′j
n=1 π̃ jn
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Update equations for ν
We do a point estimate on ν and q(ν ) is a degenerated distribution.
The objective function of optimizing ν is as following.

L(ν ) = logGEM(ν ;κ0) +
∑J
j=1 E[logDir (π j |ν )]

where GEM(ν ;κ0) refers to the stick breaking prior. The derivation
of the gradient can be found in [14].
Update equations for ξk

q(ξk ) ∼ N (µξ k , Σξ k )

where the mean and covariance is

Σξ k = (
∑L
l=1 (E[λl 2

k ]E[z̄Tl u
s
ku

s T
k z̄l ]) + E[αk ])−1

µξ k = Σξ k (
∑L
l=1 E[λlk z̄

T
l u

s
k r̂ l ])

where related equations are

r̂ l = r̃ l −
∑K `

k=1 λ
l
k (Cu

d
k + ξk )u

s T
k z̄l + λ

l
kξku

s T
k z̄l

C = [c̄1, ..., c̄ j ]T . E[c̄ j ] = 1
N ′j

∑N ′j
n=1 π̃ jn

Update equations for udk
q(udk ) = N (µudk

, Σudk
)

where the mean and covariance are

Σudk
= (
∑L
l=1 E[CTCλl 2

k z̄Tl u
s
ku

T s
k z̄l ] + αd I)−1

µudk
= Σudk

(
∑L
l=1 E[λlk z̄

T
l u

s
kC

T r̂ l ])

where the related equations are

r̂ l = r̃ l −
∑K
k=1 λ

l
k (Cu

d
k + ξk )u

T
k zl + λ

l
k (Cu

d
k )u

s T
k zl

E[c̄ j c̄Tj ] = 1
N ′2j

(
∑N ′j
n=1
∑
m,n π jnπTjm +

∑N ′j
n=1 diag(π jn ))

E[z̄l z̄Tl ] = 1
W 2
l
(
∑Wl
i=1
∑
m,i β̃il β̃

T
ml +

∑Wl
i=1 diag(β̃il ))

Update equations for usk
q(uk ) = N (µusk

, Σusk
)

where the mean and covariance is

Σusk
= (
∑L
l=1 E[λl 2

k z̄l (Cudk + ξk )
T (Cudk + ξk )z̄

T
l ] + αs I)−1

µusk
= Σusk

(
∑L
l=1 E[λlk z̄l (Cu

d
k + ξk )

T r̂ l ])

r̂ l = r̃ l −
∑K
k=1 λ

l
k (Cu

d
k + ξk )u

s T
k z̄l + λ

l
k (Cu

d
k + ξk )u

s T
k z̄l

Update equations for λlk
q(λlk ) = N (µλlk

, Σλlk
)

where the mean and variance are

Σλlk
= (
∑L
l=1 E[z̄Tl u

s
k (Cu

d
k + ξk )

T (Cudk + ξk )u
s T
k z̄l ] + τ lk )

µλlk
= Σλlk

(
∑L
l=1 r̂

T
l (Cu

d
k + ξk )u

T
k z̄l )

where r̂ l = r̃ l −
∑K
k=1 λ

l
k (Cu

d
k + ξk )u

s T
k z̄l + λ

l
k (Cu

d
k + ξk )u

s T
k z̄l

Update equations for zil
See in Section 3
Update equations for βl , ϕk
The update equation for βl and ϕk are same as the related param-
eter updates of latent Dirichlet allocation (LDA) and are omit for
brevity.
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