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to the legislative voting record of the legislator from each district, yielding an integrated model for
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1. Introduction

One of the fundamental research topics in political science is the extent to which elected
officials represent the preferences of the citizens who elect them. Although democratic
theorists often assume an electoral connection between representatives and their con-
stituents, data limitations have historically made it difficult to empirically evaluate both
legislators and the public within the same policy space. A long line of research has esti-
mated the ideological preferences of legislators from their voting records, using an “ideal
point” model [10, 21]. Such a model typically assumes each legislator and each piece of
legislation can be represented by a point in a one-dimensional latent space. More re-
cently, scholars have offered approaches for incorporating information beyond roll-call
votes [13, 25, 26, 31–33]. For example, [13] and [31] propose a latent factor model to
jointly analyze the congressional votes and the legislative text. [14] improve the model
by allowing the ideological position of legislators to vary on specific issues. [25] and [32]
propose a spatio-temporal model that accounts for the time of the votes and the spatial
location of the legislators’ districts. Unfortunately, none of these approaches consider the
preferences of the electorate.

Estimating the ideological preferences of a legislative district is far more difficult. Pre-
vious research tends to rely on crude proxies of district preferences, such as presidential
vote share [9]. More recently, scholars have turned to public opinion polls—often pooling
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across many different national surveys to increase sample sizes [2, 11, 18]. For example,
[18] aggregates about 100 surveys to be able to get reliable estimates of the ideological
preferences of states. [20] introduced a method to estimate public opinion using multi-
level regression and post-stratification (MRP). At the state-level, this approach has found
considerable success compared to simply disaggregating the data [18]. However, estimates
of citizen preferences at a finer geographic scale—the congressional district level—are
hindered by the number of available responses in public opinion surveys, resulting in
imprecision and bias in the parameter estimates.

Motivated by these challenges, we propose a new scalable Bayesian model to jointly
analyze individual-level constituency information, congressional roll-call votes, and as-
sociated legislative text. For the constituent information, we leverage a random, de-
identified sample of 3 million individuals from the political data vendor Catalist, which
collects, maintains, and updates a database with political, demographic, and commercial
characteristics on 280 million Americans. Matrix factorization [24] is integrated with the
hierarchical Dirichlet process (HDP) [29], yielding a statistical characterization of peo-
ple living within each US congressional district. Further, a topic model is employed on
the text of the legislation. The inferred district-level feature vectors of the people living
in each district and the topic distribution on a given piece of legislation are employed
to infer roll-call votes. Within the model is a novel component that allows inference of
the degree to which a given legislator votes in a manner aligned with the interests of
his/her constituents. The inferred value of this parameter is examined in the context of
the success of the legislator in the next election, yielding a new approach for evaluat-
ing the relationship between legislative behavior, constituent preferences, and electoral
outcomes. To address the massive scale of the constituency data, stochastic variational
Bayesian inference is utilized [8, 16, 30].

The remainder of the paper is organized as follows. In Section 2, previous work using
roll-call analyses is reviewed. Section 3 presents the proposed model, and details its
individual components. A stochastic inference algorithm is discussed in Section 4. Section
5 presents experimental results, and conclusions are provided in Section 6.

2. Related work

2.1 Ideal point model

Most modern statistical analyses of roll call data rely on ideal point models to characterize
legislators’ ideological preferences. In such models, the voting results are represented as
a binary matrix R ∈ {0, 1}J×L, where J is the number of legislators and L is the number
of legislations they voted on. Binary matrix R is assumed to be connected with a latent
real matrix R̃ ∈ RJ×L through link function. [21] used logistic link function while [10]
adopted the probit link; probit link is used in this paper. Let rjl denotes the vote of
jth legislator on lth legislation and r̃jl is the corresponding real value. The mathematic
formulation is as follows

rjl =

{
1 if r̃jl ≥ 0
0 if r̃jl < 0

(1)

r̃jl is further modeled as

r̃jl = d` Tj s`l + δl + εjl (2)
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where d`j ∈ RK`

represents ideal point associated with legislator j and s`l ∈ RK`

repre-
sents the discrimination feature associated with legislation l. δl is the random effect term
measuring the difficulty of passing legislation l. In contrast to many ideal point models
that must preprocess bills to select a subset of “important” bills, the use of a random
effect term allows us to utilize the full set of legislation. δl will be a large positive value
for bills receiving a large portion of unanimous “yea” votes, such as ceremonial bills. Al-
though some research argues that legislators’ ideological preferences are multidimensional
[12, 17], standard ideal point models tend to assume a single ideological dimension—-the
latent dimension K l is usually set to 1—for both computational consideration and inter-
pretative purposes [10, 13]. In this paper, we employ the multiplicative gamma process
prior to infer the latent dimension automatically. Details are discussed in Section 3. An
additional advantage of our approach is that the incorporation of legislative text in the
model allows for prediction of votes on future legislation, in contrast to the traditional
ideal point models that rely on roll call data alone.

2.2 Joint analysis of roll call and text

Recent research has attempted to connect the voting patterns of legislators with the
legislative text [13, 31]. In these models, a basic topic model, latent Dirichlet allocation
[6], is employed to model the legislative text. Specifically, given a corpus with L piece
of legislations and each piece of legislation is represented with a mixture of latent topics
βl, where each of the K topics φk is a distribution over corpus wide defined dictionary
of size V . For the ith term of legislation l, we first draw topic indicator zil from mult(βl)
and then draw word vil from mult(φzil). One can also extend the topic modeling part
with a hierarchical Dirichlett process [29].

[31] connected the roll call analysis with topic modeling by employing a mixture model
to jointly cluster the legislation latent feature sl and document-dependent topic usage
βl. [13] improved the model by replacing mixture model with text regression which is
closely related with supervised latent Dirichlet allocation [5]. Specifically, [13] assume a
single latent dimension for the ideal point model, and therefore each piece of legislation
l is attached with two scalar response variables s`l and δl. The empirical distribution of
the topics z̄l serves as the covariate. The kth element of zl is defined as follows.

z̄kl =
N∑
i=1

1(zil = k) (3)

The latent feature of legislation s`l and random effect term δl are modeled in terms of z̄l.

sll = Usz̄l + s`0

δll = ωz̄l + ω0 (4)

where Us and ω are the regression coefficients. Gaussian priors are placed on them.
Under this setting, one may obtain the empirical topic distribution z̄l given the text of
a new piece of legislation via topic models, and predict the congressional votes with the
learned regression coefficients Us and ω.

Notice all these works focus on explaining the discrimination feature s`l with legislative
text and none of them try to further interpret the ideal points dj . In this paper, we esti-
mate the latent ideological preferences of legislators dj while accounting for individual-
level constituency information from a random 300 million person sample of the American
electorate. This allows for comparison of the relationship between the ideological prefer-
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ences of the district and the legislator within the same measurement space, enabling an
evaluation of representation and electoral accountability. Similar to [13], where the text
of each bill is summarized as a mixture of corpus wide topics, we model the constituency
of each district as a mixture of subgroups or clusters within the broader population.
Model details are presented in the next section.

3. Model construction

3.1 Data and notation

We jointly analyze congressional roll call votes and constituent information for the
J = 435 congressional districts across the United States. Individual-level constituent
information comes from Catalist (www.catalist.us), a political data management ven-
dor that compiles, checks, and standardizes voter registration files and then appends
data from government and commercial sources. An academic subscription provided a 1%
random sample (3 million cases)of their database in 2012, and includes a wide range of
demographic, political, and commercial characteristics about each individual. Catalist
samples have been used in a number of previous studies aimed at examining the Amer-
ican electorate [15, 23]. For each (anonymous) individual in the Catalist data, there is
an associated vector of attributes, describing personal information, such as race, income,
education level and voting-turnout history; these features are mixed, real and binary.
Let Xj ∈ RP r×Nj denote real-valued attributes for individuals in district j ∈ {1, . . . , J},
where Nj denotes the number of individuals from district j for whom we have Catalist

data, and P r represents the number of real attributes. Let Bj ∈ {0, 1}P
b×Nj denote the

binary attributes for the same individuals. Legislative votes include all U.S. House of
Representative roll-call floor votes (6% are missing) on legislation from 2009-2011 and
are denoted as R ∈ {0, 1}J×L. For bills with multiple floor votes, we rely on the final
vote. Finally, for each piece of legislation, we have the associated text of the bill. The lth
piece of legislation is denoted wl, where wl ∈ ZV+ represents the count of each word in
the text (a vector of nonnegative integers), where the vocabulary dimension is V .

3.2 Matrix factorization of constituent data

The matrix of real-valued individual-level data from people in district j is factorized as

Xj = DrΛrSrj + Er
j , (5)

where Dr ∈ RP r×Kr

, Srj ∈ RKr×Nj , Λr = diag(λr1, . . . , λ
r
Kr), and Er

j ∈ RP r×Nj . Each

column of Er
j is drawn from N (0, σ−1

j I) and a diffuse gamma prior is placed on σj , i.e.,

Ga(10−6, 10−6). Note that Dr and Λr are shared for all districts j. Each column of Dr is
drawn from N (0, IP r), where IP r is the P r×P r identity matrix. We wish to impose that
|λrk| decreases as index k increases; hence, while we truncate the model to Kr factors,
through the λrk we infer the subset of factors that are needed to represent the data. To
achieve this, we employ the multiplicative gamma process (MGP) proposed in [4]:

λrk ∼ N (0, 1/τ rk ), τ rk ∼
k∏

h=1

ϕrh, ϕ
r
h ∼ Ga(a1, 1). (6)

By choosing a1 > 1, E(ϕrh) > 1, encouraging τ rk to increase with k; this in turn results in
increasing encouragement of shrinking the amplitude of λrk as k increases.
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For the observed matrix of binary data for people in district j, Bj , we employ a probit

model, and a latent B̃j ∈ RP b×Nj [1]. Let b̃jpn be element (p, n) in B̃j and let bjpn
represent element (p, n) in Bj ; these are related via the probit link:

bjpn =

{
1 if b̃jpn + εbjpn ≥ 0

0 if b̃jpn + εbjpn < 0
(7)

where εbjpn ∼ N (0, 1). We factorize the latent matrix as

B̃j = DbΛbSbj (8)

, where Db ∈ RP b×Kb

and Sbj ∈ RKb×Nj . The columns of Db are drawn with the
same class prior as employed above for Dr, and the MPG prior is employed for
Λb = diag(λb1, . . . , λ

b
Kb).

3.3 Clustering the constituency latent features

Individual n sampled from district j is characterized by the nth column of Srj and Sbj .
Assuming that people are clustered with respect to the attributes included in the Catalist
database, we develop a joint mixture model for the columns of Srj and Sbj . Let srjn and sbjn
denote the nth columns of Srj and Sbj , respectively. We impose the following hierarchical
Dirichlet process (HDP) model [29]:

srjn ∼ f(θjn), sbjn ∼ f(ψjn), (9)

{θjn, ψjn} ∼ Gj , Gj ∼ DP(κ,G0),

G0 ∼ DP(κ0, H)

where H(θ,ψ) = Hr(θ)Hb(ψ), and therefore G0 =
∑

t νtδ(θ∗t ,ψ
∗
t ), with νt > 0,

∑
t νt = 1

and δ(θ∗t ,ψ
∗
t ) a unit point measure concentrated at the pair (θ∗t ,ψ

∗
t ). The distribution f(·)

here corresponds to multivariate Gaussian, and Hr and Hb are each Normal-Wishart
distributions. Diffuse gamma priors are placed on κ and κ0. We employ the stick-
breaking representation [7, 27] of the HDP developed in [29] and a point estimate of
ν = (ν1, ν2, . . . )

T [8, 19] to simplify the variational derivations (discussed in Section 4).
The number of components (“sticks”) used to approximate G0 and each of the Gj is

truncated to T . Each district j is characterized by Gj =
∑T

t=1 πjtδ(θ∗t ,ψ
∗
t ). The “atoms”

{θ∗t ,ψ∗t } are shared across all J districts, and hence the jth district is distinguished by
the probability vector πj = (πj1, . . . , πjT )T .

3.4 Modeling the text of legislation

Consider a corpus of L pieces of legislation, voted on during a Congressional session.
A probability vector βl is inferred to represent the lth piece of legislation. Similar to
the models discussed in Section 2.2, we employ latent Dirichlet allocation (LDA) [6] to
model each of the L documents, from which we constitute βl, a probability vector over
topics (assumed here to be truncated to K topics). Topic k ∈ {1, . . . ,K} is characterized
by a V -dimensional probability vector φk, and a word from document/legislation l is
associated with topic k with probability βlk. If a word is drawn from topic k, the specific
word is drawn Mult(1,φk) [6].
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The vote of the jth legislator on bill l is modeled in terms of πj and βl, coupling
the constituency data and the text of legislation to predict roll-call votes. Rather than
predicting roll-call votes directly based on πj and βl (the doing of which significantly
complicates inference), we introduce surrogates for πj and βl [5]. Specifically, individual
n ∈ {1, . . . , Nj} in district j has an associated latent variable cjn ∈ {1, . . . , T}, identifying
which model parameters (θ∗cjn ,ψ

∗
cjn) are used for his/her representation. This assigns

individual n in district j to a cluster, with cluster t characterized by (θ∗t ,ψ
∗
t ). The VB

analysis yields the expected probability of which of the T clusters person n in district j
is associated with, this probability vector denoted π̃jn.

Similarly, we introduce latent variable zil ∈ {1, ...,K}, assigning a topic to word i in
document l. Within the VB inference of LDA, we manifest β̃li, the expected probability
vector for which topic word i in document l is associated with. We predict the roll call
vote associated with district j for legislation l in terms of the two probability vectors

π̃j = 1
Nj

∑Nj

n=1 π̃jn and β̃l = 1
Wl

∑Wl

i=1 β̃li, assuming Wl total words in document l.

3.5 Coupling constituency characteristics and legislative text: Roll-call
analysis

Like the ideal point model discussed in Section 2.1, for the binary roll-call votes we
assume a latent matrix R̃ ∈ RJ×L which we factorize as

R̃ = D`Λ`S` + E` (10)

The MPG prior is imposed for the elements of the diagonal matrix Λ`.
Row j of D`, denoted by the column vector d`j , is a feature vector associated with

district j, from the standpoint of voting on legislation. The lth column of S`, denoted by
the column vector s`l , is similarly a feature vector for legislation l (from the standpoint of
how the text affects the voting). We connect the voting characteristics of the legislators
from district j to the constituency characteristics of his/her district by modeling dj in
terms of π̃j . Similarly, we connect votes to the properties (text) of the legislation by

modeling s`l in terms of β̃l. Specifically, we impose the models

d`j = Udπ̃j + d`0 + ξj , s`l = Usβ̃l + s`0 , (11)

where Ud ∈ RK`×T , ξj ∈ RK`

, d`0 ∈ RK`

, Us ∈ RK`×K and s`0 ∈ RK`

. The elements

of Ud, d`0, Us and s`0 and are drawn i.i.d. from, respectively, N (0, α−1
d ), N (0, α−1

d0 ),

N (0, α−1
s ) and N (0, α−1

s0 ), with diffuse gamma priors on αd, αd0, αs and αs0.
The vector ξj is employed to identify legislators who may be voting against the interests

of their constituents, as defined by the attributes in the Catalist database. Since it is
hoped that most of d`j is captured by these features, we impose a prior on ξj that
encourages (near) sparsity. Therefore, we impose the hierarchical shrinkage prior ξjk ∼
N (0, α−1

jk ), αjk ∼ InvGa(1, γjk/2), γjk ∼ Ga(10−6, 10−6).

The matrix E` ∈ RJ×L models “random effects.” Let E`jl represent component (j, l) of

E`. We impose E`jl = δl+δjl, where δl is a random effect associated with legislation l and
δjl is a random effect associated with the legislation-legislator pair. We further connect δl
to the legislative text by modeling it in terms of β̃l: δl = wT β̃l +w0, where w ∈ RK and
w0 ∈ R are i.i.d draw from N (0, α−1

w ) and N (0, α−1
w0). Diffuse gamma prior is placed on

αw and αw0. There are ceremonial pieces of legislation, for which every legislator tends
to vote “yes,” and for such legislation δl tends to be large and positive. There are also
pieces of legislation l for which the jth legislator may vote idiosyncratically, for which
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δjl may be large negative or positive (meaning that legislator votes uncharacteristically
“no” or “yes,” respectively). We don’t assume a random effect δj , which would imply
that the jth legislator tends to always vote one way (“yes” or “no”), independent of the
legislation.

We expect {δjl} to be sparse (or nearly sparse), and therefore on each we impose
a shrinkage prior (in the same hierarchical manner discussed above for ξj). We could

impose similar random effects on the demographic data model, for representation of B̃j ,
but this proved unnecessary, as there we were model binary traits (e.g., gender), rather
than votes.

3.6 Model summary

Figure 1 provides a graphical representation of the model, with shaded and unshaded
nodes indicating observed and latent variables, respectively. To assist with understanding
the multiple components of the model, and their motivations, we provide an overarching
summary below.

jnX

jnb
ilvjlr

Figure 1. Graphical representation of the model.

The demographic data from district j are represented by matrix factorizations (factor
analysis), where column n of the factor-score matrices Srj (real data) and Sbj (binary
data) characterize person n in district j. For both matrix factorizations, the multiplicative
gamma process is employed so that only a relatively small number of factors are expected
to define person choices.

We assume that the people (columns of Srj and Sbj) in each district will cluster into types
of preferences. A truncated HDP is employed to infer this clustering. The probability of
each of the T clusters is represented for district j by probability vector πj ; {θ∗t ,ψ∗t }t=1,T

represent the cluster-dependent parameters.
The vote rjl ∈ {0, 1} of congressman j on legislation l is characterized, via a probit

matrix factorization, as an inner product between a feature vector for legislator j, d`j ,

and a feature vector for legislation l, s`l . To infer the relationship between the legislative
votes of the congressman from district j relative to the interests of her/his constituents, we
relate d`j to πj via linear regression. We similarly wish to relate feature vector legislation

s`l to the text of the associated legislation; in this case a regression is performed between s`l
and βl, the latter the text-dependent distribution over topics (inferred here for simplicity
via LDA, but any topic model may be used).
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A key novelty of the model is a term ξj , constituting a “random effect” in the re-

gression between πj and d`j ; ξj allows inference of the degree to which the congressman
from district j appears to vote in a manner inconsistent with the preferences of her/his
constituents. A random effect δl also allows identification of atypical legislation, linked
to the text of the legislation via βl.

The regressions above were discussed in terms of πj and βl. For technical reasons,
discussed in the preceding sections, it is significantly more convenient to employ closely
related surrogates π̃j and β̃l; these are defined in terms of the relative counts of indicator
variables cjn and zil, for person n in district j, and word i in document/legislation l.

4. Scaling Up: Variational Bayes and Stochastic Gradient Descent
Inference

Our Catalist sample includes 2,969,925 people, and to handle data of this size we employ
a mini-batch-based inference algorithm, stochastic variational Bayesian (VB) analysis
[8, 16, 28, 30]. Unlike traditional VB inference [3], which includes the full dataset when
updating the parameters, the stochastic variational inference method samples a subset
of the data (mini-batch), and calculates a noisy natural gradient to optimize the varia-
tional objective function. Specifically, the individuals in the Catalist data are partitioned
into N∗ = 15 mini-batches, and each mini-batch contains individuals from all J = 435
congressional districts. The congressional votes and associate text are considered as a
whole, since the size of that data is relatively small. The variational parameters specific
to each individual mini-batch (in our case, the variational parameters associated with
{srjn, sbjn, cjn}), are called “local” parameters, denoted Θl. The remaining variational
parameters, not specific to the mini-batch, are called “global” parameters, denoted Θg.
Under this setting, the evidence lower bound (ELBO) can be expanded as

L(q) = Eq[logp(Θg)]− Eq[logQ(Θg)] +

N∑
n=1

Eq[logp(xn,θ
l
n)]− Eq[logQ(θln)] (12)

where the first two terms characterize the ELBO for global parameters and the last two
terms characterize the local parameters. The update equations for both global and local
parameters can be derived via coordinate ascent. At the hth iteration, the hth mini-
batch is selected, and local variational parameters of the mini-batch Θl are optimized;
intermediate global parameters Θ̃

g
are then estimated with the most recent mini-batch.

The new estimated global parameters are updated by computing the weighted average
of previous value and Θ̃

g
.

Θg ← (1− ωh)Θg + ωhΘ̃
g

(13)

where ωh ∈ (0, 1) is the weight given to each new batch, and also called the learning rate.
Following [16], we let ωh = (a3 + h)−b3 , where b3 ∈ (0.5, 1] controls the rate of decay of
the contribution from old mini-batches and a3 ≥ 0 serves to slow down the decay rate
for initial iterations. In the experiments, we set a3 = 1 and b3 = 0.8. One may employ
the method proposed in [22] to adapt the learning step.

Details of the VB update equations are presented in the appendix C. In the following,
we examine two of the update equations, as they provide insight into how different parts
of model relate to one another.

Variational Distribution for cjn:
The posterior approximating distribution for the indicator variable cjn, q(cjn), is a cat-
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egorical distribution with parameter π̃jn, the components of which satisfy

π̃jnt ∝ exp{E[log p(srjn|θ∗t )] +E[log p(sbjn|ψ∗t )] +E[log(πjt)] +
L∑
l=1

E[log p(r̃jl|cjn = t,−)]}.

(14)
The term E[log(πjt)] characterizes the clustering characteristics of district j, where
p(srjn|θ

∗
t ) and p(sbjn|ψ

∗
t ) characterize the properties of cluster t. The term p(r̃jl|cjn = t,−)

characterizes the latent real matrix associated with the binary legislative votes of the rep-
resentative from district j on all L pieces of legislation.

Variational Distribution for zil:
The approximating distribution for the latent topic associated with word i in legislation
l, q(zil), is a categorical distribution with parameter β̃il, and

β̃ilk ∝ φvil,kexp{E[log βlk] +
J∑
j=1

E[log p(r̃jl|zil = k,−)]} (15)

Note that this update equation is affected by the fit of the word to the topic (first term)
plus the impact of that topic to the roll-call votes from the J legislators (second term).

The stochastic variational Bayesian method for the proposed model is summarized in
Algorithm 1.

Algorithm 1 Stochastic Variational Bayesian Analysis for Proposed Model

Partition X and B into N∗ mini-batches.
Define local parameters Θl and global parameters Θg.
Initialize Θg by running model on a mini-batch
for h = 1 to N∗ do
ωh = (a3 + h)−b3

while stop criterion is not met do
for j = 1 to J do

for n = 1 to N∗j do

Estimate Θl (Detailed in Appendix C.2)
end for

end for
end while
Compute Θ̃

g
(Detailed in Appendix C.3)

Update Θg ← (1− ωh)Θg + ωhΘ̃
g

end for

5. Experimental Results

To evaluate the relationship between the ideological preferences of House members and
their constituents, we employ the proposed model on the Catalist data discussed above
(P r = 28 and P b = 51; 2,969,925 total people across the J = 435 Congressional districts,
with typically 5,000 to 7,000 people from each district). The binary valued and real
valued attributes employed in the experiment are summarized in the Appendix B. The
roll-call data are from the 111th US Congress (January 3, 2009 - January 3, 2011) to
match the time period of the Catalist sample. Roll-call votes on a total of L = 802 bills
are considered. For the text of the bill, we follow the n-gram preprocessing procedure
described in [13], and obtain a bag of words with vocabulary size V = 4743. The election
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for the 112th Congress took place on November 2, 2010, thus we use votes on bills in the
111th Congress that occurred before that date in order to evaluate the extent of electoral
accountability and representation.

For model initialization, we first consider each data source separately. For example,
we take a subset of the Catalist data, to infer Dr, Db, Λr and Λb. Then K-means was
performed on the learned latent features for the individuals, to initialize the HDP model.
Similarly, LDA was first applied to the legislative text to infer initial topics. The results
are repeatable for different related forms of this initialization.

Cluster 1

Cluster 3 Cluster 4

Cluster 2

Figure 2. The expected probability of demographic clusters E[πtj ] (t = 1, 2, 3, 4) for the 432 congressional districts

across US (excluding Alaska and Hawaii).

Table 1. Center of sample clusters in original space {Φ(E[DbΛbθµ∗]),E[DrΛrψµ∗]}. First 7 columns are the
probability of answer “yes” for the corresponding attributes.

Cluster Male 2006 Election 2008 Election Black Caucasian

1 0.38 0.07 0.27 0.57 0.19
2 0.39 0.63 0.87 0.29 0.55
3 0.49 0.09 0.27 0.03 0.90
4 0.49 0.07 0.22 0.04 0.88

Cluster Hispanic Democrat Republican Age Purchase Power

1 0.18 0.93 0.01 52 11509
2 0.08 0.93 0.04 49 76843
3 0.05 0.10 0.36 28 59999
4 0.06 0.11 0.34 48 74286

We set K = 30, T = 15, Kr = Kb = 20, K l = 10 and the MGP hyperparameter is
a1 = 2. The Catalist data are randomly partitioned into 15 mini-batches, each of size
197,995. We implemented the proposed model in MATLAB, and ran the code on a PC
with 8 cores, 3.2GHz CPU, and 128 GB memory. We considered 40 VB iterations per
mini batch, and the total computation time for these data was 16 hours.

5.1 Inferred district-level characteristics and Congressional election results

Using the full model, we infer E[πj ], the expected probability of demographic clusters
for district j. The characteristics of cluster t may be interpreted by mapping the cluster
center {E[θµ∗t ],E[ψµ∗t ]} back to the original data space {E[DrΛrθµ∗t ],Φ(E[DbΛbψµ∗t ])},
where Φ(·) is the cumulative probability function of standard normal (from the probit
model). In Figure 2, we plot E[πtj ] of four example clusters (of 14) for 432 congressional
districts (excluding Alaska and Hawaii) to show the geographic distribution of these

10
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Figure 3. Left column: Probability of Democratic win vs the vote share received for Democratic candidates. The

solid line is a linear regression fit with vote share and predicted probability. Right column: Actual (empirical)

probability of Democratic candidates win in each predicted probability bin.

sample clusters. The corresponding {E[DrΛrθµ∗t ],Φ(E[DbΛbψµ∗t ]} are shown in Table 1
(this table provides mean values of a small subset of Catalist parameters). A comparison
across a subset of features in Table 1 helps interpret the substantive meaning of the
clusters. We see that individuals in Clusters 1 and 2 are more likely to be Democrats,
with Cluster 1 capturing low-income Black and Hispanic Democrats with poor turnout
in the past election and Cluster 2 capturing high-income Democrats with high turnout
in previous elections. Figure 2 shows that Cluster 2 is geographically concentrated in
metropolitan areas like San Francisco, Los Angeles, DC and New York. Cluster 1 is
geographically concentrated in the South, especially near the border. Clusters 3 and 4,
by contrast, are more likely to include whites and Republicans (or undeclared voters)
with age and purchasing power (in U.S. dollars) distinguishing Clusters 3 and 4.

To further assess how well the latent estimates capture constituent preferences, we
examine the ability of the model to predict the party affiliation of the district’s House
member, based on the constituent characteristics in the Catalist datafile. Specifically, we
use E[πj ] as a feature vector, and build a linear probit-regression classifier (similar results
can be obtained with other probabilistic classifiers), where shrinkage is imposed on the
regression weights, using the same prior as imposed in the full model on ξj . This analysis
offers a validation that the estimation of constituent preferences using the Catalist data.

In Figure 3, we plot the probit-regression-based probability that a given district will
select a Democratic legislator, and along the vertical axis is plotted the fraction of vote
share received in the district for the Democratic candidate (in the 2010 election). We
consider the 406 (of 435) districts for which there was a contested election, with two
candidates. We partitioned the districts into 5 folds, and iteratively train on 4 folds and
test on the rest. Note, for example, when the model predicted that the probability of
a Democratic win was 0.5, the fraction of vote received on average was about 50%. In
the table in Figure 3, we note that the predictions of the model are in close alignment
with actual district-level voting. In other words, these results offer reassurance that that
the Catalist data offer a reasonable characterization of constituent preferences in each
district. This relationship is also key to explaining our subsequent findings showing that
Catalist data are useful for inferring more-confident prediction of roll call votes based
on held-out text of the legislation (see Table 3) and that legislators tend to perform
poorly in the next election when her voting record is inconsistent with the district-level
preferences (reflected by large ξj , as depicted in Figure 6(d)).

As a further evaluation of the model, we examine the quality of the model as a function
of the number of people per district we have demographic data from. Specifically, we train
the whole model with a subset of randomly selected voters from Catalist dataset. We
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Figure 4. AUC versus number of voters in each districts. Black dash line corresponds to using all the data.

use E[πj ] inferred from the subset as a feature vector, and perform the same prediction
experiment discussed above. AUC (area under ROC curve) is employed as the metric
for assessing the performance. In Figure 4, we plot the AUC as a function of average
number of voters selected per district. The result is the average of 5 runs, and the error
bar correspond to one standard deviation. Here we see strong improvements once we
sample size per district is at least 500 cases, highlighting the advantage of the Catalist
database compared to data sources with fewer cases per district. For example, even large
national surveys like the 50,000 person CCES has data support of fewer than 50 cases in
a handful of congressional districts.

5.2 Insights on relationships between constituents and representatives

In the political science literature [e.g., 10] and in recent machine learning research [e.g.,
13], it has been assumed that the latent space of the legislators and legislation is one-
dimensional based on roll call votes (i.e., feature vectors like d`j and s`l are assumed to

be one-dimensional). Via the MPG prior on Λ`, we can infer the dimensions of these
vectors. In Figure 5, we depict E[diag(Λ`)], which indicates that there is indeed one
dominant latent dimension, but also two additional weaker dimensions.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Figure 5. ( E[diag(Λ`)].

To examine the relationship between the ideological preferences of House members and
their constituents, we turn to a series of result graphs in Figure 6. In Figure 6(a), we
plot the principal dimension of d`j for each legislator, noting that Democrats tend to be
positive in this dimension and Republicans negative. This result agrees with the ideal

12



December 1, 2015 Journal of Applied Statistics cJASguide

0 100 200 300 400
-5

0

5

Districts

 

 

DEM REP

]
[

l j
d

Ε

]
~

[
l 0

d
d


j

π
U

Ε

0 100 200 300 400
-5

0

5

Districts

 

 

DEM REP

(a) (b)

0 100 200 300 400
-5

0

5

Districts

 

 

DEM REP

]
E
[ξ

j

0.1|]E[ξ| 1j 0.1|]E[ξ| 1j 

40

60

80

100

V
o

te
 s

h
ar

e 
%

(c) (d)

Figure 6. (a) : Principal dimension of E[d`j ]. The horizontal axis is the index of districts (alphabetically ordered).

(b): Principal dimension of E[Udπ̃j+d`0]. (c): Principal dimension of E[ξj ]. (d): Vote share received for two groups
of Democratic congressmen: those with |E[ξ1j ]| ≥ 0.1 and those with |E[ξ1j ]| < 0.1

point obtained with the model in [10, 13]. In Figure 6(b) we plot the principal dimen-
sion of E[Udπ̃j + d`0], which within the model captures the roll-call-related preferences
of the people who live in district j. Note that the Republican representatives (Figure
6(a)) appear to often be more negative in this dimension than their constituents (Figure
6(b)). Finally, in Figure 6(c) we plot E[ξj ] in the principal dimension. Recall that ξj
in d`j = Udπ̃j + d`0 + ξj controls the degree to which the feature vector d`j associated
with legislator j deviates from the characteristics of her constituents, reflected by π̃j .
Moreover, a shrinkage prior was imposed on ξj , and therefore large |ξj | is reflective of
legislators who may be voting in a manner that is not well linked to the people who live
in their district (from the standpoint of the Catalist data). Note that ξj tends to be
sparse, implying that representatives typically vote in line with their constituents, but
there are also often significant non-zero ξj .

Finally, we evaluate the extent to which constituents hold their elected members ac-
countable in the subsequent election by examining the relationship between the principal
dimension of ξj (denoted ξ1j) and the fraction of voter share for the jth legislator in
the 2010 election. We focus on Democratic House members, as these were the ones for
which there was significant turnover in that election. In Figure 6(d), we use box plots
for two groups of Democratic representatives: those with |E[ξ1j ]| ≥ 0.1 and those with
|E[ξ1j ]| < 0.1. The 0.1 threshold is illustrative, and many related small thresholds yield
similar results. Members who voted in a way that the model infers as aligned with the in-
terests of their constituents (small |E[ξ1j ]|) on average received a 15% larger share of the
election vote than those legislators with relatively large |E[ξ1j ]|. Notice a small number
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of legislators with high value of E[ξ1j ] also receive high vote share. These representatives
are mainly from the less competitive districts. For example, Nydia Velazquez (NY-12),
one of the two outliers, was challenged only by a third party candidate.

5.3 Analysis of the legislative topics in latent space

The inclusion of legislative text in the model is a novel addition to the literature on
representation, so we next examine the relationship between the topics of the legislation
and the latent space associated with the roll-call vote. Specifically, δl = wT β̃l + w0 is a
random effect associated with legislation l, and note that it is directly linked to the topic
distribution on the legislation β̃l. The feature vector associated with the legislation is
s`l = Usβ̃l + s`0, and we here consider E[sl] in the dominant (first) dimension, denoted
E[s1l]. Based on Figure 6(a), positive values of E[s1l] imply that the legislation is typically
favored by Democrats, and negative values by Republicans.

The kth component of the first row of Us, denoted U s1k, dictates the degree to which
topic k contributes to s1l. Further, component k of w, wk, dictates the degree to which
topic k contributes to δl. Positive/negative values of U s1k correspond to topics favored
by Democrats/Republicans, and positive/negative wk correspond to topics that most
congressman tend to vote “yes”/“no.”
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Figure 7. Regression weights of topics.

Table 2. Selected topics with the top-five most probable words shown.

TOPIC 3 TOPIC 6 TOPIC 18 TOPIC 19 TOPIC 20 TOPIC 26

war credit related financial child community
military loan measure transfer care American

force income recovery property medical help
freedom tax expense account health care opportunity

international insurance requires benefit veteran school

In Figure 7 we show the topics in the space (E[U s1k],E[wk]), and also depict most-
probable words associated with six example topics in Table 2. During this time period,
the Iraq and Afghanistan wars, which were started under a Republican president, tended
to be aligned with the interest of the Republican Party (negative (E[U s1k]); see Topic 3.
By contrast, Topic 20, about health care, children and military veterans, tended to be
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Proposed model Ideal point probit model
Probit Confidence Bin Votes in Confidence Bin Empirical Probability Votes in Confidence Bin Empirical Probability

0.5-0.6 15821 0.54 16231 0.54
0.6-0.7 15241 0.63 17339 0.61
0.7-0.8 15170 0.7 17793 0.72
0.8-0.9 21756 0.81 22998 0.84
0.9-1 258367 0.98 251994 0.98

Pred. log-likelihood -0.197 -0.204

Table 3. Comparison between proposed method and ideal point probit model from [13]. Shown are the number

of votes in each probability bin, and the empirical probability of being correct in the prediction.

favored irrespective of party (large positive E[wk]).

5.4 Prediction based on legislative text

We consider prediction of the votes of each legislator on held-out legislation, where the
votes are predicted entirely by the text of the held-out legislation (the topic model infers
β̃l for new legislation, from which s`l and δl are estimated, and used to predict the
probability of a particular vote). This experiment serves as a measure of model fitness.

The roll call votes and associated text of legislation of the 111th US House of Rep-
resentatives are partitioned into 6 folds. We iteratively train the model using five folds,
and test on the sixth. The presented result is an aggregation of all six folds. Prediction
confidence [25] and accuracy are employed as metrics. Specifically, for each held-out vote
by legislator j on legislation l, the model yields a probability of “yes” , p(rjl = 1|−) and
a probability of “no”, 1 − p(rjl = 1|−). We take max{p(rjl = 1|−), 1 − p(rjl = 1|−)}
for each held out vote, irrespective of whether the actual prediction is “yes” or “no,”
and place them into the corresponding probability bin, with bins ranging from [0.5−0.6]
to [0.9 − 1]. We wish to examine whether the prediction confidence matches empirical
results. For example, if we examine all votes for which the model predicts the vote with
confidence in the range [0.7−0.8], we would expect the model should be able to correctly
predict the vote between 70%-80% of the time. For the test legislations, we also compute
the predictive log-likelihood log p(rtest|rtrain), which averaged for all six folds.

In Table 3, we compare the prediction confidence and accuracy of the proposed model
and that in [13](probit link instead of logistic link). In their model, d`j was drawn i.i.d.
from a symmetric multivariate Gaussian distribution rather than being related to the
constituency information (the latter implemented in the proposed model by relating
d`j in (11) to πj). We observe that both models are “correct,” in that the predicted
confidence of the vote matches the empirical data (e.g., for the proposed model, 258,367
of the held-out votes were predicted with a confidence of 0.9 to 1, and the model was
correct in its prediction 98% of the time). In comparing the proposed model and that
in [13], note that the former places 6,000 more votes in the 0.9 to 1 confidence bin
and the predictive log-likelihood also improved, suggesting that the use of constituency
(Catalist) data yields more confident predictions in legislator votes, and that confidence
is vindicated experimentally.

Our model shows the most prominent improvements for contested legislation and un-
usual districts. Specifically, most of the 6,000 votes discussed above are for closely con-
tested bills (those receiving less than 400 “yea” votes, corresponding to 267 out of 802
bills). The legislators for which the model provides most improvement in vote predic-
tion are among Republicans in districts dominated by Democratic constituents, such as
Ileana Ros-Lehtinen (FL-18) and Michael Castle (DE). Their district-level characteris-
tics (larger proportion of Democratic voters) adjust the ideal points toward Democrats,
yielding more-confident predictions.
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6. Conclusions

Binary matrix factorization is employed for analysis of roll-call data, with latent features
associated with legislation informed by a topic model of the legislative text, and the
latent features of each legislator informed by a statistical model of the people living
in their district. The model is employed in a new manner to uncover insights into the
workings of electoral representation, based on large-scale data, specific to the 111th
House of Representatives. The model is shown to produce improved prediction of votes
on held-out legislation based on the text of the legislations, and demonstrates the electoral
consequences of legislators failing to represent the preferences of their constituents.

The proposed model also offers significant potential for future substantive research
evaluating the nature of representation in the United States. Specifically, we have not
fully exploited the model’s ability to analyze the political preferences of subgroups. In the
paper, we focused on evaluating the basic extent of convergence or divergence between
representatives and their constituents, and the electoral consequences for representatives
who are diverging from their district preferences. With the information of particular
constituents (e.g., voters, primary voters, partisans, wealthy constituents), we may be
able to examine whether elected officials better represent some constituents more than
others. The current model employs only limited information about individual legislators,
as we have focused on incorporating constituent information. However, another model
extension could involve taking account of additional factors such as legislator senior-
ity, campaign spending, or legislator background. This offers the opportunity to further
understand the relationship between representatives and their constituents (E[ξj ]).

Finally, while the data considered here are associated with politics, the basic model
setup is more general with a variety of potential applications. For example, one could en-
vision trying to assess whether specific individuals, from a region or group with particular
demographics, will like/dislike given commercial products. The binary legislative votes
are analogous to like/dislike of particular products (here legislation), targeted toward
specific people. The text of the legislation is like a document describing the product in
question. Given a new product/legislation, with an associated text description, we could
predict whether it will be liked/disliked by particular people (here, whether legislators
will vote yes/no on a new piece of legislation).
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Appendix A. Hierarchical representation of the model

Model Catalist data

xjn = DrΛrsrjn + εrjn drp ∼ N (0, I) srjn ∼ N (θ∗cjn , I)

b̃j = DbΛbsbjn + εbjn bjnp = 0, if b̃jnp > 0 bjnp = 1, if b̃jnp < 0

dbp ∼ N (0, I) sbjn ∼ N (ψ∗cjn , I) cjn ∼ Cat(πj)

πj ∼ DP (κν) νt = ν ′t

t∏
i=1

(1− ν ′t) ν ′t ∼ beta(1, κ0)

ψ∗t ∼ N (µb0,Σ
b
0) θ∗t ∼ N (µr0,Σ

r
0) εrjn ∼ N (0, σ−1

j I)

εbjn ∼ N (0, I) c̄jt =
1

Nj

Nj∑
n=1

I(cjnt = t)

Model legislative text

zil ∼ Cat(βl) βl ∼ Dir(η1) vil ∼ Cat(φzil)

φk ∼ Dir(η2) z̄lk =
1

Wl

Wl∑
i=1

I(zil = k)

Model rollcall votes

r̃jl = d` Tj Λls`l + δl + δjl + ε`jl rjl = 1, if r̃jl > 0 rjl = 0, if r̃jl ≤ 0

d`j = Udc̄j + d`0 + ξj s`l = Usz̄l + s`0 δl = z̄lw + w0

udk ∼ N (0, α−1
d I) usk ∼ N (0, α−1

s I) w ∼ N (0, α−1
w I)

ξjk ∼ N (0, α−1
jk ) αjk ∼ InvG(1, γjk/2) γjk ∼ Ga(10−6, 10−6)

δil ∼ N (0, α′ −1
jl ) α′ −1

jl ∼ InvG(1, γ′jl/2) γ′jl ∼ Ga(10−6, 10−6)

εljl ∼ N (0, 1)

Multiplicative gamma prior

Λ{r,b,l} = diag(λ
{r,b,l}
1 , ..., λ

{r,b,l}
K ) λ

{r,b,l}
k ∼ N (0, τ

{r,b,l}−1
k ) τ

{r,b,l}
k =

k∏
h=1

ϕ
{r,b,l}
h

ϕ
{r,b,l}
h ∼ Gamma(a1, 1)

I(.) denotes the indicator function. I(.) = 1 if the inside condition holds, 0 otherwise.
Diffuse gamma priors are placed on σj .

Appendix B. Catalist attributes

We summarize the Catalist attributes used in the model in Table B1.
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Categories Number of Number of Description
binary attributes real attributes

Gender 1 0 male or female
Age 0 3 age, mean and standard deviation of age among house members

Finance 3 3 income; household value; information related with investment,
bonds purchasing, credit card

Race 7 5 race includes Black, Caucasian, Hispanic, Asian etc.
Turnout 2 1 turnout in 2006 and 2008 general election;

turnout rate of the household members
Party affiliation 9 2 Democrat, Republican and other party

Behavior 1 1 play golf or not; Internet usage
Children 4 1 have child between certain age or not
Religion 10 0 include Catholic, Protestant, Hindu, Muslim, Buddist etc.
Home 0 1 own or rent

Donation 3 0 donate to political, religious and environmental issues

Table B1. Summary of Catalist attributes

Appendix C. Stochastic variational inference update equations

C.1 Variational evidence lower bound

The posterior inference of the model is performed via Stochastic Variational Bayesian.
Let X = {Xj ,Bj ,R} denotes the training data, Γ denote all the hyper parameters
and Θ denotes all the latent variables. We use the following fully factorized variational
distributions to approximate the posterior distribution.

q(Θ) =
P r∏
p=1

q(drp)
P b∏
p=1

q(dbp)
J∏
j=1

Nj∏
n=1

q(srn)q(sbn)q(cjn)
Kr∏
k=1

q(λrk)q(ϕ
r
k)

Kb∏
k=1

q(λbk)q(ϕ
b
k)

J∏
j=1

q(σj)

q(ν)
J∏
j=1

q(πj)
T∏
t=1

q(θ∗t )q(ψ
∗
t )

K`∏
k=1

q(ϕlk)q(λ
l
k)q(u

s
k)q(u

d
k)

J∏
j=1

K`∏
k=1

q(ξjk)q(αjk)q(γjk)

q(w)
L∏
l=1

W l∏
i=1

q(zil)
K∏
g=1

q(φg)
L∏
l

q(βl)
J∏
j

L∏
l=1

q(δjl)q(α
′
jl)q(γ

′
jl)

The evidence lower bound is as following.

log(p(X|Γ)) ≥ E[log(p(X ,Θ,Γ))]− E[log(q(Θ))]

= L(q)

We partition the Catalist data into N∗ mini-batches. The roll call data and related
legislative votes are considered as a whole. Each mini-batch contains voters from all the
435 districts. The variational parameters specific to each batch are local parameters Θl

and the remaining are globe parameters Θg. The evidence lower bound can be expanded
to

L(q) = Eq[logp(Θg)]− Eq[logQ(Θg)] +
N∑
n=1

Eq[logp(xn,θ
l
n)]− Eq[logQ(θln)]

We can then derive the stochastic coordinate ascent update equations for both global
and local parameters.
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C.2 Updates equations for local parameters

In this model, the local parameters Θl = {µsrjn ,Σsrjn ,µsbjn ,Σsbjn
, π̃jn} are the ones related

with srjn, s
b
jn, cjn. Let us denote number of voters in district j within one mini-batch as

N ′j .
Update equations for srjn

q(srjn) ∼ N (µsrjn ,Σsrjn)

where the mean and covariance matrix are as following

Σsrjn = (E[σj ]E[ΛrDr TDrΛr] + I)−1

µrsjn = Σsrjn(E[σj ]E[ΛrDr]xjn +
∑T

t=1 π̃jntE[θ∗t ])

The related expectation is

E[ΛrDrDrΛr] =
∑P r

p=1(E[drp]E[drp] + Σdr
p
)� (E[λr])E[λr]T +Diag(Σλr

1
, ...,Σλr

K
))

Update equations for sbjn
The update equations for sbjn is similar with srjn. We can obtain the updates by replacing

the superscript r, E[σj ] and xjn with b,1 and E[b̃jn], respectively. The related expectation
is as following,

E[b̃jnp] =

E[db Tp Λbsbjn] +
φ(db T

p Λbsbjn)

1−Φ(db T
p Λbsbjn)

if bjnp = 1

E[db Tp Λbsbjn]− φ(db T
p Λbsbjn)

Φ(db T
p Λbsbjn)

] if bjnp = 0

Update equations for cjn

q(cjn) ∼ Cat(π̃jn)

The t dimension parameter π̃jn is

π̃jnt ∝
exp(E[log(N (srjn|θ

∗
t , I))] + E[log(N (sbjn|µbt , I))] + E[log(πjt)] +

∑L
l=1

E[r̄
(1)
jlntu

(1)
tl ]

N ′j
− E[u

(1) 2
tl ]

2N ′ 2j
)

The corresponding expectation and equations are as following

r̄
(1)
jlnt = r̃jl − δl − δjl − (d`0 + ξj)

TΛ`s`l −
∑

t′ 6=t{[ud Tt Λ`s`l ][
∑

n′ 6=n I(cjn′=t)

N ′j
]}

u
(1)
tl = [ud Tt Λ`s`l ].

E[log(N (srjn|µrt , I))] = −
tr(Σsr

jn
)+E[sr T

jn ]E[srjn]+tr(Σµr
t
)+µr T

t µr
t−2E[srjn]E[µr

r]

2

E[log(N (sbjn|µbt , I))] = −
tr(Σsb

jn
)+E[sb T

jn ]E[sbjn]+tr(Σµb
t
)+µb T

t µb
t−2E[sbjn]E[µb

r]

2
E[log(πjt)] = Ψ(θπt)−Ψ(

∑
t θπt)

Ψ(.) denotes the digamma function.

C.3 Updates equations for global parameters

The remaining variational parameters are considered as global parameters Θg. We list
the main update equations to calculate these intermediate global variational parameters
Θ̃
g

as following.
Update equations for drp

q(drp) ∼ N (µdr
p
,Σdr

p
)

where the mean and covariance matrix are as following
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µdr
p

= E[σj ]Σdr
p
(
∑J

j=1
Nj

N ′j

∑N ′j
n=1 E[Λr]E[srjn]xjnp)

Σdr
p

= (
∑J

j=1
Nj

N ′j

∑N ′j
n E[Λrsrjns

r T
jn Λr T ]E[σj ])

−1

The related expectation is

E[Λrsrjns
r T
jn Λr T ] = (Σsrjn + E[srjn]E[srjn])� (E[λr]E[λr]T +Diag(Σλr

1
, ...,Σλr

K
)).

where � is the Hadamard product and λr = [λr1, ..., λ
r
K ]T

Update equations for λrk

q(λrk) ∼ (µλr
k
,Σλr

k
)

The mean and variance are as following

Σλr
k

= (
∑J

j=1
Nj

N ′j

∑Nj

n=1 E[σj ]E[dr Tk drks
r 2
jnk] + τ rk )−1

µλr
k

= Σλr
k
(
∑J

j=1
Nj

N ′j

∑Nj

n=1 E[sjnk]E[dk]
T x̂jn)

The related expectation and equations are

E[dr Tk drks
r 2
jnk] = (E[drk]

TE[drk] + tr(Σdrk))(E[srjnk]
2 + Σsrjnk

)

x̂jn = xjn −
∑Kr

k̄=1,k̄ 6=k E[dr
k̄
]E[sjnk̄]λ

r
k̄

Update equations of ϕrh

q(ϕrh) ∼ Gamma(aϕr
h
, bϕr

h
)

where the shape and scale parameters are as following

aϕr
h

= a1 + Kr−h+1
2

bϕr
h

= 1 +
∑Kr

k=h
E[λr 2

k ]
∏k

h̄=1,h̄ 6=h E[ϕr
h̄
]

2 I(k ≥ h)

Update equations for θ∗t

q(θ∗t ) ∼ N (µθ∗t ,Σθ∗t )

where the mean and covariance matrix are

Σθ∗t = (Σr
0 +

∑J
j=1

Nj

N ′j

∑N ′j
n=1 π̃jntI)−1

µθ∗t = Σθ∗t (µr0 +
∑J

j=1
Nj

N ′j

∑N ′j
n=1 π̃jntE[srjn])

Update equations for dbp, λ
b
k, λ

b
h,ψ

∗
t

The update equations for dbp, λ
b
k, λ

b
h,ψ

∗
t are similar to drp, λ

r
k, λ

r
h,θ
∗
t , respectively. We can

obtain these update equations by replacing the superscript r, E[σj ] and xjn with b,1 and

E[b̃jn], respectively.
Update equations for σj

q(σj) ∼ Gamma(aσj
, bσj

)

aσj
= ar0 + P rNj/2

bσj
= br0 + Nj

N ′j

∑N ′j
n=1(xTjnxjn + E[sr Tjn ΛrDr TDrΛrsrjn]− 2xTjnE[Dr]E[Λr]E[srjn])

The related expectation is

E[sr Tjn ΛrDr TDrΛrsrjn] =

tr((
∑P r

p=1(E[drp]E[dr Tp ] + Σdrp)� E[λrλr)T ])(E[srjn]E[sr Tjn ] + Σsrjn))

Update equations for πj

q(πj) ∼ Dir(θπj
)
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θπj
= κν + Nj

N ′j

∑N ′j
n=1 π̃jn

Update equations for ν
We do a point estimate on ν and q(ν) is a degenerated distribution. The objective
function of optimizing ν is as following.

L(ν) = logGEM(ν;κ0) +
∑J

j=1 E[logDir(πj |ν)]

where GEM(ν;κ0) refers to the stick breaking prior. The derivation of the gradient can
be found in [19].
Update equations for ξk

q(ξk) ∼ N (µξk ,Σξk)

where the mean and covariance is

Σξk = (
∑L

l=1(E[λl 2
k ]E[z̄Tl u

s
ku

s T
k z̄l]) + E[αk])

−1

µξk = Σξk(
∑L

l=1 E[λlkz̄
T
l u

s
kr̂l])

where related equations are

r̂l = r̃l −
∑K`

k=1 λ
l
k(Cu

d
k + ξk)u

s T
k z̄l + λlkξku

s T
k z̄l

C = [c̄1, ..., c̄j ]
T . E[c̄j ] = 1

N ′j

∑N ′j
n=1 π̃jn

Update equations for udk

q(udk) = N (µud
k
,Σud

k
)

where the mean and covariance are

Σud
k

= (
∑L

l=1 E[CTCλl 2
k z̄

T
l u

s
ku

T s
k z̄l] + αdI)−1

µud
k

= Σud
k
(
∑L

l=1 E[λlkz̄
T
l u

s
kC

T r̂l])

where the related equations are

r̂l = r̃l −
∑K

k=1 λ
l
k(Cu

d
k + ξk)u

T
k zl + λlk(Cu

d
k)u

s T
k zl

E[c̄j c̄
T
j ] = 1

N ′ 2j
(
∑N ′j

n=1

∑
m 6=n πjnπ

T
jm +

∑N ′j
n=1 diag(πjn))

E[z̄lz̄
T
l ] = 1

W 2
l

(
∑Wl

i=1

∑
m6=i β̃ilβ̃

T
ml +

∑Wl

i=1 diag(β̃il))

Update equations for usk

q(uk) = N (µus
k
,Σus

k
)

where the mean and covariance is

Σus
k

= (
∑L

l=1 E[λl 2
k z̄l(Cu

d
k + ξk)

T (Cudk + ξk)z̄
T
l ] + αsI)−1

µus
k

= Σus
k
(
∑L

l=1 E[λlkz̄l(Cu
d
k + ξk)

T r̂l])

r̂l = r̃l −
∑K

k=1 λ
l
k(Cu

d
k + ξk)u

s T
k z̄l + λlk(Cu

d
k + ξk)u

s T
k z̄l

Update equations for λlk

q(λlk) = N (µλl
k
,Σλl

k
)

where the mean and variance are

Σλl
k

= (
∑L

l=1 E[z̄Tl u
s
k(Cu

d
k + ξk)

T (Cudk + ξk)u
s T
k z̄l] + τ lk)

µλl
k

= Σλl
k
(
∑L

l=1 r̂
T
l (Cudk + ξk)u

T
k z̄l)

where r̂l = r̃l −
∑K

k=1 λ
l
k(Cu

d
k + ξk)u

s T
k z̄l + λlk(Cu

d
k + ξk)u

s T
k z̄l

Update equations for zil
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q(zil) = Cat(β̃il)

The parameter β̃il is as following,

β̃ilk ∝ exp{E[log Cat(vil|φk)] + E[log βlk] +
∑J

j=1(
E[r̄

(2)
jklu

(2)
jk ]

Wl
− E[u

(2) 2
jk ]

2W 2
l

)

The related equations are as following,

r̄
(2)
jkil = r̃jl − δl − δjl −

∑
k′ 6=k{[d

` T
j Λ`usk′ + wk][

∑
i′ 6=i I(zli′=k

′)

Wl
]}

u
(2)
jk = [d` Tj Λ`usk + wk].

Update equations for βl, φk
The update equation for βl and φk are same as the related parameter updates of latent
Dirichlet allocation (LDA) and are omitted for brevity.

After obtaining all the intermediate global parameters Θ̃
g
, we update the global pa-

rameters Θg as following.

Θg ← (1− ωh)Θg + ωhΘ̃
g
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