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Abstract

Auction theory economists have shown that auctions can be structured to maximize

the expected revenue to the seller. In this thesis, I show that they can also be

optimized to minimize the sellers’ risk through an understanding of the driving factors

behind seller’s auction price risk. I derive a general form equation for auction price

variance, and discuss how changes in the number of bidders and the type of bidders

affect the sellers’ auction risk. An empirical component of this paper takes data from

auction sales of Australian Aboriginal art and uses observed price variance to make

deductions about the underlying types of participating bidders.



1 Introduction

The use of auction sales has been an increasing trend in recent years. Businesses

are increasingly likely to choose an auction to sell a division or stock, consumers buy

and sell goods at online auctions, and governments see public sales as a way to raise

additional revenue.

Since the original foundation of theoretical papers by Vickrey in the 1960’s, the

focus of research has been on designing optimal auctions and understanding bid-

der strategies [Vickrey, 1961]. Much work has gone into generalizing assumptions to

facilitate the understanding of the many new auction formats being put to use in

the modern economy. We now understand the full complexity of optimizing multi-

unit auctions, and how affiliating bidders’ valuations with the information in their

possession increases revenue to the seller. At the same time, the assumption of risk-

neutrality by the buyers has been relaxed, and is no longer required to achieve the

main conclusions of auction theory.

The seller, however, is also exposed to risk as a result of an auction. Auctions

are usually held in markets where sales are infrequent, and the usual process of

price-discovery through guess and test until demand clears all available supply is not

feasible (for instance, when items are so unique that only one is available for sale).

Once a seller commits to holding an auction sale, he/she is not at liberty to pull out

of the sale once bidding clears the reserve price on the lot. Even if the seller may

at that point be satisfied with the revenue from the sale, he/she is still subject to

greater uncertainty compared to other more liquid transactions. This may present

a challenge to sellers subject to a significant liquidity constraint, such as companies

entering bankruptcy, beneficiaries of a deceased collector, or partners in a divorce.

Minimizing revenue risk then is a relevant component of auction theory. It is also not
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an intuitive or a correct conclusion that the same strategies that maximize revenue

also minimize sellers’ price risk. To take an elementary example, the proof of the

equation for the optimal reserve price involves the assumption that the seller would

be willing to undertake the small risk of losing a sale in return for a chance to push

bids upwards in cases when very few bidders are participating. Here, an optimal

reserve price is a condition of revenue equivalence and of an optimal auction, but is

directly at odds with the condition of minimizing risk.

One of the booming auction-driven markets is sales of fine art. Recent years have

seen evidence for rising valuations of art compared to other types of assets. One

peculiar property of fine art, however, is that people tend to have strong opinions on

the worth of individual pieces, and since quality is not objective, these opinions vary

from person to person. The effect is that, while artwork can be appraised, the actual

realized revenue from a sale will be uncertain. This trait makes fine art auctions a

good field to apply and test empirically the findings about price risk. Conveniently,

auction houses release price estimates prior to every auction. Sellers’ price risk can

then be defined as the degree to which realized revenue strays from the pre-sale

appraisal by the auction house.

The news of a record-breaking bid to win a coveted Picasso a few years ago leads

one to wonder what variables influence auction price risk. What can a seller do to

control the amount of risk in a sale, and what effect will that control exert on the

expected revenue? What types of bidders increase sellers’ price risk and what kinds

tend to have a stabilizing impact on price? How does the market in general affect price

risk? And does the selection of one auction house over another determine the level of

risk at the sale? Standard auction theory for the past four decades has been focused

on format, buyers’ risk, and bidding strategy and their impacts on total revenue, to

the relative neglect of sellers’ price risk in single object sales.

2



In Section 2, I explain the procedure of a typical fine art sale. Section 3 reviews

important results of auction theory and empirical sale result analysis that are then

used in Section 4 to derive a theoretical framework of auction price risk.

I have applied the results of that framework to the results of sales of Australian

Aboriginal art over the last 10 years. I introduce the dataset and the methodology

I used in compiling it in Section 5. In Section 6 I demonstrate how the auction

price risk framework can be applied to improve our understanding of the types of

bidders participating in a sale, historical changes in the marketplace, and competition

amongst auction houses. I conclude in Section 7, where I offer my views on how the

risk framework can be further generalized and extended to additional auction types.

2 Background on Fine Art Auction Sales

The fine art market is divided into two overlapping markets. The manufacturing side

of the market consists of artists who produce art and sell it to dealers or collectors.

The majority of the transactions in this market are fixed-price sales, not auctions.

However, once art enters a private collection, it enters the second side of the art

market, the resale sale market. There collectors and dealers wishing to sell an art

work often engage an auction house to appraise the work, feature in in a pre-sale

catalog, and then to execute a sale at an auction. If no bids are received, the lot is

unsold and is returned to the seller. The price is determined solely by the demand at

the auction, and fixed price sales are rare.

The fine art market features a set of products as diverse as any, and is usually

subdivided into sub-markets by genre. Most auctioneers hold dedicated sales for each

genre at regular intervals during the year, as determined by the amount of supply in

the market. Those sales give the opportunity for people (bidders, potential sellers,
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connoisseurs, etc) interested in that genre to come together and observe the trends

in the market and to participate in the sale.

Once an auction house selects the lots it is interested in featuring in the next

sale, provenance is constructed. In-house art experts use their previous experience,

art theoretical knowledge, and information about imminent demand to establish an

estimate range (a low and a high price point) for each lot in the sale.

The estimate range is shown to the seller, who is given the opportunity to withdraw

the lot from the sale if he disagrees with the estimate. Auction houses also allow the

use of reserve prices (reserves), or a price that bidding has to exceed before the seller

is legally bound by contract to sell the lot to the highest bidder.

Although having reserves is optional, auction theory has shown that there is an

optimal reserve price for any auction. If no reserve price is set, the seller runs the

risk of having to sell his/her possession at a price below his own personal valuation,

and thus suffering economic loss. Furthermore, even when bidding exceeds the seller’s

personal reservation level, an optimal reserve price can maximize expected revenue

from the sale. The majority of lots are sold with reserves, with the notable exception

of estate or government sales, where liquidity considerations trump the risk of selling

a lot below its market value.

While reserves are kept secret and auctioneers often engage in a bit of theater to

prevent bidders from guessing it, each auction house has certain rules of thumb that

give bidders an idea of the range for the reserve price. A common rule, for example

is that the reserve price normally will not exceed some fraction of the low estimate

and that lots with a low estimate under $1,000 will have no reserves at all.

A picture and a description of each lot, the information uncovered concerning

provenance, and the estimate range are published in a pre-sale catalog that is dis-

tributed to potential bidders.
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Although the pre-sale appraisal is not a particularly old tradition, I will argue

that it is a revenue-maximizing part of the process. I will discuss theoretical and

empirical evidence for this claim in the course of this thesis. The publication of

biographical and authenticity information of each lot in a very affordable sale catalog

has an obvious positive effect on the sale price by lowering the information costs that

collectors would otherwise incur in their individual research of art works.1

The auction format used universally in fine art auctions is a modified version of

the English ascending-bid auction. Like the English auction, bidders place bids as

the price level is raised in steps by the auctioneer. However, due to the spread of

bidding by phone or over the internet, bidders are not always aware of who exactly

is still bidding and cannot observe at what price level another bidder dropped out of

the auction. In this way, fine art auctions have become more similar to the Japanese

ascending auction, where bidders can see how many (but not which) competitors are

still participating in the bidding. This change is important as it means that bidders

cannot observe when a famous collector or a museum stops bidding and will therefore

feel a weaker Winner’s Curse than at a fully public auction.

Auction houses schedule sales based on two considerations: the amount of available

supply offered for sale and the amount of demand for the genre. The success of a

sale is highly variable – some sales raise much more than expected while other do

not. Auctioneers measure demand through the buy-in rate, the percentage of lots

that fails to sell because no bids cleared the reserve price.

1The convenience value of the catalog lowers the barriers to entry into the auction, increasing
the number of bidders, and raising everyone’s valuations by removing uncertainty and information
costs. This also raises the revenue a seller can expect.
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3 Literature Review

3.1 Auction theory

Much of early auction theory work relies on the assumptions of the private values

model. Because of its intuitive simplicity, I too will begin my analysis of risk with

the private values model. That framework involves a single lot offered to n bidders,

each of whom knows their own valuation of the lot, but is not aware of how the

others are valuing the same work. Each bidder is assumed to draw their valuation

from a continuous distribution with the cumulative density F (v) that is known to all

participants. Because each draw is Independently and Identically Distributed (IID)

relative to other draws, the valuation of one bidder has no influence on the valuation

of another. The function F (v) is assumed to have a domain of [v∗, v̄], and to be

continuously differentiable in that domain with a first derivative F ′(v). Because F (v)

is the cumulative distribution function of bidder valuations, F (v̄) = 1 and F (v∗) = 0;

that is, I assume that bidders whose valuations lie below the cut-off point v∗ have

no chance of actually winning the auction. People with valuations below v∗ will find

that even if they manage to “steal” the item at their low valuation, they will gain

too little from the tiny chance they have of actually taking the lot home. To verify

that assumption, at most auctions that I have attended, even when there is no reserve

price, the auctioneer almost never starts the bidding at $0.00 but at some price higher.

On the other hand, there is a price level v̄ that guarantees that bidder the lot. While

it is technically an unrealistic assumption, it reduces complexity in many proofs and

allows the use of algebraically simple density functions. The seller is also assumed to

have a private value v0 for the lot that is strictly bound by the same domain as the

bidders’ density functions.

Riley and Samuelson elegantly showed in 1981 that the expected revenue to the
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seller from an auction sale in the private values framework is

n
∫ v̄

v∗

[
vF ′(v)− 1 + F (v)

]
F (v)n−1dv (1)

Because the above equation applies to any auction that abides by the two above

mentioned assumptions, it is a part of the proof of the Revenue Equivalence of auc-

tions, a theory that shows that all types of auctions in the private values model lead

to the same expected revenue to the seller [Riley and Samuelson, 1981]. I will use

that result in extending the expected revenue result to art auctions.

The concept of seller’s auction risk is usually discussed in the framework of auction

type. Even though revenue equivalence guarantees equality of expected revenue, some

auction types are less risky than others. For instance, the second-price English auction

is considerably less risky to the seller than the first-price descending or sealed-bid

auction [Krishna, 2002]. The seller should always choose the second-price auction,

which explains why second-price auctions are by far the most popular format for

indivisible single-unit auctions.

The exact distribution F ′(v) is usually left in general form. Because it has a

limited domain, it cannot be the normal distribution or any other infinite domain

function. The case of the uniform distribution was used by Riley and Samuelson

to derive some basic conclusions in their paper on optimal auctions as well as in

many basic applications of auction theory [Riley and Samuelson, 1981]. To derive a

framework within which to be able to discuss sellers’ price risk, I will use two types of

distributions, F (v) = va−va
∗

v̄a−va
∗

and F ′(v) = (v − v∗)(v̄ − v). The first class includes the

uniform case as well as increasing and decreasing functions. The second case rests on

the intuition that valuations towards the middle of the range are more likely to occur

than the extremes.
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In the revenue maximizing case, it has been shown that the seller should set

reserves at a level strictly higher than v0 [Klemperer, 1999]. This is derived from the

above equation for expected revenue from the sale. Because of the above-mentioned

rules of thumb for reserves, the fine art market seems in the face of it to be inefficient,

as the seller’s reservation value could be quite a bit higher than the low estimate.

This in turn can result in unwarranted costs if it increases the buy-in rate. A further

investigation in Section 5 shows how other practices by auctioneers compensate for

the restrictiveness of the rules of thumb.

Does the fine art market fit the private values assumptions? While each bidder ap-

pears to assign a private value component to his/her valuation – whether the painting

matches their kitchen or maybe reminds them of childhood will have a large influence

on their willingness to pay for it – bidders are clearly also influenced by the outside

world. Literature specific to the art market has attempted to enumerate and quantify

a number of those influences.

3.2 Art market

Fine art auctions typically see two distinct classes of bidders: dealers and private col-

lectors. Dealers are the more gain-oriented, and are looking for lots whose resale value

they believe could be higher at a later date. They are not likely to win a bidding war

against a private collector who has his sights set on a piece [Singer and Lynch, 1994].

Private collectors are not only influenced by their expectation of the resale value,

but also by their personal private value for the lot. That value is sometimes referred

to as the “use” value because it corresponds to the utility that the owner receives

from ownership of art before any investment returns. A collector is more likely than

a dealer to bid significantly higher than the expected price for the lot because he/she
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may have a high use value. Collector tastes are capricious, and hard to measure,

adding more uncertainty to the valuation. In application to auction price risk, I

expect that lots bought by collectors should exhibit more risk than lots bought by

dealers, and for that reason a seller should try to discover the composition of the

likely bidders before making the decision to hold an auction.

Fine Art has always been a luxury good in the Western world, and used as an

investment vehicle by many. As the world economy grows, the demand for master-

pieces outpaces their supply (and for some genres, like Old Masters, the world stock

is actually shrinking due to depreciation and loss to fire and thieves). The degree to

what buyers are interested in works as investment assets versus as art works to be en-

joyed for their æsthetic appeal depends on the recent historic trends in art valuations

versus their closes financial benchmarks.

Art literature has made copious use of Rosen’s formulation of the hedonic price

index [Rosen, 1974]. Unlike financial assets, artworks are resold very infrequently,

making it difficult to determine the growth in valuations on year-on-year basis. By

regressing sale prices by the various properties of art, scholars have proxies for value

growth rates.

The most recent study of the largest cross-section of the art markets has been by

Mei and Moses, who showed that while art performed well as a component of a diversi-

fied portfolio, its risk-adjusted returns underperformed its benchmarks [Mei and Moses, 2002].

Mei and Moses showed that owning art as an investment subjects the holder to greater

relative risks to returns compared to other financial instruments. When combined

with the formulation of auction risk, the full picture of risk that accompanies fine art

is exposed.

A hedonic regression study of the Australian Aboriginal art market appeared in

2005. The analysis, by Higgs and Worthington showed that since the mid 1990’s
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prices of Aboriginal art have grown at a h
¯
igh rate after the slump in the early

1990’s [Higgs and Worthington, 2005]. The breakdown of their (albeit much larger)

dataset by artist and price is consistent with the data in my own dataset.

4 Theoretical Framework

4.1 Derivation of Variance in General Form

The expected payment of any bidder of type v1 at a private value auction is defined

as

P (v1) = v1F (v1)
n−1 −

∫ v̄

v∗
F (x)n−1dx (2)

The expected revenue from bidder 1 (p̄1) for the seller is then just the sum of the

payments times the bidder’s probability of winning at that payment,

p̄1 =
∫ v̄

v∗
P (v)F ′(v)n−1dv (3)

substituting in the P (v) and switching the order of integration, I have

p̄1 =
∫ v̄

v∗

[
vF ′(v)− 1 + F (v)

]
F (v)n−1dv (4)

Equation 4 is the first moment of revenue from a single bidder. To compute the

the variance of an individual bidder’s revenue, I can use the second moment,

σ2
1 =

∫ v̄

v∗

(
v1F (v1)

n−1 −
∫ v1

v∗
F (x)n−1dx

)2

∗ (5)

F ′(v1)dv1 − p̄2
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And because all bidders are symmetric and independent of one another, the vari-

ance of seller’s revenue is simply the sum of the variance of each bidder, or nσ2
i .

Because variance is not expressed in applicable units, I will mostly refer to the stan-

dard deviation of the seller’s revenue, which is just the square root of the variance.

A challenge to a comprehensive framework of auction risk is the double integral in

the solution for variance. It makes calculating variance for complex density functions

impossible. However, I can evaluate variance of expected sale revenue by using alge-

braically simple distributions for F (v). Studying the results from these distributions

is still useful as they may show patterns that match these we observe in real-life auc-

tions. How differences in density functions create differences in variances is important

knowledge for an auctioneer trying to structure a transaction that fosters a particular

form of auction price risk.

4.2 Distributions

4.2.1 Polynomial-type density functions

The first type of density distribution studied is the simple polynomial defined over

domain v∗ to v̄2 of form

F (v) =
va − va

∗
v̄a − va

∗
(6)

where a is a real variable determining the exact type of distribution used. When

a = 1, the resulting density is the uniform distribution. For a > 1, the density is an

increasing polynomial with a positive second derivative. These densities suggest that

most common valuation will actually higher than the average valuation, e.g. that the

2For the sake of simplicity, I will omit the full piecewise definitions of distributions, but the reader
should keep in mind that functions F (v) and F ′(v) are equal to 0 when v > v̄ or v < v∗
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Figure 1: Density functions when a = −1, domain [$10 . . . $20]

bulk of bidders will have high valuations but a few will have much lower valuations.

The density a = 0 is not defined, but densities the correspond to a < 0 are

decreasing rational functions with positive second derivatives. These densities suggest

the opposite of the last case, that most bidders have low valuations but a few high v

bidders make the average higher (Figure 1).

4.2.2 Negative quadratic distribution

An alternative distribution that is simple enough to be solvable in general form is the

negative quadratic distribution with the probability density of

F ′(v) =
−6(v − v∗)(v̄ − v)

−v̄3 + 3v∗v̄2 + v3
∗ − 3v2

∗ v̄
(7)
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Figure 2: Density functions for quadratic distribution, domain [$10 . . . $20]

The quadratic density distribution in Equation 7 is a more intuitive distribution

than the polynomial distribution. As a negative quadratic function, it peaks in the

middle of its domain, as opposed to the beginning or the end. In this way, it is

similar to the normal distribution, the most widely occurring distribution in observed

phenomena. It makes sense that while some people may have valuations far outside

the average due to their individual tastes, the most common opinion should not lie

at one of the extremes, but somewhere in the middle (Figure 2). Results from this

distributions turn out very similar to these of the a > 0 distributions, but I include

it in my analysis for completeness.
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Figure 3: Expected Revenue by number of bidders n

4.3 Impact of auction variables on expected revenue

By substituting density functions into Equations 4 and 5, I can plot the behavior of

total expected revenue and price variance in response to changes in the independent

variables of the number of bidders and the relative size of the density domain v̄− v∗.

4.3.1 Number of bidders

Figure 4 plots the the relationship between the number of bidders and each bidder’s

expected payment. The first marginal bidders have a large positive effect on each

existing bidder’s expected payment, as competition amongst bidders reduces the op-

portunity for bidders to realize gain from the auction, that is to purchase a lot for a

price significantly below their valuation. That effect persists even as the number of
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bidders increases, but is counteracted by the falling probability of actually winning

the sale. The marginal change in expected payment approaches zero as number of

bidders continues to increase.

The total expected revenue to the seller is just the sum of all bidders’ expected

payments. In a symmetric auction (like the fine art auction), all bidders have the same

payment expectation and calculating total expected revenue is trivial. Figure 3 plots

the expected revenue against the independent variable of the number of participating

bidders.

The expected revenue is an increasing function of the number of bidders. Since

an additional bidder can never send a negative signal to the other bidders, his/her

entrance will increase revenue if he draws the highest valuation of the bidders who

are already participating, or will have no effect on revenue if he draws a valuation

lower than the highest bid. Expected revenue has a negative second derivative –

the marginal effect of an extra bidder decreases and gradually approaches zero, just

like each bidder’s expected payment. The entrance of a new bidder adds one extra

payment to the pool, but also depresses every single bidder’s expected payment. In

the limit of infinite number of bidders, the seller’s expected revenue is v̄.

4.4 Impact of auction variables on price risk

4.4.1 Number of bidders

Figure 4 plots the relationship of the standard deviation of bidder 1’s payment and

the number of participating bidders. Standard deviation peaks when the number of

bidders reaches 5, and then begins to decline. The decline is much steeper for the

a ≥ 1 and quadratic densities than it is for the a < 0 densities, which remain virtually

flat as new bidders enter the market. The overall level of variance is also significantly
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Figure 4: Standard deviation of bidder 1’s payment by number of bidders n

lower.

While each bidder becomes more certain of his/her chances of winning as more

bidders enter the auction, the seller’s risk continues to grow. Figure 1 plots the

relationship between the standard deviation of seller’s revenue and the number of

participating bidders. The a < 0 densities produce a much less risky environment for

the seller than the a > 0 distributions.

Note that the standard deviation is 0 at points when there are no participating

bidders and when there is an infinite number of bidders. However, it is never close to

zero in between.

In the case that the seller wants to minimize risk but is expecting a poor turn out
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to the auction, it will be in his/her interest to cater to bidders who will draw from the

a < 0 density. A marginal bidder from that distribution will not result in as large an

increase in risk as a bidder from a a > 0 distribution, but will still have a favorable

effect on total revenue.

4.4.2 Size of density domain

Auction price risk depends on the relative size of the density domain. Whether the

highest possible valuation v̄ is twice or three times the level of the lowest possible

valuation v∗ will affect the price variance of a seller who is selling to bidders from

either of the two densities.
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Figure 6: Standard deviation of revenue by size of v̄ − v∗

Figure 6 plots variance of several densities against different levels of v̄. For all

functions, v∗ is assumed to remain constant at $1. That way, a change of $1 in v̄ will

represent a marginal increase in the size of density domain of 100%.

The a = 1 distribution shows a perfectly linear relationship with domain size. A

1% increase in v̄ will spur a smaller, but fixed percent increase in seller risk. a = −1

density function, on the other hand, shows a declining effect of domain size on risk as

domain size grows. The density function presupposes such a clustering of bidders in

the low end of the valuation domain that a stretching of the domain does not result in

equivalent number of new high valuation bidders to push up risk. At the point where
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v̄ is ten times the v∗, the risk involved in selling to bidders from the a = 1 density is

twice that of selling to bidders from the a = −1 density, which is also seeing much

smaller marginal growth in risk from growth in valuation domains.

5 Data

Fine art auctions make good subjects for analyzing seller’s auction risk because of the

existence of auction house estimates that capture the collective expectation of auction

results. In choosing an art market for the empirical section of this study, I looked for

a relatively small but growing market that will have bidders who will assign the most

value to the private value component of their valuation. Art markets that assign a

large part of the valuation equation to provenance would not have as good a fit to

the private values model as markets where the important painters are still alive and

authenticity is rarely questioned. The other major concern in the selection process

was the number and frequency of resales. A large number of resales would indicate

that dealers, speculators, and investors have come to dominate the market, the exact

type of bidders who will focus more on the expectation of the resale value rather than

the private “use value” of art.

That criteria led me to the Australian Aboriginal art market, a relatively new

market that first appeared in the early 1970’s, and really took off in the 1990’s.

While sales are usually held once or twice a year in either Sydney or Melbourne,

all the major auction houses established Aboriginal art as either an independent

department or combined with Oceanic art to form a department. Auction catalogs

regularly list estimates in Australian dollars, U.S. dollars, and Euro in an attempt to

cater to the international clientele. Viewed by many as a growth market, the medium

term strategic importance of Aboriginal art to auction houses is the challenge to keep
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sales efficient and fair to both buyers and sellers.

Because the market is relatively young and has few masterpieces well-known in

the general population, I hypothesized that the number of resales would be few and

they would be far between. I was later proven correct in that assumption; of the 5,000

sales in my dataset, there were fewer than a hundred sales that matched in both title

and artist. A thorough inspection of these hundred would likely find that even fewer

were actual resales. While a greater percentage of sales would qualify as resales if

the data included more of the early sales, sellers who held the lot for at least five

years are more likely to be connoisseurs or collectors rather than investors, dealers or

speculators who are buying art for its expected resale value rather than its æsthetics.

The dataset consists of transcriptions of pre-sale auction catalogs from 1995 to

March 2006, combined with the realized results from said auctions. Only Australian

Aboriginal art is included, and only when it was sold at an auction sale dedicated

to the genre. The rationale for these restrictions is to make sure that we capture

the behavior of a set of bidders in a particular market. Since I am partially making

use of the assumption that all bidders are drawing from a common distribution of

valuations, limiting collection to events as similar as possible to each other is essential

to maintaining the viability of that assumption.3

The data shows a vibrant marketplace with competition among the six partici-

pating auction houses.4 For the purposes of this study, I will assume that sales by all

three can be treated identically.. While Sotheby’s is consistently the leader by market

share, Menzie’s and Christie’s vie for the second place. In recent years Menzie’s has

managed to outsell Christie’s, which in March 2006 announced that it will be exiting

3I have focused on traditional Aboriginal paintings, which dominate modern (mostly urban)
paintings and other art, but I have included in my database painted statues and weapons, and
supports of canvas, board, and bark.

4In this dataset, Menzie’s actually stands for three different auction house brands that are owned
by the same corporate entity: Lawson∼Menzie’s, Deutscher∼Menzie’s, and Lawson’s.
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the Australian Aboriginal art market.

The league table (Figure 7) by artist is lead by Rover Thomas and Emily Kame

Kngwarreya, the two artists who made the genre famous by placing their works into

prestigious museums of modern art. While various younger artists are beginning to

emerge as buyers search for a new generation of artists, the rest of the marketplace is

split among a relatively small number of other established artists. Sotheby’s controls

the lion’s share of sales by the top 20 artists in the table, signifying that it is the

de facto auction house of choice for owners of best-selling Australian Aboriginal art.

Figure 8 breaks down sales by the year and the auction house. I will investigate below

what factors other than brand could be making Sotheby’s attractive to sellers of high

worth Aboriginal art.

6 Empirical Specification

Auction price risk is measured as the standard deviation of the realized revenue to

the seller and the expectation of that revenue given the information the seller had

about the shape and domain of the distribution F (v) and the expected number of

bidders who would participate.

However, we cannot directly observe the expected revenue to the seller, as we do

not know the common density distribution, its domain, or the expected number of

bidders. Could the high estimate perhaps serve as a proxy for this expectation?

The log of the high estimate has a very strong correlation with realized revenue.

In percentage terms, winning bids tend to stray farther from the high estimate for

more expensive lots, but winning bids cluster closely around the 45 degree line in a

log-log construct (Figure 9).

In the dataset, the low estimate emerges as being on average two-thirds of the high
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estimate. While it is a good predictor of the final bid, the high estimate requires no

coefficient and no regression to have a good fit with the data. It is peculiar, however,

that auction houses call their “real” estimate the high estimate, instead of targeting

the mean of the high and the low estimates. The explanation is that the buyer’s

premium, a 10 − 20% surcharge on the winning bid that is collected by the auction

house as a fee for organizing the sale.

Since I have shown that the high estimate can serve as a very strong proxy for the

expected revenue from a sale, I can use it to construct a proxy for the observed sale

price risk. The square of the difference between the high estimate and the realized

price (with buyer’s premium) is a proxy variable for the observed standard deviation

in the sale.

Figure 10 charts the distribution of observed deviations in all sales as they compare

to the high estimate. Deviations tend to cluster around a median value and have a log-

normal distribution that the logarithm converted to a normal distribution. Figure 11

shows a plot of how the average and median of the deviation function changed over

the years. The mean remained remarkably stable over the years, suggesting that even

as valuations have risen, the underlying driver of variance, the density function F (v),

did not experience large changes.
Another way to analyze price variance would be by auction house. As mentioned

earlier, Sotheby’s has a leading market share in this market, followed by Menzie’s and
Christie’s.

To measure the effect an auction house has on the variance of sales it executes, I

ran the following regression:

log
√

(X − µ)2 =
(
β0 +

m−1∑
k=1

βk

)
log µ + βm+1 (8)

where β1..βm−1 are Boolean variables that identify the auction house that executed
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that particular sale, X is the realized sale price (only lots that sold were included),

and µ is the published high estimate. m is the number of auction houses in the

dataset, but one is omitted from the regression (in this case Sotheby’s) to prevent

perfect multicollinearity. To determine the level of price risk associated with each

auction house one examines the statistical significance of its affiliated βk coefficient.

A significantly positive or negative coefficient signifies that the auction house has a

risk level that is significantly different from the base level suggested by the omitted

auction house. The coefficient β0 + βk calculates the exact relationship between the

high estimate and the deviation for that auction house. The results of the regression

are tabulated in Figure 12.

The regression reveals two concepts. The first one is illustrated in Figure 13, where

a clearly linear pattern emerges between a percentage change in the high estimate

and a corresponding change in the deviation. The second revelation is that the only

auction houses statistically different from Sotheby’s level of risk were Christie’s and

Shapiro, both of whom had lower price risk than Sotheby’s. This suggests that if you

expect the number of bidders, and their valuation densities to be the same everywhere,

and if all houses estimate the lot at the same price, then the seller will be best off

selling at Christie’s or Shapiro as they would minimize the seller’s price risk. The

choice of the auction house, however, is much less important to seller’s risk than other

factors.

The statistically significant differences among auction houses are reflections of

the different number and types of bidders that each one attracts. Christie’s had the

largest mean high estimate selling price of $16, 500, over $6, 000 more than Sotheby’s

average, and therefore could have attracted fewer bidders than its competitors.

Because all the coefficients in Figure 12 were less than one, the regression suggests

that either the density function, the number of bidders, or the relative size of the do-
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main of the density function changes as the high estimate increases. If both variables

were to stay constant, then the growth in deviation would correspond one-to-one to

growth in the high estimate and in v∗,v̄. The decline in relative size of the devia-

tions can be attributed to either a decline in the number of bidders that accompanies

growth in estimates or to compression in the relative size of the domain [v∗, v̄] that

occurs continuously with growth in v̄.

Both explanations are plausible. One can imagine an auction sale taking place in

a large ballroom. The people sitting upfront wearing designer suits and talking about

their newest Ferrari can most definitely afford to bid for every lot that is offered on

sale. However, the people hanging back by the buffet table are probably only looking

a fraction of the lots offered. Therefore, while everyone in the room is a potential

bidder for a cheaper work, only a few participate in the sale of a masterpiece. The

second explanation is less obvious, but just as intuitive. Higher-worth art works have

typically been exhibited and studied more in comparison to cheaper works. That

means that their standing and æsthetic worth among the other works by that artist

has been determined to a greater extent than for a lesser-known work. While the

lesser-known work may one day be “discovered” and become much more valuable,

a well-known work will carry less movement in valuation. The greater certainty in

estimating the lot’s æsthetic value allows auction houses to make better estimates

and has a compressing effect on the density domain. Bidders whose valuations laid

closer to v∗ will feel that the available information justifies paying a little extra, while

bidders whose valuations laid closer to v̄ believe that the upside risk is not as high as

they may previously hoped (for example, the work has already been considered and

passed over at a major exhibition), and would lower their valuations accordingly.

To test the second hypothesis, I created a Boolean variable α that was 1 when

the lot was produced by one of the top 20 best selling artists (the same ones listed in
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Figure 7) and ran the following regression:

log
√

(X − µ)2 = (β0 + β1α) log µ + β2 (9)

The results disproved the hypothesis. The regression found β1 to be 0.01, meaning

that works produced by best-selling artists are associated with more auction risk than

works produced by lesser known artists.

7 Conclusion

Using the fundamental relationships of auction theory, I derived an equation governing

the variance of seller’s total revenue. The properties of revenue variance were analyzed

inductively by plugging in several density distributions into the variance equation, and

by analyzing their first order partial derivatives in respect to the number of bidders

and the relative size of the domain of the density function. Assuming that there exists

a set of classes of bidders, each drawing valuations from a particular density function

(an example of such classs might be the private collectors, the art investors, and the

art dealers), then the composition of bidders by these classes will play a pivotal role

in determining price variance.

The application of the general formulation of revenue variance revealed a funda-

mental trade-off between risk minimization and revenue maximization. A marginal

bidder has a positive effect on both the expected revenue and the standard deviation

of revenue, meaning that it is impossible to optimize both at the same time.

The empirical application of revenue risk to data from sales of Australian Abo-

riginal art revealed differences in observed variances of art sold in different years, in

different auction houses, and in art from top-selling Aboriginal artists and that from
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lesser-known artists.

This thesis can be extended further by examining additional distributions.
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Figure 7: League table of top-selling artists
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Figure 8: League table of highest volume auction houses
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Figure 9: Log-log relationship between µ and X

28



0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

log(Deviation from high estimate)

Nu
m

be
r o

f s
al

es
 o

bs
er

ve
d

Distribution of deviations from the high estimate

Figure 10: Histogram of logs of the observed deviations
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Rank Auction House β0 + βk

1 Phillips 0.94
2 Sotheby’s 0.93
3 Lawson’s 0.92
4 Shapiro 0.91
5 Bonham’s 0.91
6 Christie’s 0.90

Figure 12: Ranking auction houses by growth rate of observed deviations
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Figure 13: Log-log relationship between µ and σ̂
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Appendix A: List of auction sales included in data set

Sum of Fmt Sale Price AUD
Fmt Auction Year Sale Of Total

1995 Sotheby's Melbourne: Sunday, June 18, 1995 $226,149
Sotheby's Melbourne: Tuesday, November 28, 1995 $250,815

1995 Total $476,964
1996 Lawsons: Tuesday, May 21, 1996 $1,650

Sotheby's Melbourne: Monday, June 17, 1996 $1,407,221
Sotheby's Sydney: October 27-28, 1996 $878,448

1996 Total $2,287,319
1997 Lawsons: Tuesday, December 9, 1997 $9,702

Sotheby's Melbourne: June 30, 1997 $2,727,663
Sotheby's Sydney: November 9, 1997 $1,083,740

1997 Total $3,821,105
1998 Sotheby's Sydney: November 9, 1998 $594,758

1998 Total $594,758
1999 Lawsons (Deutscher-Menzies): June 29, 1999 $1,109,690

Sotheby's Melbourne: June 28, 1999 $2,900,559
Sotheby's Melbourne: Monday, November 22, 1999 $2,157,188
Sotheby's Melbourne: Tuesday, November 23, 1999 $195,270

1999 Total $6,362,707
2000 Sotheby's Melbourne: Monday, June 26, 2000 $3,939,384

Sotheby's Melbourne: Tuesday, June 27, 2000 $76,303
2000 Total $4,015,687

2001 Lawsons: Monday, May 21, 2001 $2,450
Phillips Sydney: Monday, July 30, 2001 $301,990

2001 Total $304,440
2002 Shapiro Auctioneers: Thursday, May 9, 2002 $237,930

Shapiro Auctioneers: Tuesday, December 3, 2002 $237,867
Shapiro Auctioneers: Wednesday, May 8, 2002 $63,215
Sotheby's Melbourne: Monday, June 24, 2002 $4,707,100

2002 Total $5,246,112
2003 Sotheby's Sydney: Monday, July 28, 2003 $4,748,768

Sotheby's Sydney: Tuesday, July 29, 2003 $1,180,336
2003 Total $5,929,104

2004 Bonhams & Goodman: Wednesday, November 17, 2004 $225,785
Christie's Sydney: Tuesday, November 30, 2004 $2,027,559
Christie's Sydney: Tuesday, October 12, 2004 $3,009,240
Lawsons (Lawson-Menzies) Sydney: May 25, 2004 $1,535,424
Lawsons (Lawson-Menzies): May, 2004 $1,542,135
Lawsons (Lawson-Menzies): November, 2004 $2,244,330
Sotheby's Melbourne: Monday, July 26, 2004 $5,013,978
Sotheby's Melbourne: Tuesday, July 27, 2004 $560,740

2004 Total $16,159,191
2005 Bonhams : August 30, 2005 $102,997

Bonhams : November 23, 2005 $98,449
Christie's Melbourne: Tuesday, August 30, 2005 $1,545,718
Shapiro Auctioneers: Sunday, March 20, 2005 $375,066
Shapiro Auctioneers: Wednesday, October 26, 2005 $267,740
Sotheby's Melbourne: Monday, July 25, 2005 $4,336,285
Sotheby's Melbourne: Tuesday, November 15, 2005 $774,360
Sotheby's Melbourne: Wednesday, November 16, 2005 $125,160

2005 Total $7,625,775
2006 Bonhams : March 29, 2006 $108,269

2006 Total $108,269
Grand Total $52,931,430


