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Abstract 

A mixed strategy is a random choice among available strategies, with each 
strategy being chosen a set percentage of the time.  In many games that require 
unpredictable play, game theory predicts that a mixed strategy equilibrium, a situation 
where each player uses an optimal mixed strategy, will result.  Economists have tested 
whether people play according to the mixed strategy equilibrium in laboratory 
experiments with two player zero-sum games—subjects in these experiments generally 
do not play in accordance with game theory’s predictions.  Recently, economists have 
published papers examining mixed strategy equilibrium play using professional sports as 
a natural experiment.  This paper builds upon Walker and Wooders (2001), which 
examines mixed strategy play in the locations of serves in professional tennis matches.  
Walker and Wooders (2001) find that professional tennis players are closer to game 
theory’s predictions than subjects in laboratory settings, but still “switch their serves up” 
more than is consistent with game theory’s predictions.  My hypothesis is that this result 
can be explained by a short-term timing effect where a serve that has just been hit is, 
ceteris paribus, less effective on the next point.  I construct a model incorporating this 
timing effect and work out the theoretical implications of my model.  I then estimate the 
magnitude of this timing effect and determine if optimal play under this model is 
consistent with the results obtained by Walker and Wooders.  My conclusion is that the 
model accounts for a little under half of the deviation from game theory’s predictions 
found in the data from professional tennis matches.  This suggests that professional tennis 
players play closer to game theory’s predictions when tested using a model designed to 
account for more of the complexities of tennis than the Walker and Wooders model, but 
they still do not play in complete accordance with those predictions.
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I. Introduction 
Rationality is one of the basic tenets of economics, but recent papers have 

challenged this assumption.  Smith (1991) says that 30 years of experimental research 

rejects the assumption that individual rationality is a cognitive, calculating process of 

maximization.  One of the tests for rationality is the ability to play (or learn to play) a 

game in accordance with mixed strategy equilibrium.  Many games require unpredictable 

play—the classic example is rock, paper, scissors.  No matter which of the three options 

you choose, if your opponent knew which one you were going to play, you would lose.  

In a game that requires unpredictable play, no set of pure strategies can be an 

equilibrium, defined as a set of strategies such that neither player has an incentive to 

deviate from his current strategy given the strategy his opponent is currently playing.  

The only equilibrium strategy in a game like rock, paper, scissors is not a pure strategy—

a simple choice of rock, paper, scissors—but rather a mixed strategy.  A mixed strategy is 

a random choice among the available strategies, with each strategy being chosen a set 

percentage of the time.    

Mixed strategy play is one of the key theoretical insights into understanding 

strategic situations where unpredictability is important.  While some strategic games have 

no equilibrium in pure strategies, every strategic game has at least one equilibrium when 

mixed strategies are included (Nash, 1950).  For rock, paper, scissors, the mixed strategy 

equilibrium is for both players to choose each of rock, paper, and scissors a third of the 

time.  In two-person zero-sum games von Neumann’s Minimax Theorem states that each 

player should choose the strategy that maximizes his minimum payoff—this is equivalent 

to mixed strategy equilibrium play in these games.  Rational play calls for players to play 

in accordance with this mixed strategy equilibrium.   
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The theory of mixed strategy play has not fared well in experiments involving 

human subjects.  Human subjects do not necessarily play by their appropriate mixed 

strategies.  Additionally, human subjects make choices that are serially dependent (based 

on previous choices)—they “switch up” their choices more than is consistent with 

random play.  For example O’Neill (1987) tests minimax play in a laboratory experiment 

that involves subjects playing a repeated zero-sum game.1  Brown and Rosenthal (1990) 

examine O’Neill’s results and find that the frequency with which each player uses each 

card is not consistent with minimax play—they also find strong evidence of serial 

correlation in players’ choices. 

If game theorists were unable to find any situations in which people make choices 

according to mixed strategy equilibrium, the value of the theory would be significantly 

reduced.  Recently, several papers have examined situations in professional sports to test 

the predictions of mixed strategy play.  Professional athletes are very experienced at 

playing their sports and have large amounts of money at stake, factors that make them 

more likely to play according to mixed strategy equilibrium.    

Professional sports calls for an incredible amount of unpredictable play.  A 

football team that always goes for the same play on third down will find that it rarely 

works.  Wee Willie Keeler’s famous advice for how to be a good hitter in baseball was 

“Hit ‘em where they ain’t.”  Part of what made Pete Sampras’ serve so effective was that 

it was hard to “read.”  Most tennis players toss the ball in a slightly different place based 

on where they are going to hit it.  An opponent who picks up on these subtleties is said to 

 
1 In O’Neill’s (1987) experiment, each player had four cards to choose from (the minimax strategy for each 
player was to pick the joker with probability 0.4 and to pick each of the other cards with probability 0.2).  
Players started with $2.50 and were paired against a single opponent for 105 trials.  The winner of each trial 
won $0.05 from the loser and at the end of the trials each player kept the amount of money he or she had.   
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“read” the serve.  Sampras, however, threw the ball in the same place no matter where he 

was going to hit the serve, preventing opponents from having a sense of where the ball 

was going.   

Mark Walker and John Wooders (2001) examine mixed strategy equilibrium in 

the context of the directions that players hit serves in professional tennis matches.  Their 

conclusion is that tennis players play in accordance with most of the predictions of mixed 

strategy equilibrium; however, tennis players “switch up” their service choices more than 

is consistent with purely random play. This paper constructs a model designed to explain 

why tennis players might play optimally by “switching it up” too much.  I propose that 

there is short-term timing effect where the returner gets better at returning a serve that he 

has just seen and introduce a “timing variable” into the model used by Walker and 

Wooders (2001) to account for this effect.  I then estimate the magnitude of the timing 

variable and test to see if the model can explain the results in the tennis data.  My 

conclusion is the model presented here is not sufficient to explain the “switching it up” 

observed in the tennis data—it accounts for slightly less than half of the amount that 

players “switch it up” more than would be predicted by random play.   

Section II is a review of the relevant literature concerning testing mixed strategy 

equilibrium using professional sports as a natural experiment.  Section III introduces the 

“point game” model of tennis used by Walker and Wooders and then modifies it to 

include the short-term timing effect that I propose (the “timing variable”).  Section IV 

details the data (which includes all of the data from Walker and Wooders (2001)), 

discusses how it will be used in the empirical specification section and runs some 

preliminary analysis.  Section V estimates the magnitude of the timing variable in the 
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model and then tests the results of the model against the actual data from the tennis 

matches (in particular through the use of the “run test” which tests whether the serving 

strategies found in the data are consistent with serially independent play).  Section VI is a 

brief conclusion.  

 

II. Literature Review 

 Since mixed strategy equilibrium is an important concept in game theory, recent 

papers have tried to test mixed strategy equilibrium using natural experiments.  Recently, 

papers have been testing mixed strategy equilibrium using sporting events—in particular, 

in the locations of soccer penalty kicks and tennis serves.  While situations requiring 

mixed strategies are common in sports, the ability to isolate decisions under uniform 

starting conditions make these events particularly useful in empirical research.  While 

Walker and Wooders (2001) examine the location of tennis serves, two other papers, 

Chiappori, Levitt and Groseclose (2002) and Palacios-Huerta (2002) examine the 

location of soccer penalty kicks. 

The results for professional tennis players are in contrast to the results obtained 

for soccer penalty kicks by Chiappori et al. (2002) and Palacios-Huerta (2002).  Both 

papers on soccer find that the direction of soccer penalty kicks is in accordance with 

mixed strategy equilibrium—based on both the scoring percentages and serial 

independence of choices.2  Unlike Walker and Wooders’ (2001) result that there is serial 

correlation of serves in tennis, these papers on soccer find that knowing where a player 

 
2  Soccer penalty kicks have the advantage that the choices of both players, the direction the ball is kicked 
and the direction the goalkeeper moves, can both be observed.  Thus, in analyzing soccer penalty kicks the 
choices of the goalkeeper can be examined as well. 
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kicked a ball the previous time tells you nothing about where he will kick it the next 

time—the location of kicks is serially independent.   

One obvious difference exists between soccer penalty kicks and tennis serves: a 

given player shoots soccer penalty kicks days or weeks apart, while tennis serves are hit 

on every point of the entire match.3  My hypothesis is that tennis serves are not serially 

independent because there is a slight short-term timing effect—a serve that you have just 

hit is, ceteris paribus, less effective the next time—the returner is better at returning the 

serve than he used to be.  This effect, called the “timing variable” is represented in the 

model by a specific functional form and a parameter that represents the magnitude of the 

effect. 

 When thinking about sports, it is reasonable to suppose that players learn through 

doing.4  Baseball pitchers with uncommon sidearm deliveries are often relief pitchers 

who only pitch an inning at a time.  This ensures that they do not face batters more than 

once in a game or more than a handful of times a season.  In amateur tennis, some serves 

like the “American Twist” serve (which has very weird spin) tend to be rare and are used 

only on important points.  If returning “twist” serves were only a matter of anticipation, 

its use should be part of the standard mixed strategy equilibrium.  One explanation for its 

use on key points is that the strength of the twist serve decreases as it is used more during 

the match, because opponents start to time it.  Consequently, players play optimally by 

saving it for a crucial point.   

 
3 Chiappori et al. (2002) mentions that soccer penalty kick “shootouts”, where each team kicks a number of 
penalty kicks in a row, may be a better place to test for serial correlation. 
4 I use “learning through doing” to discuss situations where the future payoffs of a game change because of 
the current actions of the players.  This corresponds to how I assume timing works in tennis.  This is 
different from learning about the underlying payoffs of a game, or learning to play correctly given a set of 
known payoffs.   
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 The existence of a timing variable implies that points are not independent and 

identically distributed—this idea is supported elsewhere in the literature.  Klaassen and 

Magnus (1998) analyze almost 90,000 points from four years at Wimbledon and 

conclude that players’ chances to win each point have a small but statistically significant 

deviation from the assumption of independence and identical distribution. 

 If timing a serve is taken as a very short term effect, points at the start of a game 

should be different from points played later in a game.  Since players only serve every 

other game, the returner’s timing should become worse at the start of a game due to not 

having seen the serve recently.  The server, too, may be rusty due to all of the time not 

serving.  In professional tennis, where players hit hundreds of serves a week, this effect 

would likely be smaller than the returner’s timing problems (the returner, after all, does 

not play his current opponent very often).  As the game continues, the returner will re-

time the serve, so this effect, if it exists, would appear most strongly at the start of each 

game.   

Klaassen and Magnus (1996) examine the dominance of the serve over time.  In 

both the men’s (and women’s) singles, they find that service dominance decreases in a 

small but statistically significant way through the end of the third (second) set.  This 

result is in accord with the idea that the returner learns to time the serve as the match 

progresses, although it does not imply the existence of a short term timing effect.5  

Klaassen and Magnus conclude that the returner does not immediately learn to hit his 

 
5 Klaassen and Magnus reject the idea that this decrease in service dominance could have been caused by 
the server getting tired.  Their reasoning, although not spelled out explicitly, seems to be that professional 
tennis players should not get tired as early as the second set of a match and if players did tire this early, 
they would continue to tire over the course of the match and the effect would be more pronounced in the 
later sets. 
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returns better at the start of the match.  Thus, any specification for how tennis players 

time serves should not have a particularly pronounced effect at the start of a match. 

 While Klaassen and Magnus (1996) provides evidence for some kind of effect 

where players learn by doing, there is no theoretical model for a short term timing effect 

in tennis and how it affects the match (including how it might affect service choices).  I 

modify the “point game” model from Walker and Wooders (2001) to incorporate a timing 

variable to represent this effect.    

Walker and Wooders (2001) model tennis as a 2x2 matrix game where the server 

chooses where to hit the ball and the returner chooses where to anticipate the serve.  The 

server, if he knew where the returner was anticipating, would always choose to serve to 

the other direction.  Conversely, the returner, if he knew where the server was going to 

serve, would always anticipate that direction.  These conditions lead to a unique 

equilibrium in mixed strategies.  Walker and Wooders assume that points are independent 

and identically distributed; the side of the court and which player is serving determine the 

corresponding “point game” that governs each player’s payoffs.  Walker and Wooders 

analyze ten tennis matches between top professional players in the finals and semifinals 

of major tournaments.   

A problem with any analysis of service strategy in tennis is that only the server’s 

choice is observed—the serve that the returner anticipates is unobservable.  Additionally, 

the model assumes that professional tennis players have complete information about the 

underlying payoffs of the game.  While professional tennis players do not have complete 

information, the best professional tennis players generally know each other’s games 



 

 10 

(often based on previous matches) and can be expected to have a good sense of the 

payoffs in the model.6   

One of the primary predictions of mixed strategy equilibrium is that the server is 

expected to win an equal percentage of the points, no matter where he hits his first serve.  

Walker and Wooders find that the percentage of points won on serves to each side is 

consistent with the assumption that professional players are playing according to mixed 

strategy equilibrium.  However, Walker and Wooders conclude that professional tennis 

players vary the direction of their serves (“switch it up”) more than is consistent with 

completely random play.   

In general, inexperienced players of a repeated game with a mixed strategy 

equilibrium do not play it well.  Their choices are serially dependent and their win 

percentages are often inconsistent with equilibrium play.7  Professional tennis players, 

according to Walker and Wooders, are much better than most people in laboratory 

experiments at randomizing their play, but are still not perfect because of the serial 

dependence of service choices.   

My hypothesis is that Walker and Wooders reject serial independence and thus 

perfect mixed equilibrium play because their model assumes serial independence of 

points.  I relax the assumption that each point is an identical point game and introduce a 

“timing variable” designed to measure the short-term influence of previous serves on 

future points.  Specifically, the more the server hits to a spot the better a returner is (he 

gets in a groove in athletic jargon).  When testing whether a server is randomizing one 

 
6 Players also do not have perfect information—that is, they do not remember the entire sequence of serves 
that opponents have hit during the match.  It may be that players do not have sufficient recall to punish 
opponents whose choices exhibit only a small amount of serial correlation. 
7 In general, people “switch it up” too much when trying to generate random sequences (Wagenaar , 1972). 
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needs to account for the fact that he will serve less often to an overused side.  Accounting 

for this timing effect could give the result that professional tennis players play in 

accordance with the mixed strategy equilibrium model that includes this timing effect.   

It is reasonable to suppose that some kind of learning through doing exists in 

tennis.  However, this does not imply that a short term timing effect explains that the 

serial correlation found by Walker and Wooders is in fact optimal mixed strategy 

equilibrium play.  If the magnitude of the timing variable is zero, service choices in 

mixed strategy equilibrium should be serially independent (because this model will be 

identical to that in Walker and Wooders (2001)).  If the magnitude of the timing variable 

is positive, optimal play should require negative serial dependence of service choices 

(and the larger the timing variable, the more negative serial dependence will be required). 

My research determines if the results of Walker and Wooders (2001) that 

professional tennis players’ service choices are serially dependent can be explained by 

the addition of a timing variable to their model.  I construct a model for the timing 

variable and find its implications on optimal mixed equilibrium play.  Using these 

predictions, I estimate the magnitude of the timing variable empirically and find it to be 

positive.  I then test to see if the model is able to explain the serial dependence observed 

in the tennis data.   

 

III. Theoretical Framework 

Serving in the Game of Tennis 

The serve in tennis is hit, and only hit, at the start of each point and must go into 

the service box on the opposite side of the court.  A player has two chances to hit a serve 
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in—if he misses the first serve, he gets a second serve.  If a player misses the second 

serve it is a double-fault, and he loses the point.  A point has two possible outcomes 

(either the server wins or the returner wins) that are completely observable.   

The server may win the point on the serve, may lose the point through a double-

fault, or the serve may be returned successfully in which case the point is played out from 

there.  The serve plays a dominant role in men’s tennis—Klaassen and Magnus (1996) 

analyze data from four years at Wimbledon (the major tournament where the serve 

dominates the most) and find that players win 65% of the points on their service.  Players 

with ineffective serves do not rise to the top of men’s professional tennis. 

In professional tennis, first serves are generally hit as far to one side of the service 

box as possible, making it relatively easy to group service location into one of three 

categories—left, right, and occasionally center.  Since professional players are highly 

skilled, even if a serve is out I can assume the direction in which the ball was going is the 

direction in which they intended to serve.8   

The second serve raises other questions.  A first serve is hit on every point, while 

a second serve is only hit when the first serve is missed; if the second serve is missed, the 

server loses the point.  Consequently, second serves are less aggressive than first serves 

and are aimed closer to the center of the court.  The combination of a smaller data set and 

less variation in service locations cause Walker and Wooders (2001) to exclude study of 

second serves—I do the same. 

Serves are not all hit from the same side of the court.  The first point of each game 

is played serving to the deuce (right side) court, and points alternate between the deuce 

 
8 Thus, it should be assumed that serves to the center generally reflect that the server aimed to the center.  
On the first serve, though, hitting the serve to the center is rare—only 6% of serves are to the center in the 
Walker and Wooders (2001) data.  They do not consider center serves for this reason—I do the same.  
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and ad (left side) courts.  The service also alternates, with each player serving every other 

game. The scoring system of tennis is as follows: each game within a match is won when 

a player has four or more points and a lead of at least two points.  The first player to six 

games with a lead of at least two games wins a set (a tiebreaker is played if the score 

reaches six games apiece), and the winner of three out of five sets wins the match. 

 

The Point Game Model 

 The point game model for tennis serves is a 2x2 normal (matrix) form game based 

on the server’s choice of where to hit a first serve.  The server chooses to hit this serve to 

the left or the right.  Simultaneously, the returner anticipates that the serve will be either 

to the left or to the right.  The winner of the point is then determined, possibly by the 

serve itself (if the returner fails to return it)—alternately, the first serve might miss and 

the point will be decided after the server hits a second serve.   

The Point Game (a “point game matrix”) (outcomes are probability that the server 
wins the point) 
  
   Receiver 

                   L        R    
Server  

        

  
 L 
 

 R 

 

Since this is a constant sum game (one player or the other wins each point), for 

each point the server tries to maximize his payoff while the returner tries to minimize the 

server’s payoff (and thereby maximize his own chance to win the point).  I assume that 

πLL πLR 

πRL πRR 
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the following inequalities (the “mixed strategy equilibrium conditions”) hold: πLL < πRL 

and πRR < πLR (the server wins the point more often if he serves to the location the 

returner has not anticipated) as well as πLL < πLR and πRR < πRL (the returner is more 

likely to win the point if he correctly anticipates where the serve will be hit).  Given these 

assumptions, there is a unique equilibrium in strictly mixed strategies.9 

In the mixed strategy equilibrium, the returner should choose to anticipate to the 

left with a probability that makes the server indifferent between hitting the serve to the 

left and to the right—therefore, the server should win an equal percentage of points when 

he serves to the left as when he serves to the right.  Likewise, the server should choose to 

serve left with a probability that makes the returner indifferent between anticipating to 

the left and to the right.  This is equivalent to von Neumann’s Minimax Theorem, which 

states that in a two player zero sum game each player should choose the strategy that 

maximizes his minimum payoff.  In a repeated game, the Minimax Theorem requires 

players to use this mixed strategy each time—knowing what a player has done in the past 

should tell you nothing about what he is going to do now (serial independence).  

In equilibrium, the server’s probability of hitting the serve to the left, SL, can be 

calculated to be SL= (πRL- πRR) / (πRL +πLR - πLL- πRR ).  Since the server’s choices are 

only left or right, the probability that the server hits to the right is (1-SL).  The returner’s 

chance to anticipate a serve to the left, although it cannot be observed directly, is AL= 

(πLR- πRR) / (πRL +πLR - πLL- πRR ).  Due to the mixed strategy equilibrium assumptions, 

SL and AL must be in the interval (0,1). 

 
9 This description of the point game is based on the model constructed by Walker and Wooders (2001).  
Chiappori et al (2002) use a similar 3x3 matrix to analyze soccer penalty kicks. 
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The server’s chance to win the point when both players use their equilibrium 

strategies is V= (πLRπRL - πLLπRR) /(πRL +πLR - πLL- πRR).  This is the general solution for 

a point game—each specific point game has its own matrix of payoffs which determine 

each player’s equilibrium mixed strategies and the server’s chance to win a point.   

 There are four point games in a tennis match, distinguished by which player is 

serving and whether the point is on the deuce-court or ad-court.  If points are independent 

identically distributed, each point’s payoffs are fully determined by its respective point 

game.  Optimal play is then for each player to maximize the chance to win each point as 

if it was the only point by playing the appropriate mixed strategy equilibrium.10  Thus, a 

player’s service choices in tennis should not depend on his previous service choices.  

Adding a timing effect to the model in the form of a timing variable entails 

assuming that points are not independent.  As a result, the state of the game may play a 

role in choosing each player’s optimal strategy, since a player’s goal is to win the game, 

not simply to maximize his chance to win the current point.  Under what conditions do 

tennis players still play optimally by maximizing their chance to win each point as if it 

was the only point?   

For this to be the case two conditions must hold: first, each game within the tennis 

match must have a finite maximum length; second, the server’s chance to win the next 

point (given that it will be played by both players as if it is the only point), must be 

independent of his choice of where to serve on this point.  This second condition is not a 

reasonable assumption to make in my model—in particular, this condition holds if and 

only if the point matrix is symmetric (i.e., πLR=πRL and πLL= πRR)..  A symmetric point 

 
10 Walker and Wooders (2000) prove this intuitive result for tennis as part of a general class of binary 
Markov games where a player’s goal is to win a match consisting of point games. 
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game matrix implies that the server will hit half of his serves to the left, which is clearly 

not the case in general.11  Thus, optimal strategies in this model will depend on the state 

of the game (but probably only to a small extent).  I assume that the optimal strategy for 

each player remains maximizing his chance to win each point as if it were the only point. 

 

Including a Parabolic Timing Variable 

The model of a timing variable used here is that on the deuce court only the serve 

hit on the previous deuce court point affects the payoff matrix for the current point.  The 

same would be true of ad court points, so deuce court points would not affect ad court 

points and vice versa.  Additionally, the timing effect disappears between games—the 

last point of the previous service game does not affect the first point of the next service 

game.12     

The timing effect is incorporated into the point game by introducing a variable 

based on whether the previous serve was hit to the left or the right.  Since players “lose 

their timing” of the opponent’s serve between games, the model without the timing 

variable is a sufficient description of the first points of any game.13  I assume that if the 

serve on the current point is hit to the left, for the next point the timing variable affects 

only the returner’s chance to win the point if the serve is again hit to the left.  The 

magnitude of timing variable should be relatively small—specifically, the mixed strategy 

equilibrium conditions must still hold when the timing variable is included.   

 
11 See the appendix for proofs of these assertions. 
12 Given that a player usually goes at least three or four minutes between the end of one of his service 
games and the start of his next service game it makes sense that an effect that only lasts for a single point 
within the game should not carry over during this time period. 
13 “First point” is used to describe the first point played on the deuce court as well as the first point played 
on the ad court in each service game.  Thus, the first two points of each service game are called “first 
points” in this model.    
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The model with no timing variable represents the first point played on the deuce 

(or ad) court in a given game.  The models that include a timing variable describe 

subsequent points on the deuce (ad) court in the game.14  In the data, I specify which 

points in each point game are the first points played in each game and which points are 

played after that.  Since the timing variable is assumed to apply differently to these 

points, the server’s chance to serve to the left and his win percentage could both vary on 

these points.  Service choices on the first points are unaffected by the timing variable (I 

call the chance to serve left on a first point SL,0 to distinguish it from later points) .   

 In order to distinguish the timing variable from servers being bad at randomizing 

their serves (and to make the model tractable), it should have the same functional form 

across the entire sample.  The simplest case would be if the timing effect is constant, i.e., 

the server’s chance to win a point if he hits his serve to the left (right) is a constant 

amount lower if his previous serve was to the left (right).  This is not a particularly 

interesting model because in this case the timing variable has no implications for the 

serial dependence of serves.  Under this model, the timing variable would change the 

returner’s anticipation of serves but these decisions cannot be observed.15 

In trying to estimate a functional form for the timing variable, consider the case 

when the server’s chance to win a point (not including the timing variable) is either very 

 
14 It is possible to use the law of iterated expectations to construct a matrix representation for the server’s 
chance to serve left on each point of the game, even if you do not know any of his service choices.  The 
chance for the server to serve to the left on each point converges quickly to an equilibrium value as the 
length of the game increases (if the timing variable affects serial correlation of serves this chance is 
different from the chance to serve left on the initial point).  This result is not needed here because the data 
set has information about the service location for each point in each service game and in the model the 
previous point’s service choice is a sufficient description of the next point’s service choices.  I use this 
procedure to estimate the bias that would be introduced by using points later in the service game to estimate 
SL,0, the server’s chance to serve to the left on the first point of a game. 
15 This is a general and unintuitive result in mixed strategy equilibrium— the server’s strategy is affected 
by changing the payoffs from the returner’s choices while the returner’s strategy is affected by changing 
the payoffs from the server’s choices. 
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high or very low.  For example, think of what would happen if Pete Sampras played an 

amateur player.  The chance for Sampras to win a point when serving would be close to 

100%.  Even if the amateur timed Sampras’s serve from having seen it a few times, it 

should have almost no effect on the percent of points won by each player since Sampras 

is so superior to the amateur.   

This example illustrates that a linear probability model for the effects of timing a 

serve would not be correct at extremes.  A different model, such as using the functional 

form of probit would be more appropriate in these situations—however, probit is too 

complicated to use as a model for a timing variable in tennis.  It is possible to come up 

with a model that has the same key property as probit, though—namely, that the effect of 

timing is greatest when the chance to win the point is close to ½ and that it falls to zero 

when the chance to win the point is close to 0 or 1.  From this, I propose a model where 

the timing variable for each matrix entry, π, is a function of both π and a constant 

magnitude (across the entire data set) T—the timing variable is assumed to equal 

T*π*(1-π).   

This function is a parabola and has the properties described above, reaching its 

maximum for π= ½ and its minimum (zero) for π=1 or π=0.  While descriptively the 

effect of the timing variable is not necessarily highest for π= ½, it must fall to zero for π 

close to 0 or 1, making this interpolation a reasonable assumption.  The new point games 

are as follows: 

 

The Point Game, given that the last serve to this side was to the left (outcomes are 
the probability that the server wins the point): 
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Receiver 
                      L          R    

Server  

L 

 

 R          

 

 
The Point Game, given that the last serve to this side was to the right (outcomes are 
probability that the server wins the point) 
  

Receiver 
                      L          R    

Server  

L 

 

 R          

  

 

The chance to hit this serve to the left, given that you hit your previous serve to 

the left, is SL,L = (πRL- πRR)/{πRL +πLR - πLL- πRR + T[πLL(1- πLL) –  πLR(1- πLR)]}.  

What properties does this expression have when T>0?  By symmetry, it is easy to see that 

SL,L= SL,0 if πLL + πLR = 1.  Using the mixed equilibrium condition πLR> πLL, it can be 

shown that if πLL + πLR >1, then SL,L< SL,0.  Also, if πLL + πLR <1, then SL,L> SL,0.  

In the case when the previous serve is hit to the right the same calculations apply 

and the result is that SL,R=  (πRL- πRR – T[(πRL)(1-πRL) - (πRR)(1-πRR)]) /{πRL +πLR - πLL- 

πRR + T[(πRR)(1-πRR) – (πRL)(1-πRL)] }.  When T>0, A set of similar conditions hold as 

πLL – T(πLL)(1- πLL) πLR – T(πLR)(1- πLR) 

πRL  πRR 

πLL  πLR  

πRL – T(πRL)(1- πRL) πRR – T(πRR)(1- πRR) 
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in the previous case, but reversed.  Namely, SL,R= SL,0 if πRL + πRR = 1,  SL,R>SL,0 if πRL + 

πRR >1, and SL,R< SL,0 if πRL + πRR <1.   

What magnitude should T have?  In general, the timing variable should not 

change the mixed equilibrium conditions. Two of these four mixed strategy equilibrium 

conditions are πLL< πLR and πRR< πRL.  Thus, if πLL< πLR, it must also be the case that 

[πLL – T(πLL)(1- πLL)] < [πLR – T(πLR)(1- πLR)].  While this requirement is matrix-

specific, if π– T*π*(1-π) is increasing for all values of π then this will hold for any 

matrix chosen.16  This makes sense as a general requirement and is equivalent to the 

condition T<1.  Since the descriptive analysis of tennis leads me to believe that the timing 

variable is relatively small, a correct model for the timing variable should have T<1 in 

any case.17   

The case where SL,R> SL,0 > SL,L is a particularly interesting case, since it is when 

the server’s chance to serve to the left is lowest when his previous serve was to the left, is 

highest when his previous serve was to the right, and is in between when there is no 

previous point (at the start of a game).  This occurs when (πLL + πLR >1) and (πRL + πRR 

>1).  When these conditions hold it can be shown that the server’s chance to win the point 

(not including the timing variable) must be greater than ½.18  The converse, however, is 

not true—if the server’s chance to win the point is greater than ½ at least one but not 

 
16 Depending on the point-game matrix, the other two mixed strategy equilibrium conditions (πLR> πRR and 
πRL< πLL) may result in a more strict condition on T than T<1.  This happens because the returner’s decision 
where to anticipate can become a dominant strategy if the timing variable is sufficiently large.  If this 
happened, the server would take the returner’s dominant strategy into account and would always serve in 
the same direction.   
17 T being relatively small means that players do not get a lot better at returning a serve from seeing it.  
Since professional tennis players have plenty of practice at hitting serve returns in general, it makes sense 
that the effects of timing should not be particularly large.   
18 See Proposition 3 in the appendix for a proof of this assertion. 
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necessarily both of (πLL + πLR >1 and πRL + πRR >1) hold.  There is no value for the 

server’s overall win percentage that is sufficient to establish that both (πLL + πLR >1 and 

πRL + πRR >1) must hold.19   It is possible to gain further insight by making additional 

assumptions about the form of the point-game matrices. 

Further Assumptions About Point-Game Matrices  

What is it reasonable to assume the matrices in question look like?  In matches 

between professional tennis players the numbers in the matrices should not be extremely 

close to 0 or 1.  Tennis players do not anticipate the way that soccer goalkeepers do, by 

leaping to a side.  Thus, we would expect that, unlike in soccer, the effects of anticipating 

the ball correctly in tennis should not be extremely large.20  This has important results for 

the form of the matrix. 

The difference in the server’s chance to win the point, given that he hit the serve 

in a particular direction and the returner anticipated correctly versus incorrectly is limited 

by the percentage of first serves that are made in the court.  This is because when the 

server misses a serve (it “goes out”), the result of the point should not depend on whether 

the returner anticipated that serve correctly or incorrectly.  Specifically, if the server 

makes a first serve to the left in (it “goes in”) with probability, InLeft, then the maximum 

value for πLR - πLL should be InLeft.  That is, the maximum value for the difference 

between the server’s chance to win the point, given that the serve was to the left and the 

returner anticipated incorrectly and the server’s chance to win the point, given that the 

 
19 A matrix of the form [x 1; x+ε 0], for example, can yield an arbitrarily high win percentage for the server 
as x1, but only πLL + πLR >1 holds in this matrix (πRL + πRR < 1 does not hold). 
20 In soccer, for example, if the goalkeeper stays in the center of the goal and the kicker kicks it to the 
center, it will be blocked (essentially) every time.  Palacios-Huerta (2002) finds that if the kicker kicks it to 
his “natural side” and the goalkeeper guesses the opposite way, the kick is successful 95% of the time. 
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server was to the left and the returner anticipated correctly, is the percent of serves aimed 

to the left that go in.21 

Given that the first serve is hit in, it does not make sense to assume that the server 

wins every point if the returner guesses incorrectly, but never wins the point if the 

returner guesses correctly.  The effect of guessing correctly may be large, but I will 

assume that given that the first serve is in, the difference in the chance to win the point if 

the returner guesses incorrectly and the chance to win the point if the returner guesses 

correctly is at most 50%.  Thus, the maximum value for (πLR - πLL) is then ½* InLeft.  

Klaassen and Magnus (1996) analyze matches played at Wimbledon and find that the 

percentage of first serves made is just under 60%.  For the data in Walker and Wooders 

(2001), the percentage of first serves made is slightly over 60%.  These observations (and 

the assumption that serves to the left go in with the same frequency as serves to the right) 

lead to the approximation that in a typical point game matrix, 0< (πLR - πLL)≤ 0.3 (½ 

*0.6, from above), and 0<(πRL - πRR) ≤ 0.3.   

The restrictions above are a specific case of the general constraint 0< (πLR - πLL) ≤   

M and 0< (πRL - πRR) ≤ M, using the value M= 0.3.  What additional properties should 

hold in a matrix where this property holds for some generalized M? 

This restriction affects the “symmetry” of the matrix.22  In a symmetric matrix 

(πLR=πRL and πLL= πRR), the two serial correlations SL,R> SL,0 and SL,0> SL,L hold 

 
21 The same logic applies for serves to the right as well. 
22 An “asymmetric” matrix such as [0 1; 1 0.9] is what this restriction is designed to prevent.  
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identically.23  For 0< (πLR - πLL) ≤ M and 0< (πRL - πRR) ≤ M (0 <M≤  1), as M decreases 

the matrix is forced to look increasingly symmetric because of the equilibrium conditions 

πLL < πRL and πRR < πLR.  Thus, as M0 SL,R> SL,0 and SL,0> SL,L hold identically if and 

only if the server’s chance to win the point is greater than ½.  

In fact, for any value of M, it can be shown that if the chance for the server to win 

the point is greater than (1+M)/2, this is sufficient to establish both SL,R> SL,0 and SL,0> 

SL,L.24  In the case when M1, that is, when this restriction is no longer present, the 

result is the same as above, since the server must win above 100% of the points (not 

possible) to imply both negative serial correlations. 

Using the previous estimate of M=0.3 in this equation, I can come up with the 

condition that in this model, if the server’s win percentage is greater than 0.65, this 

implies SL,R> SL,0 and SL,L< SL,0.  In my aggregate data, the server’s chance to win each 

point is 64.7%, very close to the 65% threshold value.  This provides a way to test this 

model—if the negative serial correlations are not found, the model is probably incorrect.  

The parabolic timing variable model is simple, intuitively appealing, and allows for a 

range of possible results, making it the best theoretical basis for the project.25   

 
23 For these serial correlations to hold identically, it must be the case that πLL + πLR >1 holds if and only if 
πRL + πRR > 1 also holds.  In a symmetric matrix, since πLR=πRL and πLL= πRR, πLL + πLR = πRL + πRR and 
thus πLL + πLR >1 holds if and only if πRL + πRR > 1 also holds. 
24 This is equivalent to the assertion that if the server’s chance to win the point is greater than (1+M)/2, this 
is sufficient to establish that both πLL + πLR >1 and πRL + πRR > 1 hold.   See Proposition 4 in the appendix 
for a heuristic proof of this assertion. 
25 An alternate specification of the model would be to try to determine even more what the underlying 
matrix looks like.  This would be done by adding the following (observable) variables: InLeft, the chance for 
the server to make a first serve, given that it is hit to the left; InRight, the chance for the server to make a 
first serve, given that it is hit to the right; Z, the chance for the server to win the point, given that he misses 
his first serve (making the assumption that the choice of first serve hit has no effect on the server’s chance 
to win the point if the first serve is a fault).  The four unknown quantities in the point game matrix 
change—they now correspond to the chance for the server to win the point, given that his serve goes in (to 
the left/right) and that the returner anticipated (to the left/right).   
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IV. Data 

Professional tennis matches are widely available in the form of videos of classic 

matches.  Walker and Wooders (2001) use data from ten tennis matches between top 

players in the finals (or semifinals) of very important tennis tournaments.  Top 

professional tennis players are used instead of amateurs because the top professional 

tennis players are much better at the sport than amateurs—while this is easy to see in the 

physical aspects of tennis, it almost certainly holds true for the strategic aspects as well.  

Since the matches are near the end of the biggest tournaments of the year, players will 

have the highest incentives to maximize their chances of winning which makes them 

more likely to play according to mixed strategy equilibrium. Additionally, the extremely 

high stakes (the winner stands to gain hundreds of thousands of dollars in prize money 

alone) mean that the players are certainly not experimenting with aspects of their game 

such as serving strategies (a possibility at smaller events).26   

The tournaments in the data set are the four biggest tournaments of the year, the 

majors (the Australian Open, the French Open, Wimbledon, and the US Open) plus the 

Master’s Cup, a large invitational tournament for the top eight players in the world at the 

end of the year.  The earliest of these matches was Ken Rosewall-Stan Smith at 

 
    The benefit of this specification is that it allows examination of the two known quantities: the chance for 
the server to win the point, given that he hit his serve to the left (or right) and it went in.  One of these 
equations is collinear, but using the other equation brings the quantities known about the matrix to three 
(the server’s chance to serve left, his overall chance to win the point and the server’s chance to win the 
point, given that he hit his serve to the left and it went in).  With four unknown entries in the matrix, this 
would still not allow for direct estimation of the coefficients, but it does restrict one of the degrees of 
freedom. The problems that could arise from this are that increased complexity may make the model harder 
to work with and that dividing the sample further may cause small-data set issues. 
26  It could be physically tiring for players to hit the same serve too often, which causes players to “switch 
up” their serves too much.  For example, a serve to the left may be faster than a serve to the right and thus 
harder on the server’s shoulder.  At the same time, a serve to the right may have more spin and thus be 
harder on the server’s back.  Since the players in the data set are top professionals and near (or at) the end 
of a major tournament, though, any such effect should be small. 
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Wimbledon in 1974 and the most recent (included in my data set but not Walker and 

Wooders (2001)) is Roger Federer-Marat Safin at the 2005 Australian Open. 

The best professional tennis players would be expected to be very familiar with 

each other’s abilities and to have a good idea of the payoffs within each point game.  To 

increase the sample size of the data, Walker and Wooders use only men’s tennis matches 

(played best three out of five sets—women’s tennis matches are played best two out of 

three sets) and select in favor of longer matches.  This may have the effect of selecting 

for matches where play corresponds more closely to mixed strategy equilibrium if 

matches where one player does not play according to the appropriate mixed strategies are 

shorter.  Small deviations from optimal play could only lower a player’s win percentage 

slightly (if the opponent noticed and took advantage of it), though, so small deviations 

from optimal play would not have a large impact on the length of the match.  

The data consists of points from 11 tennis matches, which are divided into 44 

point games (one point game for each server on the deuce court and one point game for 

each server on the ad courts, so four point games per match). Each point game has 50-100 

points, for a total of 3308 data points in the sample after center serves are excluded.  The 

data has a point by point score for the match.  This includes which side of the court each 

point is played on, who is serving, the location of the first (and second) serves on each 

point (left or right, from the returner’s perspective) and which player wins the point.  My 

analysis includes this information, plus information on the previous point played on the 

same side of the court in the same service game (or whether the current point is the first 

point played this side of the court this game). 
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On a first serve, it is rare that an observer can tell where the returner was 

anticipating the serve—thus, for data collection purposes, it is effectively unobservable.  

On occasion, though, it is possible to observe the returner leaning towards one side.  This 

supports the idea that the returner is anticipating the location of the serve.  On the second 

serve this is even more apparent.  A right-handed player with a stronger forehand than 

backhand, for example, will occasionally take several steps to the left immediately before 

the serve is hit in order to “run around” his backhand and hit a forehand instead.   

 The Walker and Wooders (2001) data includes information on serves to the 

center; these serves were not used by Walker and Wooders due to their rarity, being used 

only 6% of the time in their sample.27  This provides a good justification for not 

including center serves, although it could have a small impact on the results.28  In the ten 

matches in Walker and Wooders (2001), only one player was included more than twice 

(John McEnroe, who is in four of the matches)—none of the players consistently failed 

the tests for serial independence or equal win percentages.  This indicates that the serial 

correlations observed are not the result of a single player alone.   

The issue of excluding center serves became more complicated when I recorded 

the direction of the serves in a match myself.  To supplement the data and to obtain a 

better idea of the challenges of collecting it, I watched the 2005 Australian Open Federer- 

Safin match and recorded data for the points.  Deciding if a serve is “Center” (as opposed 

to “Left” or “Right”) is often difficult and can be particularly difficult when the serve 

misses in the net because the observer must extrapolate the path of the ball. 

 
27  When I exclude center serves from the Walker and Wooders data, my summary statistics for the matches 
are almost the exact same as theirs (usually off by at most a single point).   
28 Pat Cash and Stan Smith (in two matches and one match in the sample, respectively) use center serves 
often—the other players use it rarely (sometimes on as few as 2% of the serves) 
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While a serve hit directly to the center (at the returner’s body instead of to one 

side of him) is relatively rare, hitting serves that are close to the center (so that it is too 

close for the returner to take a normal swing at the ball) is relatively common.  Walker 

and Wooders (2001) used center to describe any serve that could not be identified as 

consciously chosen by the server to be distinctly left or right.29  I coded the Federer-Safin 

match in the same way for consistency.30 

The Matches in general: 
 Total points  Number of first % of first Points won  % of points 
Match played serves made serves made by server won by server 
1974 Wimbledon 342 226 66.1% 224 65.5% 
1980 Wimbledon 374 234 62.6% 248 66.3% 
1980 US Open 344 184 53.5% 212 61.6% 
1982 Wimbledon 346 202 58.4% 225 65.0% 
1984 French 296 174 58.8% 182 61.5% 
1987 Australian 316 185 58.5% 196 62.0% 
1988 Australian 325 220 67.7% 204 62.8% 
1988 Masters 326 180 55.2% 214 65.6% 
1995 US Open 236 130 55.1% 163 69.1% 
1997 US Open 341 221 64.8% 232 68.0% 
2005 Australian 322 182 56.5% 208 64.6% 
Total 3568 1956 59.9% 2308 64.7% 

 
Definitions:         
Where serves are referred to, this analysis concerns only first serves.  A player receives 
a second serve if he misses the first serve (if he misses the second serve, he loses the point) 
 
A "first point" is the first point of the game played on each of the deuce and ad courts 
SL,0= the chance for the server to hit his serve to the left on a "first point"  
S(L after L)= SL,L= the chance for the server to serve to the left on a point when his serve on the 
precious point was to the left 
S(L after R)= SL,R = the chance for the server to serve to the left on a point when his serve on the 
previous point was to the right. 

 
29 Personal correspondence with Mark Walker. 
30 I assume that the location of a serve (left, right, or center) is the factor explaining how well the returner 
timed future serves, but it may be that the returner times the serve not by the specific location of the serve 
but through the stroke that he hits on the return.  A returner, then, times his forehand when his serve return 
is a forehand and times his backhand when his serve return is a backhand.  For a right-handed returner, a 
serve to the right is a forehand and a serve to the left is a backhand (this is reversed for left-handed 
returners).  Thus, would be reasonable to suppose that, for timing purposes, a serve hit slightly to the 
returner’s left is the same as a serve hit very far to the returner’s left, because the returner will hit the same 
stroke on both serves.  Unfortunately, the Walker and Wooders (2001) data did not include the designations 
necessary to distinguish serves in this manner. 
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Match SL,0 SL,L SL,R 

Fits  
SL,R> 
SL,L? 

Fits 
SL,,R 
> SL,0 
> SL,L? 

Overall 
% of 
serves 
hit to left 

Overall 
win % for  
server  

 
Number 
of points 
in this 
data set 

1974 Wimbledon         
Rosewall, Deuce 88.9% 100.0% 100.0% Equal No 93.3% 70.7% 75 
Rosewall, Ad 45.5% 66.7% 39.3% No No 50.0% 68.9% 74 
Smith, Deuce 70.8% 58.5% 70.6% Yes No 64.6% 57.3% 82 
Smith, Ad 100.0% 76.7% 100.0% Yes No 86.8% 68.4% 76 

1980 US Open         
McEnroe, deuce 80.8% 59.5% 42.9% No No 61.9% 60.7% 84 
McEnroe, ad 52.4% 53.6% 36.7% No No 46.8% 64.6% 79 
Borg, deuce 20.8% 35.0% 47.2% Yes No 36.3% 57.5% 80 
Borg, ad 37.0% 31.6% 43.3% Yes Yes 38.2% 61.8% 76 

1980 Wimbledon 
McEnroe deuce 53.8% 41.2% 58.6% Yes Yes 50.6% 66.3% 89 
McEnroe, ad 46.4% 48.3% 60.7% Yes No 51.8% 63.5% 86 
Borg, deuce 25.0% 38.1% 44.0% Yes No 37.4% 67.7% 99 
Borg, ad 17.9% 27.3% 20.8% No No 20.7% 66.3% 92 

1982 Wimbledon  
McEnroe, deuce 50.0% 54.5% 32.3% No No 44.3% 68.4% 79 
McEnroe, ad 48.0% 45.0% 42.3% No No 45.1% 66.2% 71 
Connors, deuce 91.7% 77.2% 100.0% Yes Yes 83.5% 64.8% 91 
Connors, ad 34.8% 26.1% 58.1% Yes Yes 41.6% 61.0% 77 

1984 French Open 
McEnroe, deuce 69.6% 40.0% 73.7% Yes Yes 58.3% 56.9% 72 
McEnroe, ad 58.3% 44.0% 72.2% Yes Yes 56.7% 61.2% 67 
Lendl, deuce 30.0% 22.2% 48.5% Yes Yes 36.6% 70.4% 71 
Lendl, ad 58.3% 33.3% 57.9% Yes No 49.3% 58.2% 67 
1987 Australian         
Edberg, deuce 21.7% 23.5% 28.6% Yes No 25.3% 69.3% 75 
Edberg, ad 72.0% 56.7% 85.7% Yes Yes 68.1% 59.4% 69 
Cash, deuce 52.6% 55.6% 63.6% Yes No 57.4% 60.3% 68 
Cash, ad 68.4% 39.3% 77.8% Yes Yes 58.5% 50.8% 65 

1988 Australian Open 
Wilander, deuce 34.8% 23.1% 22.5% No No 26.3% 67.1% 76 
Wilander, ad 47.8% 36.4% 56.5% Yes Yes 47.1% 66.2% 68 
Cash, deuce 63.2% 58.6% 28.0% No No 49.3% 58.9% 73 
Cash, ad 54.5% 69.2% 66.7% No No 63.5% 54.0% 63 

1988 Masters Cup 
Becker, deuce 57.1% 60.5% 77.8% Yes No 63.1% 69.0% 84 
Becker, ad 64.3% 61.8% 78.6% Yes Yes 65.8% 63.2% 76 
Lendl, deuce 59.3% 51.6% 53.8% Yes No 54.8% 56.0% 84 
Lendl, ad 65.5% 77.4% 75.0% No No 72.4% 76.3% 76 
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1995 US Open 
Sampras, deuce 47.4% 78.3% 35.3% No No 55.9% 71.2% 59 
Sampras, ad 28.6% 43.8% 35.0% No No 35.1% 70.2% 57 
Agassi, deuce 47.4% 66.7% 40.9% No No 50.8% 57.6% 59 
Agassi, ad 60.0% 73.9% 83.3% Yes No 70.9% 76.4% 55 

1997 US Open 
Sampras, deuce 57.1% 61.3% 44.1% No No 53.8% 63.4% 93 
Sampras, ad 37.9% 50.0% 34.4% No No 39.8% 65.1% 83 
Korda, deuce 57.1% 63.6% 71.4% Yes No 63.4% 69.5% 82 
Korda, ad 77.4% 72.7% 70.0% No No 74.3% 78.4% 74 

2005 Australian Open 
Safin, deuce 70.8% 65.7% 100.0% Yes Yes 72.9% 61.4% 70 
Safin, ad 73.9% 45.2% 78.9% Yes Yes 63.0% 68.5% 73 
Federer, deuce 45.5% 57.1% 36.4% No No 47.2% 66.7% 72 
Federer, ad 63.2% 71.0% 57.1% No No 65.6% 67.2% 64 

 

The most important statistics are the first three columns, SL,0, SL,L and SL,R.  SL,0 

concerns “first points” when the timing variable does not apply so SL,0 should be a 

function of the four entries (πLL, πLR, πRL, πRR) in the matrix for the specific point game 

in question but it should not depend on T.  SL,L and SL,R measure the service choices for 

points when the server served left or right, respectively, on the previous point.  These two 

statistics are generated by the four entries for the individual point game, (πLL, πLR, πRL, 

πRR), in addition to the constant T.   

Preliminary Analysis and Use of (Slightly) Biased Estimators 

What would we expect to find as the relationship between these coefficients?  If 

my model is correct (with T>0) and the matrices follow the “not skewed” assumptions 

from earlier, then we should expect SL,R> SL,0> SL,L.  The fourth column measures part of 

this question: is SL,L<SL,R, i.e., is a server more likely to hit his current serve left when his 

previous serve was to the right than when it was to the left?  We would expect SL,R>SL,L 

to hold 50% of the time if there was no true difference between SL,L and SL,R.  The data 



 

 30 

shows no clear pattern, although there is a slight tendency for SL,L<SL,R to hold (SL,R>SL,L 

in 25 point games, SL,R<SL,L in 18 point games and SL,R=SL,L in a single point game).  

Excluding the single point game where SL,R=SL,L, , SL,R > SL,L  occurs in 58.1% of the 

point games in the data set.  

  The fifth column examines the full hypothesis from the theory, SL,R>SL,0 >SL,R.  

How often these conditions hold if the true values for SL,R, SL,0, and SL,L were all the 

same?  All orders for the numbers would be equally likely and there are 3*2*1= 6 

ordered arrangements, so SL,R>SL,0>SL,L should occur with probability 1/6 (16.7%).  The 

actual percentage of point games where this condition holds is 29.5%, quite a bit higher 

than the 16.7% predicted if the true values of SL,L, SL,0, and SL,R were equal.  This 

supports my null hypothesis.31     

I used the server’s overall chance to serve to the left as an estimator for his chance 

to serve to the left on points at the start of a game.  I also used his overall chance to win a 

point as an estimator of his chance to win a point at the start of a game.32  Since the 

overall chance to serve to the left includes point not at the start of the game, this statistic 

is a biased estimator for the chance to serve to the left at the start of the game.  However, 

since roughly ⅔ of the points in the data set are not played at the start of a game, 

including the additional data triples the sample size.  The bias introduced depends on the 

actual value for T—however it is probably quite small.  For T=0, there is no bias since 

points at the start of a game are identical to points played after the start.  Even when T is 

chosen to be large (greater than 0.5), the bias introduced here should still be small. The 

exact number depends both on the functional form of the matrix of the point game and 
 

31 Detailed further in the empirical specification section. 
32 I choose reasonable values for (πLL, πLR, πRL, πRR) for each point game consistent with these chances for 
the server to serve left and for the server to win the point.   
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the distribution of points within the match, but the bias is less than 0.05 for almost any 

specification of these parameters.   

Minimizing the mean squared error of an estimator is equivalent to minimizing 

(σ2 + ß2) where σ2 is the estimator’s variance and ß is its bias.  The bias introduced by 

including the additional points is small, while the variance of the sample decreases 

significantly with the inclusion of additional data (since the typical point game has 25 

points at the start of the game and 50 points that are not played at the start of the game).  

Thus, using the additional data minimizes the mean squared error.33  

In some of the matches, the chance to serve to the left on a given set of points is 

100% (the divisions I use are: points at the start of a game, points after a serve to the left, 

and points after a serve to the right).  If players are playing mixed strategies and there are 

a large number of points, this should not occur.34  The 1974 Wimbledon Smith ad point 

game, for example, has the feature that Smith serves to the left the first point of all 26 

games in the sample.  This seems unlikely to happen randomly under the hypothesis of 

identical distribution of serves given that his chance to hit a serve to the left in the ad 

point game is only 86.8%.   

Smith may use the serve to the left (“out wide”) on the ad court as a way to focus 

at the start of a game, instead of hitting the serve to the right (“up the tee”).  This is a 

common tactic among amateur players, whose serves are less consistent than those of 

 
33 I performed the calculations for mean squared error with a few simplifying assumptions (mainly 
calculating standard errors with the assumption of independence and assuming that all biased points had 
equal bias) using representative matrices from the sample.  The results were soundly in favor of using the 
additional data points.  The simplifying assumptions should have had only a small effect on the results, so I 
did not revisit the calculations in further detail.   
34 Small sample size is one explanation of these results. If a typical point game contains 75 points (3300 
points total/44 point games), then dividing the point game into three subdivisions (for SL,0, SL,R and SL,L) 
can make sample sizes for these subdivisions very small. 
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professional tennis players—this makes focusing devices more valuable.35  However, 

personal correspondence with Ramsey Smith, the son of Stan Smith, indicates that this 

explanation is probably not correct—to quote Ramsey Smith, “My dad says that he has 

nothing against the serve up the tee!” 

I performed some simple calculations to try to see if there is any change in 

winning percentages between the first deuce and ad points of a game and all subsequent 

points.  For each match, I compared the win percentages for the server at the start of each 

game to the win percentages later in the game.  The average match had the server 

winning 0.1% more of the points on the first points of a game than on subsequent 

points—a tiny change.  There was no particular pattern to these results—most of the 

matches had small changes in the win percentage after the first point, about half increases 

and half decreases.   

This is not consistent with my model (since the timing variable as presented so far 

decreases the server’s chance to win the point but does not apply on the first points of a 

game, the server should win a higher percentage of points at the start of the game).  This 

indicates an alternate model for the timing variable may provide better conclusions when 

the direction of serves and win percentage for the server are both considered.36 

 

V. Empirical Specification: 

The hypothesis that I am investigating is that the model of tennis with the timing 

variable accounts for the negative serial correlation in the server’s choices found in 

 
35 Additionally, an amateur player’s opponents cannot watch a video of his previous matches (and do not 
have coaches who can do it for them), and may not be as adept as recognizing patterns in general. 
36 For example, a model in which the returner gets better at returning the serve he has just seen and worse at 
returning a serve that he has not seen probably would not have the property that the server wins a higher 
percentage of points at the start of the game. 



 

 33 

Walker and Wooders (2001).  That is, I am trying to determine if the data from 

professional tennis matches is consistent with servers playing optimally under the model 

including the timing variable.   

When the matrices follow the “not skewed” assumptions and the timing variable 

is positive, my model predicts that SL,L<SL,0<SL,R.  That is, the server’s chance to serve 

left is lowest when he has just hit a serve to the left, is highest when he has just hit a serve 

to the right, and is in between when it is the first point of a game (and there is no previous 

point).  If SL,L, SL,0 and SL,R were all equal then this would occur with probability 1/6—in 

the data this condition holds in 29.5% of the point games.  I performed a statistical test on 

the null hypothesis “The event SL,L<SL,0<SL,R occurs with probability 1/6” using a 

Bernoulli random variable.  The resulting p-value is 0.022, so I can reject the null 

hypothesis at the 5% level.37  

To test my model, I need some idea about what the payoffs in the matrices of each 

point game are.  From my earlier arguments, the entries in a single row of each matrix 

should be within 0.3 of each other.  Beyond that, only the server’s chance to serve left 

and the server’s chance to win the point can be observed but there are four variables (the 

entries in the matrix) that determine these values.  Consequently, some form of guessing 

is unavoidable here.38  Walker and Wooders (2001) estimate a power function for the test 

of equal winning percentages using a hypothetical point game matrix for their aggregate 

data.  That they did this suggests that the invisibility of the point games should not 

 
37 This is perhaps unsurprising given that Walker and Wooders (2001) find that players switch their serves 
up too much to be consistent with random play.   
38 It should be possible to use the maximum likelihood procedure used so far to estimate the underlying 
matrix for each point game simultaneously with T.  However, this calculation would be very complicated 
and it is not clear if the results of the estimation would make sense. 
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invalidate results based on specific assumptions about the matrix for a given point 

game.39  

For example, for the point game with Federer serving on the ad court in the 2005 

Australian Open Match, I estimated the matrix as follows (entries are Federer’s chance to 

win the point).  This matrix is consistent with the overall results of the match; namely, 

when Safin and Federer both play their equilibrium mixed strategies Federer wins 67.2% 

of the points and serves to the left with probability 65.2%.  I also follow the 

approximation 0<(πLR - πLL)< 0.3 and 0<(πRL - πRR)< 0.3 established earlier and chose 

(πLR + πLL)> 1 and (πRL + πRR) >1 so that if T>0, then SL,R> SL,0 > SL,L holds and there is 

negative serial correlation of service choices.40 

Safin Receiving 
                   L        R    

Federer Serving         

 
39 However, the results obtained from choosing a specific point-game matrix can depend greatly on the 
exact entries chosen.  For example, the point-game matrix used by Walker and Wooders (2001) to estimate 
the power function for the test of equal winning percentages is [0.58 0.79; 0.73 0.49] and corresponds to 
the server serving to the left 53.3% of the time and winning 65.0% of the points in their aggregate data.   
    The differences between entries in the same row but different columns (that is, the differences (0.79-
0.58)=0.21 and (0.73-0.49)=0.24) drive the power of the test.  If these difference values were lower 
(higher), the power of the test would decrease (increase).  For example, I can construct a matrix where 
these differences are 2/3 as great as before but the server’s chance to serve left and the server’s chance to 
win the point in equilibrium are unchanged.  So the matrix looks like [0.58, 0.58+ 2/3*0.21; 0.49 + 
2/3*0.24]—I then add a constant term to each entry in order to make the server’s chance to win each point 
the same as before.   
   The resulting matrix is [0.6173, 0.7573; 0.6873 0.5273] (this gives the same 53.3% chance for the server 
to serve to the left and 65.0% chance for the server to win the point).  Since I decreased the row differences 
by 2/3, this matrix has the property that if Walker and Wooders had used it instead of the matrix they 
chose, the power function would rise 2/3 as quickly as the returner moved away from playing his 
equilibrium mixed strategy. 
40  In about half of point games, the server’s win percentage is greater than 65% so any matrix chosen 
according to the conditions 0<(πLR - πLL)< 0.3 and 0<(πRL - πRR)< 0.3 will have (πLR + πLL)> 1 and (πRL + 
πRR) >1 hold (see “Further Assumptions About Point-Game Matrices” in the Theoretical Framework 
section).  To give a general idea of the impact of the timing variable, in the 44 matrices chosen the estimate 
T=0.299 causes SL,R,- SL,L to range from 0.1% to 3.1%.   
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 I performed the same procedure on the other point games in the 11 matches in the 

sample (the 43 matrices estimated for the other point games are not shown for brevity).41  

Using these matrices, I found the likelihood function based on the sequence of serves 

from the points in the actual match as well as the matrices I had estimated.  The 

likelihood function measures the chance of obtaining the sequence of points from the 

game by multiplying the probabilities of obtaining each serve (conditional on previous 

serves).  For example, the Safin-Federer deuce point game begins as follows.  The type of 

point in the left hand column is overridingly SL,0 if the point begins a new game, is SL,L if 

the point follows a serve to the left and SL,R if the point follows a serve to the right.  

Type of 
point? 

Service 
location 

S(L,0) RIGHT 
S(L,R) LEFT 
S(L,L) LEFT 
S(L,0) LEFT 
S(L,L) LEFT 

    

The value for T determines the values of SL,L and SL,R—SL,0 is fixed no matter 

what T is.  Thus, the likelihood is a function of T and if the model presented here is 

correct there should be a single positive value of T that maximizes the likelihood while 

 
41 I did not generate the matrices according to some fixed rule because any rule would cause some of the 
matrices to be invalid (either because the matrix would contain entries that are not between 0 and 1 or 
because dominant strategies would exist).  This is probably inevitable in a varied data set with good reason: 
if all of the matrices were of a particular form, it might have implications (such as the server hitting most of 
his serves to the returner’s weaker side) that do not always hold.     

0.61 0.73 

0.789 0.56 
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leaving the equilibrium conditions intact.  I maximize the (natural) log of the likelihood 

function to simplify calculations.   

The graph of the log-likelihood as a function of the timing variable T is shown on 

the following page.  The value of T that maximizes the log-likelihood is 0.299.  This 

value is consistent with the assumptions I have been making so far.  As shown earlier, 

T>1 would not be consistent with the mixed strategy equilibrium conditions in the model 

in general.  Furthermore, based on the specific matrices that I chose there is often some 

value of T for each point game (usually close to but less than 1) that would cause 

dominant strategies to emerge in that point game.  The result of T=0.299 is significantly 

less than this “fall to dominance” value for each of the matrices chosen.  At the same 

time, I would not expect T to be very close to 0 (less than 0.1, for example).  If T was 

very small, it would have almost no effect on a server’s choices and would consequently 

be able to explain almost none of the negative serial correlation observed in Walker and 

Wooders (2001).  A T-value of 0.299 should have neither of these problems.   
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Log likelihood for observed data as a function of T
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As a quick estimate of the power of this test, I generated data for 20 trials on the 

assumption that the underlying matrices that I have been using are correct but that T=0 

(so that points are actually independent).  I then estimated the value for T using the 

procedure outlined so far.  Out of the 20 trials, 18 of the trials had T<= 0.12, one trial had 

T=0.22 and one trial had T=0.34 (which is greater than the result observed from the data).  

This suggests that if this model is correct, the estimated T-value of 0.299 is a good 

indication that T is actually non-zero.42 

 

 
42 It seems that any sensitivity analysis of this test that involves changing the matrices chosen would be 
exceedingly difficult.  If I came up with 2 possibilities for what the matrix of each point game looks like 
then there would be 2^44 possible combinations of these matrices (each requiring a separate maximum 
likelihood calculation for the value of T).  It may be possible to estimate a new set of matrices based on the 
old matrices with some uniform change applied to each.  The results using the new matrices could then be 
compared to the results using the old matrices.  Even if this result would not be as powerful, calculating T 
twice is a lot easier than doing it 20 trillion times! 
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The Run Test 

I use the “run test” that was used by Walker and Wooders (2001) to test for serial 

independence of service choices.  A run is defined as a maximal string of consecutive 

identical serves, either all to the left or all to the right.43  In the case where serves are 

chosen independently, the formula for the probability of r runs in a string of nL serves to 

the left and nR serves to the right is known (see Ross, 1992).44  

Here are the results of the run test as applied to the tennis data—the variable ri 

measures the number of runs for a given point game.  F(ri-1) is the chance to get less than 

or equal to (ri-1) runs, given the number of serves to the left and right in this point game.  

F(ri) is the chance to get less than or equal to (ri) runs.45  Since the run test is not a 

continuous distribution I follow the method used in Walker and Wooders (2001) and 

construct a uniform draw on [F(ri-1), F(ri)] for each point game.  The U [F(ri-1, F(ri)], 

column is a sample draw from this distribution.  When serves are chosen independently 

these draws should have the uniform (0,1) distribution. 46 

 
Total  
Points 

Left 
Serves 

Right  
Serves 

Runs 
(ri) 

F(ri-1), 
 

F(ri) 
 

U[ F(ri-
1),F(ri) ] 

2005 Australian Safin , deuce 70 49 21 35 0.876 0.936 0.888 
 

43 For example, if there are four points with serves (Left, Left, Right, Left), there is a run of two lefts, a run 
of one right and a run of one left for a total of 3 runs.   
44 The chance to get a certain distribution of runs under independence is known.  By comparing the number 
of runs in the data to the number of runs predicted under independence, you can see if the data is consistent 
with the assumption that players’ service choices are serially independent.  If service choices are negatively 
serially correlated, there should be more runs than if service choices are independent.  If service choices are 
positively serially correlated, there should be fewer runs than if service choices are independent. 
45 For example, if in a given point game [F(ri-1), F(ri)]= [0.98, 1] then if serves were being chosen 
independently you would have a 100% chance to have this many or fewer runs and a 98% chance to have 
fewer runs, which means that you would have a 2% chance to have exactly this many runs and a 98% 
chance to have fewer runs.  In this case, when you have many more runs than would be typical under 
independence, it means that serves are probably being chosen with negative serial correlation (as Walker 
and Wooders (2001) find is the case in the tennis data). 
   Consider a different example, where [F(ri-1), F(ri)]= [0.48, 0.51] in a given point game.  If serves were 
being chosen independently you would have a 48% chance to have fewer than this many runs, a 3% chance 
to have exactly this many runs, and a 49% chance to have more than this many runs.  In this case you have 
a number of runs that would be typical if serves were chosen independently. 
46 See footnote 24 in Walker and Wooders (1999) for a proof of this assertion. 
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 Safin, ad 74 51 23 39 0.943 0.974 0.948 
 Fed, deuce 72 27 45 33 0.282 0.376 0.335 
 Fed, ad 64 46 18 27 0.436 0.580 0.516 
1974 
Wimbledon 

Rosewall, 
deuce 75 70 5 11 0.349 1.000 0.926 

 Rosewall, ad 74 37 37 43 0.854 0.901 0.870 
 Smith, deuce 82 53 29 43 0.832 0.892 0.869 
 Smith, ad 76 66 10 21 0.812 1.000 0.825 
1980 
Wimbledon Mc, Deuce 89 45 44 49 0.739 0.803 0.799 
 Mc, Ad 85 45 40 44 0.512 0.599 0.514 
 Borg, deuce 99 37 62 52 0.817 0.866 0.820 
 Borg, ad 92 19 73 33 0.633 0.788 0.647 
1980 US Open Mc, Deuce 84 52 32 36 0.118 0.168 0.128 
 Mc, Ad 79 37 42 38 0.259 0.338 0.322 
 Borg, deuce 80 29 51 43 0.863 0.914 0.907 
 Borg, ad 76 29 47 42 0.873 0.916 0.906 
1982 
Wimbledon Mc, Deuce 79 35 44 36 0.152 0.212 0.186 
 Mc, Ad 71 32 39 36 0.437 0.533 0.467 

 
Connors, 
deuce 91 76 15 31 0.958 1.000 0.987 

 Connors, ad 78 33 45 48 0.976 0.987 0.978 
1984 French 
Open Mc, Deuce 72 42 30 45 0.982 0.991 0.991 
 Mc, Ad 67 38 29 40 0.921 0.952 0.933 
 Lendl, deuce 71 26 45 41 0.955 0.976 0.976 
 Lendl, ad 67 33 34 41 0.931 0.958 0.933 
1987 Australian Edberg, D 75 19 56 29 0.374 0.519 0.433 
 Edberg, Ad 69 47 22 40 0.994 0.997 0.996 
 Cash, D 68 39 29 37 0.711 0.791 0.711 
 Cash, Ad 65 38 27 40 0.964 0.980 0.980 

1988 Australian 
Wilander, 
deuce 76 20 56 29 0.265 0.389 0.309 

 Wilander, ad 68 32 36 38 0.739 0.813 0.787 
 Cash, deuce 74 37 37 28 0.007 0.013 0.009 
 Cash, ad 63 40 23 29 0.316 0.424 0.322 

1988 Masters 
Becker, 
Deuce 84 53 31 45 0.847 0.900 0.849 

 Becker, Ad 76 50 26 38 0.724 0.796 0.786 
 Lendl, Deuce 84 46 38 43 0.489 0.577 0.524 
 Lendl, Ad 76 55 21 32 0.515 0.607 0.521 
1995 US Open Samp, Deuce 59 33 26 22 0.011 0.021 0.013 
 Sampras, ad 57 20 37 25 0.231 0.335 0.247 
 Ag, deuce 59 30 29 24 0.032 0.058 0.042 
 Ag, ad 55 39 16 29 0.943 0.980 0.969 
1997 US Open Samp, Deuce 94 50 44 39 0.026 0.041 0.039 
 Sampras, Ad 83 33 50 37 0.162 0.227 0.184 
 Korda, deuce 82 52 30 43 0.793 0.859 0.802 
 Korda, ad 74 55 19 28 0.301 0.389 0.389 
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 The run test is used in order to test my null hypothesis that the model that 

includes the timing variable is sufficient to explain the deviation from serial 

independence observed in Walker and Wooders.  I determined the distribution of the run 

test under my null hypothesis (where points are no longer independent because the timing 

variable T=0.3) to do this.  Since the distribution of the run test under my null hypothesis 

is not known I simulated it instead.  I used the sequence of “first points” for the entire 

data sample as well as the 44 underlying matrices (chosen to represent the point games) 

and my estimate that T=0.3.  The simulation filled in all of the service choices made 

during the tennis matches according to the optimal strategies calculated from the 

matrices, “first points” and previous serves chosen in the course of the simulation.  I then 

calculated the “run test” results for these simulated point games and constructed draws on 

the appropriate U[F(ri-1),F(ri)] distribution for each simulated point game.   

I use the Kolmogorov-Smirnov test (“KS test”) used in Walker and Wooders 

(2001) to test for the equality of the run test distributions for the actual data compared to 

the simulated data.47  If the distribution of the run test in the actual data falls “too far” 

from the simulated distribution the KS test will reject the null hypothesis that they are 

from the same distribution (and that my model can explain the observed serial correlation 

of serves).  If I reject the null hypothesis, it should be because optimal play under my 

model only explains part of the excess “switching it up” found by Walker and Wooders 

(2001). 48  Graphically, the run test should give you three general results that would look 

 
47 The KS test is a non-parametric test for the equality of two data sets—it makes no assumptions about the 
distribution of the data. 
48 Since I have added only one variable to the model in Walker and Wooders (2001), it seems extremely 
unlikely that I would reject the null hypothesis that my model account for the actual data observed because 
the model predicted significantly more negative serial correlation of service choices than is found in the 
actual data.  



 

 41 

something like the following: 

The distribution under the run test- cumulative fraction plot
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The 45° line is what the cumulative distribution should look like if players were 

making service choices completely independently.  Intuitively, if serves are independent 

the run test should have the uniform distribution (as it is designed to test for 

independence) and thus the cumulative distribution should be the 45° line. 

The parabola (at the bottom) is a distribution where the number of runs observed 

in the data is higher than is consistent with serially independent service choices.  Note 

that for any set cumulative fraction of the data (the y-axis), the number of runs observed 

in the sample (the x-axis) is greater than it would be in the case of serial independence.  

Since there are too many runs players are “switching it up” more often than is consistent 

with appropriately random play—this is what Walker and Wooders (2001) find for tennis 

serves. 
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The hyperbola (at the top) is a distribution where the number of runs observed in 

the data is lower than is consistent with appropriately random play.  This means that 

players don’t “switch it up” enough.   

The question my simulation answers is: if the model presented so far is correct, 

how would players choose serves optimally?  I then determine if this optimal strategy 

under my null hypothesis is consistent with the choices observed by in the tennis data.  

That is, can the combination of the entries in each payoff matrix and the constant timing 

variable T (calculated earlier to be 0.299) account for the serial dependence of serves 

observed in Walker and Wooders (2001)? 

On the following page there is a sample cumulative fraction plot for the one of the 

trials in the data where the KS test was run to compare the actual and simulated data 

(associated p-value=0.062).49  The actual data tends to have more runs for each 

cumulative fraction than the simulated data (that is, the graph of the actual data is to the 

right of the graph of the simulated data).50  This is a general result—my model does not 

account for all of the serial correlation in tennis player’s serves.  I ran 1500 comparisons 

of the actual and simulated data, obtaining a p-value for each—if the model was true, it 

should only be rejected roughly 5% of the time at the 5% level.  This did not happen.  At 

the 5% level, the null hypothesis was rejected in 25.2% of the trials; it was rejected at the 

1% level in 7.1% of the trials and at the 10% level in 38.0% of the trials.  These results 

 
49 The simulated data is generated entirely anew in each trial while the actual data in each trial differs only 
based on the difference in the U[F(ri-1), F(ri)] draws each time (in the actual tennis data, F(ri-1) and F(ri) 
are fixed for each point game based on the data from that point game). 
50 Another way to see this it is the cumulative fraction of point-games with run test values less than a 
particular value.  For example, the cumulative fraction of point games with run test values less than 0.8 is 
about 0.75 in the simulated data and 0.55 in the actual data.  There are more runs in the actual data—45% 
of the point games in the actual data have run test values greater than 0.8 while only 25% of the point 
games in the simulated data have run test values greater than 0.8. 



 

 43 

indicate that my model is not sufficient to explain why tennis players “switch up” their 

service choices more than is consistent with purely random play.  

 

How much of the negative serial correlation of serves in the data is explained by 

this model?  The Kolmogorov-Smirnov test evaluates the equality of distributions but it 

does not provide a direct measure of how far apart the distributions are.  As the KS test is 

nonparametric, there is no direct way to compute an R2 value.  In order to evaluate how 

much of the negative serial correlation of serves observed in the data the model explains, 

I constructed two simple statistics.  The first was to compare the averages of the values 
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for the run test on the simulated data with the average value in the actual data.51  The 

average value for the actual data is 0.63.  If service choices were independent, the run test 

would have the uniform distribution and the average would be 0.5.  Thus tennis players in 

the data have an average value under the run test 0.13 higher than would be expected if 

service choices were independent.  The simulated data, on the other hand, had an average 

run test value of 0.56, 0.06 higher than the value associated with independence.  Thus, 

going by this measure, the model explained 46% of the data (0.06/0.13).   

 Another method that I used was to determine how often the simulated data for the 

run test accounted for the actual data.  To do this I determined, for each point game, 

whether the value for the U [F(ri-1, F(ri)] sample draw from the run test in the simulated 

data was greater than the value for the run test in the actual data.  In the simulated data 

set, this happened with probability 0.42.  To see what this means, consider some 

alternatives. 

If the actual data had the same distribution as the simulated data (i.e., my null 

hypothesis explained exactly the variation in service choices), this should happen with 

probability ½.  If the simulated data did not account for any of the excess “switching it 

up” in service choices (so service choices in the simulation were independent, as would 

have been the case if T=0), then it would be expected to happen with probability (1-the 

average value of the sample draws from the run test in the actual data)= (1- 0.63, the 

value calculated above)= 0.37.  A method that did not explain any serial correlation 

would fail to work 0.13 more often than a method that explained all of it.  Since the 

simulated data worked (0.42-0.37)=0.05 more often than this, it can be said to account for 

 
51 These are the U [F(ri-1, F(ri)] random values chosen to make the run test distribution continuous.  While 
any individual value can vary considerably, so many values were generated that the average across all of 
the random values has a very small variance.   
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0.05/0.13= 39% of the additional switching up in the data. 52  Thus, these two measures 

indicate that this model accounts for slightly less than half of the amount that servers 

“switch up” their choices beyond that which would be predicted by serial independence.   

 
52 These measures could give results greater than 1.  This would indicate that the simulated data had more 
negative serial correlation than the actual data. 
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VI. Conclusion: 

 Although game theory predicts that people will play according to mixed-strategy 

equilibrium, most empirical research has not been consistent with this prediction.  Walker 

and Wooders (2001) examined mixed-strategy play professional tennis matches and 

found that professional tennis players satisfied the equal winning percentages condition 

of mixed-strategy equilibrium, but did not satisfy the condition of serial independence of 

service choices.   

 This paper changed the model of tennis used in Walker and Wooders (2001) by 

assuming that there was a short-term timing effect where a serve that you have just hit is 

less effective the next time.  I estimated the magnitude of this effect, determined what 

optimal play was under this model, and simulated how professional tennis players would 

play under this model.  I then used the “run test” to compare the distribution of serves 

under my model with the distribution observed in the data from professional tennis 

matches.  My conclusion was that the model explained a little under half of the deviation 

from optimal play found in the data from professional tennis matches.  Professional 

tennis players play closer to game theory’s predictions when tested using a model that 

reflects more of the complexities of tennis, but they still do not play perfectly. 

 These results suggest that professional tennis players are still not fully rational 

actors—their strategic abilities are very good but still limited in some way.53  It is 

possible that players have imperfect recall, which means that the returner cannot take 

advantage of serial correlation by the server—it is also possible that the server tries to 

choose serves in a relatively random fashion, but does not succeed.  There are many 

 
53 Since the players involved are top professional tennis players, it may also be reasonable to suppose that 
these players do play optimally and deviations from optimal play are primarily due to the fact that the 
model does not fully reflect the game of tennis. 
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explanations for why players may not play optimally in strategic settings and there is a 

growing literature devoted to explaining strategic interaction when players are not the 

highly rational players that game theory typically assumes.54   

One final explanation for deviations from mixed-strategy equilibrium play may be 

that there is an inherent cost to making good strategic decisions, especially while you are 

trying to remain focused on the physical aspects of a tennis match.  To use the 

memorable words of Jim Courier, a former #1 in the world tennis player, “I don't have 

that much mental energy, so I have to kind of guard it with my life."

 
54 For example, Erev and Roth (1998) study reinforcement learning in experimental games with unique 
mixed strategy equilibria.   
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Appendix: 

Example 1: In a tennis game where service choices affect the payoff matrix of the 
successive point, the strategy used by the server to maximize his chance to win the game 
is not generally equivalent to trying to win each point as if it was the only point. 
 
Consider a “game” of tennis played under the following simplified scoring rules (all 
points are played on the same side of the court).  If the server wins the first point, he wins 
the game (and the game is stopped).  If the server loses the first point, then a second point 
is played and the winner of the second point wins the game.  
 
Each player tries to maximize his chance to win the game.  Designate the chance for the 
server to win the first point as V1 and the chance for the server to win the second point as 
V2.  The server’s chance to win the game= V1 + (1-V1)V2 
 
By backward induction, on the second point each player will try to maximize his chance 
to win the point as if this were the only point (since there are no future points).   
 
On a point when each player maximizes his chance to win the point as if it was the only 
point, designate the server’s resulting chance to win this point as VL if his previous serve 
was to the left and as VR if his previous serve was to the right. 
 
From the perspective of the players deciding what to do on the first point of the game, the 
matrix now looks like this (entries represent the server’s chance to win the game): 
 

 
Returner  
Left Right 

Server Left πLL+ (1- πLL)VL πLR+ (1- πLR)VL 
 Right πRL+ (1- πRL)VR πRR+ (1- πRR)VR 

 
The same formula for the chance for the server to serve left as before applies and gives 
(after some algebra): S*

L= (πRL - πRR)/[(πRL -πRR) + (πLR- πLL)*(1- VL)/(1- VR)] 
 
The chance to serve left if the server treated this point as the only point is SL= (πRL - 
πRR)/[(πRL -πRR) + (πLR- πLL)] 
 
These chances are equal if and only if VL=VR.  That is, in this “game” of tennis, the 
chance for the server to serve in each direction is unchanged by the state of the game (so 
he plays each point as if it was the only point) if and only if the server’s chance to win the 
next point, given that it will be played by both players as if it is the only point, is 
independent of his choice of where to serve on this point.   
 
Call this condition—that the server’s chance to win the next point, given that it will be 
played by both players as if it is the only point, is independent of his choice of where to 
serve on this point—the Equal Subsequent Point Winning Percentages Condition (EWC).   
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It can also be shown by simple algebra that when VL=VR, the returner’s chance to 
anticipate to the left is the same as when he treats this point as the only point. 
 
Proposition 1: If the Equal Subsequent Point Winning Percentages Condition holds, in a 
game of finite maximum length where service choices only affect the payoff matrix of the 
subsequent point, it is the optimal strategy for each player to maximize his chance to win 
the game by playing each point as if it were the only point.55 
 
Proof: By backwards induction, 
1. On the last possible point of the service game, there are no future points so the players 
trivially play the current point as if it was the only point.   
 
2. Assume that for a game with a maximum of n points left, Proposition 1 holds.   
 
3.  Prove that if Proposition 1 is true for a game with n points left, it is true for a game 
with n+1 points left.  The matrix for the current point is as follows: 
 

 
Returner  
Left Right 

Server Left πLLHL+  (1- πLL)LL πLRHL+ (1- πLR)LL 
 Right πRLHR+ (1- πRL)LR πRRHR+ (1- πRR)LR 

 
πLL, πLR, πRL, and πRR are the server’s chance to win the current point, based on the serve 
and anticipation chosen.  HL is the server’s chance to win the game, conditional on hitting 
the current serve to the left and winning the current point.  LL is the server’s chance to 
win the game, conditional on hitting the current serve to the left and losing the current 
point.  HR is the server’s chance to win the game, conditional on hitting the current serve 
to the right and winning the current point.  LR is the server’s chance to win the game, 
conditional on hitting the current serve to the right and losing the current point. 
 
On the next point in the game after the current point, we know by assumption that the 
players will use strategies as if it were the only point.  By EWC, when the server plays 
the point after this point as if it were the only point, he must have the same winning 
percentage regardless of where his current serve is hit.  Thus, the chance for the server to 
win the next point is equal regardless of the current service location.56  This logic can be 
applied to every point in the game after the current point, so the chance for the server to 
win each subsequent point cannot depend on his current serve’s location. 
 

 
55 A game with a fixed maximum length does not have to reach its maximum length each time it is played.  
For example, a game that is won by the first player to reach four points (at which point the game is 
stopped) has a maximum length of seven points, even though it could stop after as few as four points. 
In the model in this paper (using the actual scoring system of tennis), each point affects the payoffs only of 
the subsequent point on the same side of the court, which is the point two points from now in the game.  
56 Note that due to the effects of timing, the matrices governing the next point will be different based on the 
server’s current action (so the server’s chance to serve left on the next point may depend on the choice for 
the current serve).  However, the equilibrium win percentage for the server will be the same by EWC. 
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Since the server’s chance to win each future point is independent of his service choice on 
this point, it must be the case that HL= HR and LL= LR.  Use this to calculate SL and AL, 
the server and returner’s equilibrium probability to serve or anticipate left.  
SL= (πRL - πRR)/[(πRL -πRR) + (πLR- πLL)] 
AL= (πLR - πRR)/[(πRL -πRR) + (πLR- πLL)] 
 
These chances for the server to serve to the left and for the returner to anticipate to the 
left are the same as the chances that when each player maximizes his chance to win the 
current point as if it was the only point (since πLL, πLR, πRL, and πRR are the server’s 
chance to win the current point, based on the serve and anticipation chosen).  
  
Thus, since this holds for a game with a maximum of one point remaining and holds for a 
game with a maximum of n+1 points remaining if it holds for a game with n points, this 
result holds for any game with a maximum number of points. QED 
 
In the model in this paper, each game in a tennis match does not affect the other games.  
Thus, players should maximize their chance to win each game as if it was the only 
game.57   
 
When maximizing the chance to win each game as if it was the only game means 
maximizing the chance to win each point as if it was the only point, players should play 
each point in the match as if it was the only point. 
 
It is an intuitive result that equal subsequent winning percentages cause players to make 
choices independent of the current game state.  Intuitively it seems likely that this result 
would hold under the normal scoring system of tennis as well, (where players alternate 
sides of the court and games are played first to four points, with a lead of two points), but 
a proof of that is beyond this paper. 
 
In the model that I use in the paper with the parabolic timing variable, the condition 
VL=VR will only occur (for all values of T) when specific conditions are placed on the 
matrix in question.  In particular, I will now show that VL=VR occurs (for all values of T) 
if and only if when the matrix is symmetric (πLR=πRL and πLL= πRR). 
 
However, it is clear that symmetry of point game matrices is a bad assumption to make in 
general.  By simple calculation, any symmetric point game matrix results in SL= ½ (that 
the server serves to the left with probability ½), which is definitely not the case.  Thus, 
the optimal strategy for each player will in general be different from maximizing his 
chance to win each point as if it were the only point. 
 

 
57 This result is intuitive and seems like it follows from Walker and Wooders (2000). 
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Proposition 2: In the model of the timing variable used in this paper, VL=VR occurs if 
and only if the underlying point game matrix is symmetric (πLR=πRL and πLL= πRR). 
 
Proof that if (πLR=πRL and πLL= πRR), then VL=VR: When πLR=πRL and πLL= πRR it is 
trivial to show algebraically that VL=VR (note that the point game matrix that results after 
a serve to the left is the same as the point game matrix that results after the serve to the 
right, except with the bottom and top rows reversed). QED 
 
Proof that if VL=VR, then (πLR=πRL and πLL= πRR): For ease of notation, let πLL= a ;  
πLR=b; πRL=c ; and πRR= d.  This means that the point game matrix can be written as [a b; 
c d] and the mixed strategy equilibrium conditions are b>a, b>d, c>a, c>d. 
 
After a serve to the left, the equilibrium winning percentage for the server on the next 
point can be calculated to be:  
VL= [(bc- ad) + T*(ad(1-a) - bc(1-b))] /[(b+ c –a –d)+ T( a(1-a) –b(1-b))] 
 
Likewise, after a serve to the right, the equilibrium winning percentage for the server on 
the next point can be calculated to be: 58 
 
VR= [(bc- ad) + T*(ad(1-d) - bc(1-c))] /[(b+ c– a– d)+ T( d(1-d) –c(1-c))] 
 
For simplicity of notation, let (bc-ad)= K and let (b+c-a-d)= R.  Then let (ad(1-a)- bc(1-
b))= NL,  a(1-a)-b(1-b)= DL, (ad(1-d) - bc(1-c))= NR, and (d(1-d) –c(1-c))= DR 
 
This reduces the equations to: 
VL= (K + T*NL)/(R + T*DL) 
VR= (K + T*NR)/(R + T*DR) 
 
We are looking for cases when VL= VR for all T (0≤T<1), so equating them and cross 
multiplying (T<1 guarantees that the denominators will be non-zero) gives: 
 
(K + T*NL)*(R + T*DR) = (K + T*NR)*(R + T*DL) 
Multiplying out and subtracting K*R from both sides gives: 
 
T(NLR + DRK) + T2NLDR = T(RNR + KDL) + T2NRDL (for all T) 
Since this equation must hold for all T, we can equate the components multiplying the 
same powers of T to get the two equations: 
 
NLR + DRK= RNR + KDL      (1) 
NLDR= NRDL           (2) 
 
First, solve for NR in terms of the other variables in (1). 
 
NR = (NLR + DRK - KDL)/R 

 
58 These calculations assume that the mixed strategy equilibrium conditions still hold on these points. 
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Then, substitute NR into (2) and solve for DL in terms of NL and DR. 
NLDR = DL(NLR + DRK - KDL)/R 
 
RNLDR = (NLR + DRK)DL – K(DL)2 

 
K(DL)2 - (NLR + DRK)DL + RNLDR = 0 
 
Use the quadratic equation to solve for DL in terms of the other variables. 
 
DL= [(NLR + DRK) ± √( (NLR + DRK)2 – 4KRNLDR)) ] / (2K) 
DL= [(NLR + DRK) ± √( (NLR)2 + 2NLRDRK + (DRK)2  – 4KRNLDR) )] / (2K) 
DL= [(NLR + DRK) ± √( (NLR)2 - 2NLRDRK + (DRK)2)]/ (2K) 
DL= [(NLR + DRK) ± √( (NLR - DRK)2) ] /(2K) 
 
DL= [(NLR + DRK) ± (NLR - DRK)] /(2K) 
 
Two roots: 
Case 1: DL= NLR/K, or 
Case 2: DL= DR  
 
In Case 1, DL= NLR/K, so by (2) KDR = RNR, and NR= KDR/R 
 
Substituting back into VR, VR= (K + TKDR/R)/ (R + TDR) 
VR= K(1 + TDR/R) / [R(1 + TDR/R)] 
VR= K/R.  (by similar algebra, VL= K/L as well) 
 
In solutions under case 1, VR is independent of T.  However, we know (see Lemma 1 in 
the proof of Proposition 3) that when the mixed strategy equilibrium conditions are 
satisfied, V is a strictly increasing function of the entries of the matrix and we also know 
that as T increases, two of the entries in the matrix must decrease.  As T increases and the 
entries in the matrix decrease, V must decrease.  Thus we cannot have any solutions of 
the form of Case 1.   
 
Consider case 2 from here on: In case 2, DL= DR so by (2) NL= NR 
 
Substitute back in to these two equations to get the following two equations: 
 
a(1-a)-b(1-b)= d(1-d) –c(1-c)   (3) 
 
ad(1-a)- bc(1-b)= ad(1-d) - bc(1-c)  (4) 
 
Equation 3 reduces to: 
 
b2 – c2 – (b-c)=  a2 – d2 –(a-d)  and then reduces further to 
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(b+c-1)(b-c)= (a+d-1) (a-d)   (3*) 
 
Equation (4) reduces to: 
 
b2c – a2d = -ad2 + bc2       and then reduces further to 
 
bc(b-c)=ad(a-d)    (4*) 
 
It is immediately apparent that if b=c, then a=d; also, if a=d, then b=c.  Thus (b=c, a=d) is 
one solution to the equations 3* and 4* and is the unique solution to these equations when 
at least one of ((b=c) or (a=d)) holds.   
 
I now show that there are no other solutions.  Assume there is a solution to this equation 
such that b≠c and a≠d.  Solve for the value for a in this solution, given b, c, and d. 
 
Divide (3*) by (4*) to get  
(b+c-1)/bc= (a+d-1)/(ad)  Cross multiply to get 
abd + acd – ad = abc + bcd – bc Group terms with a on the left side 
a(bd + cd – d – bc)= bc(d-1)   
a= bc(1-d)/ (bc+d – bc –cd)   
 
I now show that this value of a violates the mixed strategy equilibrium condition b>a (it 
violates c>a as well): 
 
Assume that there exists a value of a that satisfies the mixed strategy equilibrium 
condition b>a.  That means that (substituting in for a): 
 
b> bc(1-d)/(bc + d- bd- cd)  Divide both sides by b and cross multiply: 
bc + d –bd – cd > c(1-d)  
bc + d – bd – cd > c-cd 
bc + d – bd > c 
bc-bd > (c-d) 
b(c-d) > (c-d)  c-d >0, so divide both sides by (c-d) 
b>1  
 
But this contradicts our original assumption that b<1.  So there cannot be a solution to 
these equations for b≠c and a≠d that satisfies the mixed strategy equilibrium conditions.  
As a result, solutions to these equations must satisfy at least one of ((b=c) and (a=d)).   
 
Thus, the only solution to these equations is (b=c, a=d), which means that the only payoff 
matrix for which VL= VR (the server’s chance to win the next point, given that players 
use their equilibrium mixed strategies on that point as if it was the only point, is the same 
if he hits the serve on the current point to the left or the right) is a symmetric payoff 
matrix.  QED 
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Proposition 3: Whenever (πLL + πLR ≥ 1) and (πRL + πRR ≥ 1) both hold and at least one 
does not hold with equality, the server’s equilibrium chance to win the point must be 
greater than ½.   
 
Proof:  
Lemma 1: The server’s equilibrium chance to win the point is strictly increasing with 
each of πLL, πLR, πRL, and πRR. 
 
Proof of Lemma 1: The server’s chance to win the point in equilibrium, V, is V= (πLRπRL 
- πLLπRR) /(πRL +πLR - πLL- πRR).   
 
By symmetry, it is sufficient to show that the server’s chance to win the point is strictly 
increasing in πLR and πLL. 
 
By calculation, ∂V/∂πLR = (πRL - πLL)(πRL - πRR)/ (πRL +πLR - πLL- πRR)2.   
Since by assumption πRL> πLL, πRL > πRR, πLR> πLL, and πLR > πRR, each of these terms is 
positive so ∂V/∂πLR >0 and the chance to win the point is increasing in πLR. 
 
Likewise, by calculation ∂V/∂πLL= (πLR-πRR)(πRL -πRR)/ (πRL +πLR - πLL- πRR)2 

By the same assumptions as before, each of these three terms is positive so ∂V/∂πLL >0 
and the chance to win the point is increasing in πLL. QED 
 
Lemma 2: If (πLL + πLR = 1) and (πRL + πRR = 1), then the server’s equilibrium chance to 
win the point must equal ½.   
 
Proof of Lemma 2: V=(πLRπRL - πLLπRR) /(πRL +πLR - πLL- πRR).  By substitution for πLL 
and πRR, 
V= (πRL + πLR – 1)/[2*(πRL + πLR – 1)]= 1/2.  QED 
 
Without loss of generality, assume that (πLL + πLR >1) and (πRL + πRR=1).  Let πLL + πLR = 
1+ 2ε1, where ε1 is some positive constant.   
 
Consider the case when you have π*

LL = πLL - ε1, π*
LR = πLR - ε1, π*

RL = πRL, and π*
RR = 

πLL.  Then since π*
LL + π*

LR=1 and π*
RL + π*

RR =1, then the server’s chance to win the 
point is ½.   
 
In the case of πLL, πLR, πRL, and πRR, two of these values (πLL and πLR)  are greater than 
the values π*

LL, π*
LR, π*

RL, and π*
RR.  By Lemma 1 the chance to win is a strictly 

increasing function of each of these values, so the overall chance to win the point in this 
case must be greater than the chance to win in the previous (π*

LL, π*
LR, π*

RL, π*
RR) case.  

The chance to win the point before was ½, so the chance to win the point now must be 
greater than ½. 
 
Because of symmetry, an equivalent argument can be used to show that when (πLL + πLR 
=1) and (πRL + πRR>1), the server’s chance to win the point must be greater than ½.   
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The server’s chance to win the point is a strictly increasing function of the point game 
matrix entries, so if (πLL + πLR >1) and (πRL + πRR>1), the server’s chance to win the point 
must be strictly higher than it would be for the point game matrix (πLL – ε, πLR- ε, πRL, 
πRR) if ε>0.  Choose ε such that πLL + πLR= 1+ 2ε.  We know that the server’s chance to 
win a point will be greater than ½ for the point game matrix (πLL - ε, πLR- ε, πRL, πRR), so 
it must also be greater than ½ for the point game matrix (πLL, πLR, πRL, πRR). 
 
Combining the preceding three cases gives the result that whenever (πLL + πLR ≥ 1) and 
(πRL + πRR ≥ 1) both hold and at least one does not hold with equality, the server’s 
equilibrium chance to win the point must be greater than ½.  QED 
 
As was shown in part of the proof for Proposition 3, when (πLL + πLR >1) and (πRL + πRR 
>1) both hold, the server’s equilibrium chance to win the point must be greater than ½. 
 
By a similar argument to Proposition 3, when (πLL + πLR <1) and (πRL + πRR <1) both 
hold, the server’s equilibrium chance to win the point must be less than ½.   
 
When (πLL + πLR ≥1) and (πRL + πRR ≥ 1) and at least one of these inequalities does not 
hold with equality, we know by Proposition 3 that the server’s equilibrium chance to win 
the point must be > ½.  When both of these inequalities hold with equality, the server’s 
equilibrium chance to win the point (Lemma 2, above)= ½.  Thus, when (πLL + πLR ≥1) 
and (πRL + πRR ≥ 1), the server’s chance to win the point must be ≥ ½. 
 
By a similar argument, when (πLL + πLR ≤1) and (πRL + πRR ≤1), the server’s chance to 
win the point must be ≤ ½.  The contrapositive to this statement is that when the server’s 
chance to win the point is >1/2, then (πLL + πLR ≤ 1) and (πRL + πRR ≤ 1) cannot both hold, 
so at least one of (πLL + πLR >1) and (πRL + πRR > 1) must hold.   
 
Proposition 4: In a point game matrix, if 0< (πLR - πLL) ≤ M and 0< (πRL - πRR) ≤ M, then 
if the server’s chance to win the point is greater than (1+M)/2 this is sufficient to 
establish that both πLL + πLR >1 and πRL + πRR > 1 hold.    
 
Here is a heuristic proof:59  
 
For ease of notation, let πLL= a ;  πLR=b; πRL=c ; and πRR= d.  This means that the point 
game matrix can be written as [a b; c d].  Also for ease of notation assume that the mixed 
strategy equilibrium conditions can now hold with equality—that is, b ≥ a, b≥ d, c≥ a, c≥ 
d.60  The server’s chance to win the point in equilibrium, V, is V=(bc- ad)/(b+ c– a– d) 
 
With some loss of generality, assume that b= a+M.  That is, assume that the difference in 
the server’s chance to win the point, given that he serves to the left, when the returner 

 
59 In addition to this heuristic proof, I generated tens of thousands of point-game matrices randomly and 
none of those matrices disproved this proposition.   
60 When one or more of these conditions hold with equality the equations derived under the mixed strategy 
equilibrium conditions still predict equilibrium play, but equilibrium play now corresponds to one player 
having a dominant strategy.   
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anticipates correctly versus when the returner anticipates incorrectly is at its maximum 
permitted value, M.  The condition a+b>1 is thus equivalent to 2a + M > 1. 
 
The point game matrix can thus be written as [a a+M; c d] 
 
From here, there are different cases concerning the values of c and d (in particular 
concerning the value of c-d).  I will show that Proposition 4 holds in the two extreme 
cases, c-d= 0 and c-d=M, on the assumption that if this property fails to hold fails to hold 
in general cases, then it fails to hold at extremes (so if it holds at extremes, it will hold in 
general cases as well).   
 
Case 1: Assume that c=d  
c=c; d=c; (a ≤ c ≤ a+M) (determined by the mixed strategy equilibrium conditions) 
 
Show that if V> (1+M)/2, then this implies (a+b)>1 and (c+d)>1.  By substitution, this is 
equivalent to showing that V> (1+M)/2 implies both (2a+M) >1 and (2c)>1. 
 
V= [c(a+M)- ca] /M = cM/M V=c 
 
V> (1+M)/2  c> (1+M)/2  2c> 1+M 2c-M > 1  
If (2c-M > 1), then clearly (2c > 1) holds as well. 
 
We know a ≤ c ≤ a+M, so 2a ≤ 2c ≤ 2a+2M  2a-M ≤ 2c-M ≤ 2a+M 
Since 2c-M> 1 and 2a + M ≥ 2c-M, 2a+M > 1 holds as well. 
 
Thus by direct calculation, we have shown that V>(1+M)/2 implies both (a+b)>1 and 
(c+d)>1.   
 
Case 2: Assume that c= d+M 
c=c; d=c-M (a ≤ c ≤ a+2M) (determined by the mixed strategy equilibrium conditions) 
 
Show that if V> (1+M)/2, then this implies (a+b)>1 and (c+d)>1.  By substitution, this is 
equivalent to showing that V> (1+M)/2 implies both (2a+M) >1 and (2c-M)>1. 
 
V= [c(a+M)- (c-M)a]/(2M) = [ca +cM –ca +aM]/(2M) V= (c+a)M/ (2M)V= (a+c)/2  
 
V> (1+M)/2 (a+c)/2> (1+M)/2  a+c> 1+M a+ c-M >1 
 
Note that the condition (2c-M)> 1 can be rewritten as c + (c-M)> 1. 
Since c ≥ a, and a+ (c-M)> 1, we know that c+(c-M)> 1 holds as well. 
 
Note that since a ≤ c ≤ a+2M  2a ≤ c+a ≤ 2a+2M   2a-M ≤ c+a-M ≤ 2a-M 
 
Since 2a-M ≥ c+a-M, and c+a-M>1, 2a-M >1 holds as well.  Since 2a-M >1, it clearly 
follows that 2a+ M > 1 holds as well.  Thus by direct calculation, we have shown that 
V>(1+M)/2 implies both (a+b)>1 and (c+d)>1.   
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