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Abstract

The purpose of this document is to demonstrate how spatial models can be integrated into
purchasing decisions for real-time bidding on advertising exchanges to improve ad selection and
performance. Historical data makes it very apparent that some neighborhoods are much more
interested in some ads than others. Similarly, some neighborhoods are also much more interested
in some online domains than others, meaning viewing habits across domains are not equal. Basic
data analysis shows that neighborhoods behave in predictable ways that can be exploited using
observed performance information. This paper demonstrates how it is possible to use spatially
correlated information to better optimize advertising resources.
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1 Introduction

The purpose of this document is to explore the markets of real-time bidding (RTB)
exchanges of online advertising. These exchanges are fast paced auctions for ad space on various
websites. Unlike standard stock markets, these single advertisements are used only once for a
single ad and cannot be resold. Related to online content buying is the fact these ads are spread
across the country. It is possible to evaluate the performance of these ads by comparing their
relative geo-spatial distributions. Since the country has a finite number of inhabitants, a
continuous analysis of a surface across the country is not reasonable. Similarly, operating on a
per person scale is too fine of a resolution. Such a scale is computationally expensive and tends
to wash out any observable spatial trends. Instead, the country can be divided into 52,000
neighborhoods that represent groups of people spatially related to each throughout the day. These
neighborhoods are determined by grouping individuals that share similar traits such as
socioeconomic status, race or any other factor. This number of divisions creates an optimal
coarseness of regions that people tend to group. If too many divisions are used, the model will
not accurately predict spatial elements. Having too many groups introduces too much noise into
the data making it difficult to identify trends in data. Using too few divisions creates an almost
uniform surface purged of any usable trends. 52,000 neighborhoods is a fine enough scale that
separates dissimilar neighbors into subsets without adding too much noise. As geo-correlated
data becomes more readily available, additional divisions will become increasingly more useful.
When individuals move in and out of these neighborhoods, people naturally tend to segregate
themselves spatially and mentally. Having record of the segregation allows for the optimization

of targeted adverting distribution based on location.

Essentially. the concept is to use historical data to predict the optimal manner in which to
successfully distribute future ad space. The only requirement for a success metric is that it is
quantitative. The analysis was performed in conjunction with MaxPoint Interactive, a real time
bidding advertising company. MaxPoint provided the means by which to instantly adjust the
purchasing and ad distribution algorithm to observe how spatial effects can be used to optimize
ad campaigns. Tests performed in this document use the standard metrics of click through rate,
view through rate and pixels as examples. Clicks represent when an ad is clicked on and linked

to a new page. A view is when the consumer interacts with the ad in a manner that indicates they



have acknowledged the ad. A pixel is a term for any other metric that might be used, such as if
the consumer hovers a mouse over the ad or triggers a video ad to play. Through initial analysis
of the data, it was observed that a view through rate is a better metric as it is observed more
frequently. This means that view through rates had the least noise or misleading data. The
optimization of ad space allocation is done by identitying what attributes of a consumer and ad
produce the most successful outcome. Currently, the method is to produce a regression of
predicted outcomes that can be used to appropriately allocate advertising resources. This
regression uses independent variables such as consumer income levels. housing values, or
educational zoning. Locations with low predicted success rates are not advertised to and those
with higher success are focused on. Currently, the model does not consider spatial correlation, a
potentially vital component of the residuals of this regression. Spatial correlations between the ad
and consumer preferences can be used to reduce the error associated with the current model.
Considering this idea leads to an optimal geo-spatial ad distribution that both lowers cost by
reducing less successful ads while improving success rates by catering ads to areas in which they
are most effective. Thus, the final goal is to improve the current model to incorporate spatial
techniques to further explain the residual error. The next portion of this document will review

various spatial models and their strengths and weaknesses.

2 Spatial Modeling

This portion of the document is devoted to the introduction of spatial modeling. The
purpose is to create a general understanding of the mechanics of spatial modeling and how it can

be applied.
2.1 Linear Regression Model
Yi=PBo+ BiXy + frXy+... BuXy + &
&~N(0,0%2) i=1,..,n

This is a simple demonstration of a linear regression of n explanatory variables on a
dependent variable Y;. The vector X, represents a set of explanatory variables with associated

parameters, f3,. These explanatory variables consist of any relevant data correlated with ad



performance. The vector Y represents the performance of observed ads. Each observation has an
underlying mean of 8, X,, with a random component, &;. This error term, &;, is assumed to have
the standard traits of an error term. This means the error is normally distributed with an average
value of zero, and is completely uncorrelated to X, or ¥;. Each observation i represents a set of
points in space with observed values at those locations. This model can be modified to include
more complex regressions such as logarithmic or hi gher order powers or moments of explanatory
variables. This model does not take into account any spatial correlation between points and is
assumed to be a basic representation of the current model under which an advertising agency
may operate. Normally it is assumed that these points are statistically independent, implying that
E(g;g5) = E(&;)E(g;) = 0. This is not true in a spatial context. Rather, the value of Y, depends on
Y2 and visa versa. For example, predicting if it will rain in your yard is a function of indicators
like air pressure, air saturation, temperature, but most usefully knowing whether or not it is
raining in your neighbor’s yard. The spatial element can be used to better predict data beyond

this simple regression model.

2.2 Spatial Model

By performing linear regressions between each point to the rest of the set, it is possible to
build a system of equations that can evaluate spatial components of a data set. This is of little use
though since it results in a system with more parameters than observations. Such a process is also
time consuming and computationally intense, with n” relations to be considered. The solution to
over-parameterization is to induce structure based on spatial relations. This is done by

introducing parameters that are geospatially defined. This is the spatial autoregressive process.

n
Y; =,OZ Wi Y + &
i=1

&§~N(0,0%) i=1,..,n

The particular form of this equation used can be found in LeSage and Pace (2009, p. 8).
The idea is that Y; is best predicted by some initial set of ¥; given spatial relations, W; - The

intercept term is eliminated under the assumption that the vector of observations on the



independent variable are deviations from the mean of the entire set. The Y1, W, ;Y; term is called
a spatial lag since it represents a linear combination of Yj values constructed from neighboring
observations. The elements in Wi; are an n by n spatial weight matrix that determine how points
in Y; are related. So for instance, to predict the likelihood of someone owning a BMW, one can
observe the cars their neighbors’ drive and use the correlation between these neighborhoods to
make a reasonable guess. The matrix G as seen below represents an example of an evaluated
area. The area is shown by Y; j values that represent some metric at a location. Each Y;j value in
this matrix is a success rate for a campaign at that location. For calculations, the matrix must be

lincarized into Y to be multiplied by W;;.

Yo

Y12

Yi3

yll ylZ y13 YZI

G = [Y21 Yzz Y23] 2> ¥= Y22

Y31 YBZ Y33 Y23

Y31

Y3,

| ¥iq
[010 1 .5 0 000~(Vn‘
101 .51 .5 00 0 Y12
010 0 .51 00 0 Yis
1.5 0 010 1 .5 0 Yo,
WyY=1.5 1 .5 1 0 1 .5 1 .5(«|Vp
0 .5 1 010 0 .5 1 Yo3
000 1 .50 010 Yay
000 .51 .5 101 Yas
000 0 .51 0101 |y,

The spatial model alone introduces the parameters W; ;j and p, which respectively add a
spatial component and weight indicating spatial importance. W;; is an n by n matrix that
contains the spatial correlation between each location in the model. Spatial analysis calls for the
application of assumed spatial relations rather than measuring the correlation between each set of
points as in a standard regression. This is because the purpose of a spatial analysis is to identify

the spatial elements that determine an outcome to contribute to a regression analysis. The



weighting matrix can be specified in many ways, of which the examples shown here are from
Brusilovskiy (2009):

* The weight for any two different locations is a constant

* All observations within a specified distance have a fixed weight

* K nearest neighbors have a fixed wei ght and all others are zero

* Weight is proportional to inverse distance, inverse distance squared, or inverse
distance up to a specified distance

* Some other method

An explanation of this matrix is summarized here from LeSage and Pace (2009, p. 21). It
is standard for a weighting matrix to have identical values mirrored across the diagonal. This
makes sense since the relation from point A to B should be the same for point B to A. This
means that when establishing the weighting matrix, one corner of the matrix can be left as
zeroes, pulling data from the other corner of the matrix. This trick will increase computation
efficiency but will not be used for discussion purposes. For simplicity, the example above shows
a world where there is perfect correlation (1), marginal correlation (.5), or no correlation (0).
Each Y¥; contains the data for latitude, longitude and a performance value. Those points directly
next to a given point are allotted perfect correlation., diagonals with .5 and with all others as 0.
Every value shows how each ¥; impacts those next to it. So for instance, W;;Y; 4 is a function of
p(Y1z + .5[Y2,] + Y53). This calculated result can casily be seen by looking at matrix G, which
maintains the visual spatial relations. The diagonal of matrix W is zeros since there is no spatial
impact for a location on itself. The parameter p is used as a weighting, or correlation factor. to

alter the degree of importance placed on the spatial component of the model.

The main drawback of such a model is that a large spatial correlation matrix with n2
entries must be made where n is the number of locations. More importantly, such a model
requires an initial value for each Y; to spatially adjust. This is the equivalent of having a lagged
dependent variable. The model requires the use of a dependent variable in the regression creating
an endogenous problem. An example is where a current performance value for every point is

needed prior to generating a spatially dependent prediction of those already known values. This



is a problem when attempting to predict the unknown performance of a location. Lastly, notice
that the spatial arrangement of locations in G has been idealized as a square. This is almost never
the case. For this reason., it is advised to either maintain a linearized location vector Y with a

particular order or to construct a reference library for these values.

2.3 Spatial Autoregressive Model (SAR)

For this model, the parameter a is used to represent a vector of mean Y; values for each
point. This is multiplied by the identity matrix in to create a diagonal matrix of these values. The
purpose of this is to accommodate for offset induced when the set Y does not have a zero mean
value. The idea is to force the spatial matrix to evaluate changes in the data, rather than overall

performance. The equation is seen below as it appears in LeSage and Pace (2009, p. 32).

Yo =ain+ pW;Y, + ¢
Iy — pW)Y, = ai, + ¢
Vo=l = pW) iga + (I, — pW) e
g~ N(0,02l,)

The expected value of each observation ¥; will depend on the mean value a plus a linear
combination of the values of neighboring points scaled by p. This shows how the data are
generated in a simultaneous, spatially autoregressing nature, where the model derives its name.
An infinite series is generated by taking further powers of W as the model considers second,
third and higher order neighbors. So the matrix W? reflects second-order contiguous neighbors.
Since the second order neighbors are neighbors to the original i observation being considered,
W? will have positive elements on its diagonal. If additional, higher orders of neighbors are
considered, the solution generates an infinite series. When this series is evaluated to an infinite

number of neighbors, the solution converges on the following equation.

na+¢e+ pWe + p?Wae ...

n I_p

Although, considering an infinite number of neighbors would be impractical for the

proposed problem. As such, it will later become an optimization problem to determine the best
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order of neighbors to consider. The spatial autoregressive structure can be combined with a

standard regression to produce the standard regression model shown here.
Yo = pWY, + BiXi + &
g~ N(0,0%)

Although merely a synthesis of the two models above, this noteworthy expression is the
foundation for useable spatial modeling functions. Originally, models that did not consider
spatial factors produced biased estimates of ;. The use of the spatial matrix W in combination
with the linear regression alters the predicted parameters to better match their actual values
independent of location. This is the type of model that is most applicable to the advertising
market. As Gaetan and Guyon (2010) point out, the only problem is that the model still has the
problem of endogeneity, containing a lagged variable. The parameters to be estimated are the
standard regression parameters, ;. p and o. If the parameter p takes a value of zero. there is no

spatial dependence, and the model is a standard regression.

2.4 Spatial Lag of X; Model (SLX)

This model is similar to the SAR model except this time the independent variables are
also spatially evaluated. Such a model would be appropriate for regressing housing values or
even community value of pretty landscaping. The presence of pretty landscaping is positively
correlated with housing values, but also impacts the value of the neighbor’s homes. In this case
both the value of the home as well as the presence of landscaping are spatially correlated to

housing prices. The model is specifically written in LeSage and Pace (2009, p. 36) as:
Yi = aip + BiXi + YW Xi + &

The initial linear regression is present with a representing a diagonal matrix containing
intercept values. Instead of p, y is now used since the correlation factor is now a vector with
values for each X;. Wj;, is now a three dimensional matrix with spatial weightings for each X;.
The biggest drawback is a significant increase in the computational power required to produce

such a model. This is because each of the independent variables X; is spatially evaluated between
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themselves, requiring (nzi) correlations. This model is called the spatial lag of X model, or SLX.
since the model contains spatial lags, WX, of neighboring characteristics as opposed to just
observed outcomes. A benefit of using this model is that it provides a better understanding of
how individual population characteristics determine the spatial distribution of ad performances.
When only the performance metric is spatially regressed, as in the SAR model. the spatial
component can be accounted for, but not explained. As discussed by Diggle, Fuentes, Gelfand
and Guttorp (2010), the SLX model is able to indicate what parameters contribute to success in a
spatial context. Knowing these relations can be of value, but it is significantly harder to

implement an SLX model and is computationally taxing.

2.5 Time Lag Model

Most cconomic decisions are made by analyzing the behavior of relevant variables over a
past time period. For instance, it is observed that children tend to most influence a parent’s
choice of cereal purchase when that desired cereal is in direct sight. Hence, sugary cereals
marketed towards children tend to be at child-eye level. on lower shelves. The response of
product placement is possible due to an analysis of the past sales observations. This time element

can be mathematically modeled and introduced into a spatial regression.

Consider a relation where the dependent variable, Y., at time ¢ is determined using a SAR
model that depends on space-time lagged values of that variable from neighboring observations.
This generates a time lag of the neighboring values of the dependent variable in the time period

t-1. The result is a spatial weighting matrix Wi t-1- The final model as follows:
Yor = ptwij,t-l Yot-1+BiXie + Eit

This last generic model introduces the concept of time lagging. Historical data are used to
create prediction parameters for future outcomes. This is especially useful when endogeneity is
present in a model. The W,_; matrix can be applied to the SAR model to predict future outcomes
at time t. Since this matrix is created from historical data it must be assumed that the change in
spatial properties between time intervals is not significant. Each subsequent time is predicted

using the adjusted W matrix from the actual previous outcome. This model is essentially a time
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lagged autoregressive model. It has the advantage of being able to regress into the future,
predicting unknown outcomes from previous observations. This is the model on which the

analysis will continue since it is indicative of the data being used.

Notice that a recursive substitution occurs when Vi e—1 is substituted with

Pe-1Wijt—2Vnie—o + BiXir—1 + & ¢_. If this substitution is performed q times, the prediction of

Y .1 becomes:

Ve = U+ pW + p*W?2 .+ pd=1WI-1)XB + PIW S Yeeg +u

U= & +pW£t_1 +p2W2££—2 ot pq_lwqﬁlet__(q_l)
The expression can be simplified by taking the limit as q goes to infinity, yielding the
result in LeSage and Pace (2009, p. 70):
lim E(Y,) = (I, — pW)™'Xp
q—oo

This shows that a SAR model is possible from a time-dependent series of decisions for

various points in space dependent on each points’ neighbors.

3 Measures of Spatial Autocorrelation

The main problem with such models is determining if a spatial model is appropriate.

Whenever additional parameters are added to a model, the correlation can only increase. This

means that if a small, possibly random, improvement is observed, there will be false indications

that a spatial model is useful. This means that a standard metric for determining spatial

significance must be used.

13



3.1 Moran’s |

Moran’s | is a test for global spatial autocorrelation of a continuous data set. The test

statistic is represented and explained below as shown in Lembo (2008, p. 10).

n XX = 0)(x - %)

=% SG-D

So is the sum of elements of the weight matrix W. Moran’s [ is similar to the correlation
coefficient in that it varies over +1. In the absence of autocorrelation, I has an expected value of
-1/(n-1), which converges on zero with large values of n. A value greater than zero indicates

positive correlation and less than zero as negative correlation. The variation of Moran’s I is:

o n((n2—3n+3)51—nSz+3S§)-—k(n(n—1)51—2nSz+6SE)
Bl = (n-1)(n-2)(n-3)s2

S, = %Zi:j(wij + Wij)? = 28, for symmetric W containing 0°s and 1°s
Sz = Xi(Wio + Woi)? where Wy, = 3, Wij and Wy; = 3, W,

In standard practices it is proper to evaluate the variation to ensure statistical significance
is achieved. This prevents improper reporting of untrue results. The second method of evaluating

spatial autocorrelation is Geary’s C.

3.2 Geary’s C

Geary’s C is a test statistic based on the deviations in responses of each observation with

another. The parameter is C such that:

_n- 1%:%; Wij(xi - xj)z

¢ 25 2ikx — X2

Geary’s C ranges from 0 having maximum positive autocorrelation to 2 with max
negative autocorrelation. A value of 1 is expected for a data set with no autocorrelation. If

positive autocorrelation is observed, the variance of C is:
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Var(C) = 5 (S5l(n* =3) —k(n— 1]+ S;(n — 1)[n? = 3n + 3 — k(n — 1)] + -
0

n(n —s)(n—s)
28,(n = D[k(? —n +2) — (0 + 3n — 6)])

So. Si and S; are the same as for Moran’s 1. Geary’s C is similar to Moran’s I but is generally
accepted as placing greater weight on local spatial correlation over global. Moran’s | tends to be
more sensitive to extreme values of Y; where Geary’s C is more sensitive to differences in small
neighborhoods. This generalization is taken from Lembo (2008, p. 12), who explains in detail
how, generally, Moran’s | is preferred as it is consistently more powerful than Geary’s C. As

such, the metric of Moran’s [ will be relied upon as the more important spatial statistic.

4 Theoretical Example

This example will be a walkthrough of how spatial models can reduce the residuals of a
regression. It is similar to the demonstration in Bivand, Pebesma and Gomez-Rubio (2007)
except that theoretical data is used to make trends more obvious. Figure 1 below is an example of
observed success rates over a given area. This could be any quantitative success metric, such as
the initially observed click through rates (CTR) for a campaign over a given area outlined by the

XY plane.
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Figure 1: Initial observed data'

The two main trends observed in the data are an upward sloping plane and a local
maximum in the middle of the area. A firm’s multivariable regression of this data might look

similar to Figure 2 below. Spatial arrangement is currently not used in the prediction of
campaign performance.

Figure 2: Initial regression

" Data modeled from the equation: IO*cxp(-S*(((x[i]-m/S)**2f(2*sld(x)**2))+((y[i]-

m/3)**2/(2*std(y)**2)))) +(x[i]+y[i])**2/25 where X,y are random locations for given success
rates
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The local peak in this plot could possibly represent the location of a store. As the distance
from the store increases, a customer’s willingness to travel to make a purchase decreases. The
overall increasing trend could be the transition into a neighborhood with different purchasing
habits. The residuals of this regression can be seen in Figures 3 and 4. To the left is a similar 3D
view and to the right is a downward view of the same residuals, but with the actual observed data
points indicated on the plot. Using spatial correlation, it is possible to interpolate the value of

points in between the actual observed data.

Interpolated Data

e Telh

15
X direction

Figure 3: 3D residuals Figure 4: 2D residuals

The interpolation points out that there is a clear trend in the residuals. This is done to
visually indicate the potential need for the construction of a spatial model from the original
regression. What this indicates is that the original model is incorrectly estimating the click
through rates for a given ad in a manner that could be explained spatially. Had a spatial element
been considered, the model could have better predicted the CTR. F igure 5 shows the new model

considering spatial relations.
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Figure 5: Spatial model

Notice how the spatial model appears to be a synthesis of the original model plus the

weighted spatial elements in the old residuals. The new residuals between the spatially adjusted

model and the observed data can be seen in Figure 6.

Figure 6: New residuals

The key point is that the new residuals are almost perfectly randomly arranged and less in
magnitude than before. This indicates that there is significantly less unobserved trend in the data

and that the spatial model was both appropriate and successful.
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5 Direct Application

Spatial modeling cannot be used in the manner presented to solve the problem of
optimally distributing ads. Rather than trying to best model a surface of success rates over an
area, the objective is to be able to predict which locations would perform best given a partial set
of success rates. This means that rather than interpolating the spatial prediction at every point on
a surface, the computation is reduced to predicting values at digital zips not already campaigned
in. This is because rather than a continuous surface. the country is divided into discrete locations
called digital zips. The estimated values of these points are compared to determine which would
be the best to add to a campaign. This ‘twist’ to the basic spatial modeling technique is

demonstrated in a backtested example below.

6  Data Source and Implementation

The remainder of this document uses data provided by MaxPoint Interactive. Data was
provided in the form of SQL tables and is manipulated using Python with the Pysal plugin. The
work of Anselin (2005) served as a reference for gaining familiarity with the implementation of
spatial algorithms. The relevant data included items such as locations, success rates, city
divisions, school zones, income distributions, and other population characteristics organized by
geography. Administrative access to ad campaign locations was granted to allow for the
alteration of ad distribution. The analysis of spatial dependence began with observing success
metrics over different regions of the US for various ads. The proprietary “digital zips’ (DZs), or
neighborhoods, were mapped according to latitude, longitude and their success rates. The rates
used were clicks, views, pixels or specific user actions on a webpage. All of the data for each
individual ad were aggregated and regressed to determine the presence of spatial correlation.
Python code was written to enter the SQL servers, analyze a campaign for spatial relations and to
adjust the distribution of ads accordingly. Changes in performances of new ad locations were
observed in real time, with useful results yielded by the end of each day. Further optimizations
were performed to hone the algorithms to better seek out the best locations to advertise as well as
those locations to avoid. These optimizations ranged from determining the best number of

neighbors to consider, how large of a radius those neighbors must be within or how data
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clustering should be handled. Specifics regarding how each of these elements impacted the
algorithm are discussed in the optimization section. Before live campaigns were adjusted,

backtesting was used to verify the functionality of the spatial model.

7 Backtest Results

The purpose of backtesting is to show how spatial modeling could be used to optimize
currently running campaigns, without accidentally harming the success of a running campaign.
The goal is to use already observed data to predict the next optimal digital zip to advertise in.
Ads are catered to the areas that have the highest likelihood of success and potentially stopped in
those areas of low success. The results from adding and removing digital zips from a campaign
are monitored for accuracy. Over time, this model learns and adapts to target areas of highest

success rates.

Backtesting was performed by taking past data from an observed video campaign,
randomly removing a percentage of the data and then attempting to spatially predict which points
performed the best of the points removed. This backtest was performed on a real, past campaign
for four different spatial weighting methods with the purpose of selecting the optimal weighting

method. The methods tested were those found in Gaetan and Guyon (2010):

* Constant weighing for k nearest neighbors

¢ Constant weighting of neighbors within a fixed radius

* Discounted distance weighting for k nearest neighbors within a fixed radius

* Considering congruent neighbors with higher order neighbors having decaying
weight

* A combination of these or other innovative methods

[t was determined that the best performing spatial model was to consider only k nearest
neighbors within a fixed radius while discounting the weights of those neighbors that are farther
away. Apart from consistently outperforming other methods, there was some logic to these
choices. A problem was observed for neighborhoods in high population density areas. The issue
is that success rates are infrequently observed. Only 1 in 1000 ads are clicked on at best,

20



meaning success rates are low. Clustering causes the spatial interpolation to flatten into less
useful results. Limiting spatial points to the k nearest neighbors prevented the clustered areas
from out-weighing outlier areas where hi gh success rates are observed. When high levels of
clustering were observed, the predicted performances were underestimated due to the high
number of poorly performing points. The problem is that the high concentration of poorly
performing points overwhelmed the sparse, good performing points in these areas. This method
forces spatial elements to only consider congruent and second neighbors. The reason for having a
fixed radius is for when a digjtal zip is in a rural area. By having a limited radial distance, points
excessively far away from a digital zip would not be spatially considered even if within the k
nearest points. Lastly, weighting was discounted based on inverse distance between points. As
the distance increased between two points, the spatial impact decreased. This allowed closer
points to make a larger impression on the spatial weighting of a point. This model was used for
the remainder of testing. Figure 7 shows a boxplot of the results from 4000 consecutive random
backtests. The columns from left to right are a random control, the spatial model, and the
theoretical maximum. The y-axis represents whatever success metrics were available for the

random campaigns chosen. This included click, view through and pixel rates.

Quantile Plot

0.040

0.035

1
0.030 ' i
1 —
I t ---
1]
0.025 EZ’ E’

0248 0259  .0346

0.020

el
0.015 1 3 3
Random Spatial Model Theoretical Max

Figure 7: Results from backtest
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[t was observed that compared to randomly choosing neighborhoods, the spatial model
had a greater average performance by 4.4%. This meant that the spatial model was able to select
new campaign locations that yielded 4.4% higher success rates. Compared to randomly picking
locations, taking advantage of the spatial characteristics was able to consistently demonstrate
better use of ad space. In 90% of iterations, 1/3 of optimally identified locations were contained
in the maximum case. This meant that if the algorithm identified 9 new neighborhoods to
advertise in, 3 of them were actually later observed as the highest performing locations in the
entire possible location set. The overall low average is due to low starting spatial correlation and
clustering of data points. Lastly, it was noted that outliers were never observed below the mean
of the spatial model. The cross-marked outliers consistently outperform the rest of the boxplot.
This meant that although the spatial model did not always outperform random selection, the
outlier points were almost never bad performers, but rather observed exceptionally good results.
This meant that the model could consistently identify strong performing outliers, and

consistently avoided any incredibly poor performing points.

8 Live Test Results

A similar method to the backtest was used to implement the spatial method into a live
campaign. Instead of removing data, the campaign was analyzed to determine which digital zips
would perform best that were not already being delivered ads. Only a single iteration was
performed in which the spatial regression added three new digital zips to the campaign. The
results were initially discouraging as 2/3 of the identified digital zips were low impression areas.
This meant that the areas did not necessarily perform poorly, but that people in these
neighborhoods did not tend to visit websites that contained places to purchase ad space. This
meant that there were minimal opportunities to evaluate the effectiveness of an ad since there
were few ads distributed. Although, for campaigns where impression volumes were not an issue,
new digital zips tended to outperformed the initial data set when averaging over the same time
intervals. Comparing performance over the same days showed that the spatially chosen points on
average performed 56.8% better than the original data set. Overall, the average click through
rates (CTR) of the campaign was increased by 1.18% over 4 days from the addition of 3 digital

zips, meaning the average of the new locations ranked in the 92 percentile for performance
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overall. Figure 8 shows the performance of the overall campaign compared to the spatially

chosen points.

Performance Comparisan
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Figure 8: Spatial Points vs. Entire Campaign

Additional tests were performed on two Target and AT&T campaigns using click through
rates. This time six new digital zips were added to each campaign. The performance of the
spatially added points and the original campaign were monitored for about two weeks, The key
observation in each of these tests is that the spatial points are always better than the campaign as
a whole. This was a consistent trend for tests performed on other live campaigns. Plots of the
performance of these examples can be seen in Figures 9 and 10. In these two examples the

original data had 5.61% and 9.8% spatial correlation.
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Just as points can be added to a campaign, digital zips can be identified as poor spatially
performing. By removing these points the campaign can be further optimized. Figure 11 shows

the results from removing digital zips from a campaign.
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Figure 11: Removing digital zips for Target campaign
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The red line is the click through rate for the spatial points selected for removal. The blue
line is the overall campaign average with green lines being one standard deviation. The key is
that the red line is consistently below the average. By removing these points, the poorly allocated
impressions are redistributed to the higher performing areas. Combining the methods of spatially

adding and removing points yields the results seen in Figure 12.
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Figure 12: Comparing percent change in performance to spatial correlation

The red bars represent the percent change in overall campaign performance from the
changes made by the spatial algorithm. The turquoise bars represent the overall spatial
autocorrelation in the campaign. The scale of spatial correlation is 1/10 of the measured value to
keep the scale of the superimposed data similar. The campaigns graphed were chosen based on
their measured spatial correlation to demonstrate the trend. The success metrics were mixed
among campaigns. The specific ads in order were for a cereal bar company, Target, unknown, a
local weather station, Target and AT&T. The key is that there is a proportional trend between

increasing spatial correlation and percent increase in campaign performance.
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9  Known Issues/Comments

The purpose of this section of the paper is to outline the specific issues associated with
applying spatial models to the particular situation of using advertising data. These issues may not

exist in other data sets, but caused enough trouble in the context of advertising to warrant review.

9.1 Measurement Metric

The main problem with the measurement metric is the scarcity of observed success rates,
in particular clicks. A campaign must have a large number of impressions to have a true estimate
of the success rate for a given digital zip. It is important to understand that an area with 1 click
and 1 impression does not mean that a CTR of 100% is the true value. There must be a threshold
number of impressions needed before a success rate should be even considered. In addition to
this, performance of the overall algorithm was increased when implementing a decay function
that punishes digital zips with lower impressions. For the live and backtested results. a threshold
of 500 impressions was used. In the future, this could instead be a dynamic number or function
of how long a campaign has been running. Three different mechanisms for discounting weights

due to inadequate impression volume were considered. These were:

* Linear decay
* Log-normal decay

* By Michael EIs’ function:

i Hs[(ef(n—em /.
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(Ot where e; and i; are the i" event and impression respectively

The particular decay function chosen was the cumulative distribution (DDF) of the log-
normal distribution. The impressions were distributed across a CDF and their respective weights
were multiplied by the corresponding areas under the curve. This meant that the weights of areas
with relatively low impressions were discounted accordingly. The reason for this is to account
for instances were an area is delivered a single ad resulting in one click through. This would
indicate a vastly overestimated success rate of 100%, causing the algorithm to further target this
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point. The problem is fixed by discounting the success metric seen in areas with low ad volumes.
[t was observed that without this feature, the same end locations were selected, but that it
required many more iterations and observations to hone in on the optimal locations. Without this
extra element, it took on average two days for the algorithm to identify when a location did not
have enough impression volume to justify a high success rate. When using this additional

discounting method, the average time was reduced to an average of 5 hours.

9.2 Low Spatial Correlation

The amount of improvement from using a spatial algorithm is limited by the initial
amount of spatial autocorrelation. If the data being spatially analyzed have a low degree of
spatial correlation, it is unrealistic to expect vast improvements in the observed success rates for
newly added points. This makes some campaigns better candidates than others for spatial
analysis. Determining which are best can be done through measuring Moran’s I, Greary’s C, and
the presence of clustering. It was found that high values of Moran’s I are a direct indication that
a data set has strong potential for increases in performance. The converse of this is not true. Low
levels of Moran’s [ did not mean spatial correlation was not appropriate. When Moran’s [ was
low, Greary’s C acted as a good second indicator of spatial correlation. When both of these test

yielded poor results, spatial correlation is not likely to have a strong benefit to a campaign.

10 Discussion of Results

Spatial modeling is a unique tool that has a vast range of applications. The general
problem with its use is that the results are independent of the path. This paper has demonstrated
how such a model can be applied to better predict future outcomes based on past errors. It is not
yet clear though as to what this model implies about the system it evaluates. There is great room
for interpretation as to what the presence of spatial autocorrelation means for a population in

terms of how they respond to advertising.

A large concern of online advertising is that the majority of successful clicks are due to a

small subset of the community that does not represent the population as a whole. Success
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statistics assume that the population as a single entity is responding to adverting to comprise an
average. The problem with this, for instance, is that the rate at which a 35 year old mother clicks
an ad is much higher than her son, who has become “ad blind’ from being overexposed to online
advertisements. It is clear that not all ads are the same, so the hope is that their responses should
not be the same. Although it seems like a basic observation, the same group of individuals does
not respond to all advertising similarly. It was observed that where one ad performs well does
not necessarily indicate the success of another ad. This is an excellent observation as it indicates
that the ads are being responded to by different groups of people rather than the same individuals
cach time. This means that the specific ads are hitting their intended targeted populations. This

leads to the next observation that a click is not critical.

For a campaign such as the Buffalo Local Weather station, clicks have great significance.
This ad was distributed in the Buffalo area with the intent of driving additional views to their
homepage, which provides local news and weather information. This campaign was very
successtul, resulting in a high overall click through ratio. The locations that performed the best
were the more rural parts of Buffalo City, Wisconsin. This was not an expected result, meaning
that the spatial model was very useful in adjusting the performance of this campaign. For other
ads, such as for Audi, there was a much lower click through ratio. Although, when tracking
delivered ads and Audi home page views, there was a strong correlation between the ad delivery
time and the time at which additional views on the home page from that area were made. This
means that although the consumer is not clicking on the ad, they are still visiting the webpage
from a new tab in the browser. Although this accomplishes the purpose of the ad, it leaves no
directly measurable footprint by which the ad performance can be evaluated. Success can only be
inferred. Despite strong spatial correlations with Audi ownership, the ads had a mostly uniform
response. This meant that it was better to optimize this campaign based on which consumers are
most likely to purchase an Audi rather than optimizing on areas just likely to click on an Audi
ad. Campaigns for specific consumable goods on the other hand struggled at getting any
measureable attention. For instance, a campaign for Kashi Cereal snacks observed almost no
clicks. This is likely because it is a familiar consumption item that has minimal online
interactions to drive someone to seek more information by clicking on an ad. On top of this,
many companies are unwilling to share sales data. This makes it very difficult to identify the

effectiveness of advertising for particular products and companies. In essence, this adds an
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artistic element to optimally distributing advertising based on optimizing to achieve the desired
result. Apart from these observations, the final algorithm can be used to make further

observations based on ad performance.

By virtue of observing successful results, it is clear that individuals are arranged across
the country in a fashion that maintains spatial correlation to their neighbors. Although, further
insight into this arrangement can be made based on what parameters optimized the final solution.
Apart from generating an actual spatial algorithm to take advantage of inherent spatial
autocorrelation, this solution can be back solved to draw broader conclusions on these evaluated
areas. A more obvious, but relevant example is the restriction of nearest neighbors to staying
within a fixed distance radius. If there were no limit, it was found that bigger cities such as
Atlanta and New York were strongly correlated in their response to similar ads. The problem
here is that this is not a spatial relationship, but rather a big city similarity. The responses have
nothing to do with where those cities are located but just by essence that they are both large
cities. Conversely, if only first neighbors are considered, there is not enough quality quantitative
data within such a small radius to fairly evaluate the spatial correlation between small
neighborhoods. Through many iterations it was determined that a 30 mile radius was best. This is
large enough to consider entire neighborhoods and cities without having the problem of
considering effects larger than spatial autocorrelation. On this same note, 30 miles is quite a
large radius for many areas, where multiple completely different neighborhoods get incorrectly
grouped. This is why within this radius it was a good idea to use inverse proportional weighting

against distance.

Another interesting topic is clustering. In regions of high density populations, there are
many digital zips clustered very closely together. These zips are constructed based on the
distributions of people that live there. In a place like New York City, these areas are almost on
top of each other and respond entirely differently to various ads. An ad for a Target clothing line
saw great success rates where there were virtually no responses an eighth-mile away at the next
digital zip. This is an indication that there may be strong socioeconomic divides that dictate
consumption habits. Although, ads for free services, such as an online weather website, exhibited
a much more uniform response to ad exposure. The notion of ‘free’ is a common trend observed

in almost all areas of economics. This driving force tends to cause individuals to change
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consumption habits more drastically than with just price reductions. There is also likely some
element of attachment to a local product over one that is catered by a chain company such as
Target. This is especially true of a city such as Durham. North Carolina. Companies like Local

Yogurt and Bull City Burger perform exceptionally well due to this local attachment.

Overall, the original, non-spatial prediction adequately evaluated which locations would
have the best performing ads. The introduction of the spatial element was most useful for
correcting the model where large amounts of error were observed. This was especially useful for
adjusting campaigns that misevaluated the intended consumers. In these cases, the initial
observations of ad performances leave a lot of room for spatial improvement through many
iterations of the algorithm. After this analysis it is evident that there are multiple instances where
predicting the outcome of advertising is akin to shooting clay targets in the dark. Unless time and
location stamped sales data is provided, the absolute optimal solution is nearly impossible to

attain.

11 Conclusion

This document reviewed spatial modeling and possible methods for improving
neighborhood selection based on observed performance information. It was demonstrated how
spatial modeling can be used to optimally adjust the locations in which an advertiser should
allocate resources. The ultimate purpose is to better identify and target areas of high success rates
in order to improve campaign performance. The only problem with these techniques is that
although the model is improved, no additional knowledge is gained. All that is gleaned is that
there are underlying, unexplained spatial relations in the data. It is not known why this is
observed. Basically this means that the process of spatial regressions is path independent. In
context of this problem, there are two evaluations of this concept. This first idea is that as the
original model becomes more sophisticated, the need for spatial consideration should diminish.
This means that every time an additional parameter is added to the initial, non-spatial regression,
the strength can only increase. As the number of parameters evaluated approaches infinity, the
strength should theoretically reach infinity and optimally predict the outcome. This would be

very difficult and impractical. Likewise, there will forever be noise in the form of unpredictable
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error due to completely random events. No matter how comprehensive of a model, it can never
be perfect. The theory breaks down when trying to evaluate non-quantitative parameters. This
leads way to the second concept of path independence of the spatial model. Spatial
considerations can still remain significant when hard to measure elements, such as psyche or
simply preferences, are confounded as noise in the data. Further research for intellectual purpose
would be to consider spatially regressing the explanatory variables in the original model rather
than the observed outcomes alone. Although this has no direct benefit to an advertising agency,
this would provide insight as to how some variables spatially correlate to a success rate.
Although less likely to occur, it would also be valuable to convince retail points to release sales

data to definitively determine the success of a campaign.
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