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Abstract: 
 
This paper explores the possibility of trading profitably based on information contained 
in email spam messages advertising certain stock trades.  Through careful analysis of a 
basket of sixteen stocks that were recommended to my advisor and myself via unsolicited 
email spam, I conclude that the most effective way for investors to trade these stocks is to 
short-sell immediately upon initial receipt of a recommendation to buy.   
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I. Introduction 
 

With increasing internet literacy across the globe, with particular emphasis in the 

United States, email spam scams become more popular by the day.  According to a recent 

SEC press release, 100 million email spam stock recommendations, or emails that 

advertise a company’s stock, are sent per week (SEC Suspends Trading 2007).  With this 

incredible volume and global reach, spam recommendations have become an oft-

discussed topic among not only investors, but also among anyone with an email address 

that has been plagued by unwelcome messages.  Stock recommendation email spam 

messages and their possible investing benefits for investors are the focus of this study.  

Spam emails are particularly interesting for study because they are anonymous and often 

sent from “zombie” computers from all over the world, making it nearly impossible to 

pinpoint the originators of such messages.  Another important characteristic of the 

specific messages studied in this paper is that they are completely unsolicited – the 

recipient (myself and Dr. Eraker) never subscribed to a financial email list of any sort.  

The incentive for anyone to send messages to such recipients who have never shown 

interest in such list-serves is another interesting aspect of this dataset.  This paper takes a 

closer look at these unsolicited stock “buy” recommendations and through careful 

analysis of the behavior of stocks that are touted in this way, formulates an on average 

profitable trading strategy1 for investors based on the information found in such emails. 

 
1 Obviously, no trading strategy can be guaranteed to turn a positive strategy all of the time. By describing 
the final trading strategy as profitable on average, I imply that this is a strategy that turns a positive profit 
in the example explored in depth in this study, which I believe (for reasons discussed later in the paper) 
should apply to similar portfolios composed of stocks recommended via email spam. 



 

 

5 

5 

Despite the magnitude of the email spam phenomenon (particularly spam stock 

recommendations), there have been surprisingly few studies done in this arena.  There is 

extensive literature published concerning the immediate effect of a major event on stock 

prices and returns, and at least one available working paper that discuss the general effect 

of email spam messages on the stock market.  While the available literature concerning 

abnormal returns following a major event does touch on analyst recommendations, or 

recommendations from a reputable source (such as The Wall Street Journal), these 

studies fail to extend their reach into the email spam realm and analyze the period of 

abnormal returns that could follow an unsolicited recommendation.2  Also, the Frieder 

and Zittrain 2006 working paper, which models a form of returns based on spam emails, 

fails to discuss the implications of their work on investors’ possible trading strategies.3  

Thus, the literature leaves two holes: the lack of a paper that uses only unsolicited emails 

received by the author as the dataset, and also the emphasis on trading possibilities for all 

investors, and not just the spammers.  This paper attempts to fill these gaps by analyzing 

a dataset made up only of unsolicited emails received directly by the authors (with price 

data from Yahoo! Finance – another source readily available to anyone with an internet 

connection), and by maintaining the goal of formulating an on average profitable trading 

strategy applicable to most investors, not simply the authors of spam emails. 

 
2 The theory behind the presence of abnormal returns after a major event (artificial demand) is expected to 
be present in the email spam event as well because this can also be qualified as a major event in the life of a 
company. 
3 This paper also augments the collection of emails received by an author by gathering data collected by a 
third party on types of emails received by other internet users than the authors. These authors also do not 
seem to use a readily available price and volume data source, as this paper does with Yahoo! Finance. 
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For most individuals, these recommendations are a mere annoyance to be deleted 

from an email inbox.  However, with the number of full-time day-traders climbing by the 

moment, there is a large audience of captive investors waiting for their next big break to 

make their first (or perhaps an even higher multiple) million.  Thus, in spite of my 

original assumption that everyone, like me, immediately deletes these emails when they 

first spot them, these recommendations may be taken seriously by many people and have 

the ability to move markets.  The fact that trading volume does in fact spike for stocks 

that are recommended in this way on the initial date of email receipt and the following 

few days, shows that it may be true that many people that take such recommendations 

seriously.4  With this these ideas in mind, this paper aims to analyze the market’s 

response to such email recommendations and see if such knowledge can help investors 

form creative and unique trading strategies. 

 In this paper I will examine this phenomenon of market movement due to, or 

perhaps merely coinciding with, the deliverance of a “buy” recommendation by 

unsolicited email.  Incentive theory tells us that an economic agent will not expend time 

and/or energy on a project without receiving some sort of compensation.  For this reason, 

I hypothesize that the persons responsible for such emails are profiting in some way on 

investors’ reactions to their information dissemination.  Analysis of literature on 

abnormal returns after recommendations extends my hypothesis into the possibility of 

spammers creating such a period with their emails in order to “sell high” shares that had 

been previously “bought low.”  Thus, I believe it is possible for investors to also trade 

 
4 Volume data from Yahoo! Finance. 
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profitably on the stocks mentioned in these messages through awareness of the general 

market’s response in trading volume and returns.  This paper aims to analyze stocks 

recommended via unsolicited email and discuss what the best trades would have been on 

these stocks when they were initially touted.  The main assumption I employ is that this 

trading strategy will work, on average, for the majority of all stocks recommended by 

such mediums because of not only the incentive theory behind the origination of the 

messages, but also because of the movements observed stock prices and returns that 

follow such recommendations. 

 This paper is organized as follows: Section II gives a brief review of the existing 

literature that relates to this topic, explains where this literature falls short in its coverage 

of this issue, and thus where this paper may help address previously unaddressed topics.  

Section III gives the theoretical framework surrounding my research question.  Section 

IV explains how exactly I collected my dataset, and what precise calculations I employed 

to reach my conclusions.  Section V reviews my findings, the results of said calculations, 

and how this led to the formation of a profitable trading strategy, with Section VI giving 

the general conclusions of this paper, including avenues for future research and possible 

policy recommendations. 

II. Literature Review 

 While there have been extensive studies performed analyzing the effect of 

different events on stock prices and returns, this study augments existing literature by 

using the event of specifically email spam recommendations with and the goal of helping 

average investors form a feasible trading strategy.  Different works have employed and 
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analyzed various methodologies used to study the effects of a major event on the stock 

market and returns, but no authors have yet, as seen in my literature research, employed 

calculations that I believe to be simple enough to be understood by the average investor.  

While the subject of email spamming and stock scams have become a more popular topic 

of literature recently (particularly with a recent SEC regulation dealing with email stock 

scams), there has yet to be a study with the goal of formulating a profitable trading 

strategy for investors in addition to describing the incentives and actions of the actual 

spammers or targeted companies.  Moreover, there has yet to be a published study that 

solely uses messages received by the author as the basis for calculations, thus making the 

results more applicable to individual investors instead of simply appealing to academic 

analysis, by the increased high probability that most investors will already possess a 

similar dataset in their email inbox.  This paper takes inspiration from existing literature 

on both email spam and event studies in the broad stock market and applies these 

concepts to an arena much more understandable and within reach and interest for most 

investors as opposed to other economic researchers. 

Fama, Fisher, Jensen and Roll (1969) were pioneers in the arena of event study 

methodology in their study of the effect of a stock split on prices and returns (Fama et al. 

1969).  The authors’ use of the “cumulative effects of abnormal return behavior” (8) 

when analyzing the magnitude of the effect that an event actually has on stock returns, 

and how these causal changes can affect the actual monetary value of a 

position/investment in a particular stock, revolutionized the way researchers model data 

and how conclusions are drawn from datasets and models.  This method of aggregating 
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variables, then, has become convention in research dealing with responses in stocks to 

different events and is the base from which this paper’s specific methodology is drawn.  

Aggregating returns over a reasonable investment horizon in this paper allows readers to 

tease out real movements in returns over time, which is of more interest to investors and 

researchers alike, as opposed to the earlier convention of merely noting daily changes in 

stock price. 

For a relatively comprehensive view of subsequent publishings in event study 

methodology since this major breakthrough in 1969, Binder’s 1998 paper is a valuable 

resource.  Binder discusses various ways researchers can and have tested the null 

hypothesis that significant changes in stock returns following an event are insignificant 

(or essentially zero), with a particular emphasis on the perspective of an equity holder in 

the portfolio companies (Binder 1998).  However, the methodologies outlined all 

introduce many variables that are unnecessary and possibly even bias-inducing for this 

particular study’s dataset, since the goal of this paper is simply to create a trading strategy 

that increases the wealth of an investor, not to contrast such strategy with other market 

factors and investment vehicles. 

Papers by Mackinlay and Henderson both give clear-cut and eloquent descriptions 

of the necessary steps to begin setting up an event study.  Mackinlay presents a helpful 

procedure for beginning a study of a mergers effect on both the target and the acquirer’s 

equity, but this methodology is not directly applicable to a study of email spam without 

slight modification (Mackinlay 1997).  Henderson applies a more broad and helpful (to 

this paper) view of designing an event study by advocating using the most simple set-up a 
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dataset allows.  By comparing several formulas used in basic event studies, Henderson 

concludes that most event studies are conducted in surprisingly similar fashions 

regardless of superficial differences in calculation formulas, and that even simple models 

are capable of analyzing complex issues in economics and statistics (Henderson 1990).   

Michael Salinger takes Henderson’s view a step further and laments the lack of a 

clear-cut methodology for conducting value event studies, which is the definition of the 

analysis performed in this paper.  After explaining several calculations with numerical 

examples, Salinger concludes that when studying a major event with a clearly recognized 

period of information release, specific methodology is likely much less important than 

initially thought in event study literature, and simply does not matter a great deal to the 

findings (Salinger 1992).  By analyzing these event study guides and the unique 

characteristics of this particular dataset and research question, I took Salinger’s advice 

and created a simple, seldom-used5 model for this study. 

Frieder and Zittrain’s working paper (2007)6 about email spam uses a somewhat 

similar dataset as my paper, however uses additional recommendations to augment spam 

emails collected in an author’s personal email account by obtaining third-party records of 

spam email trends.  In this working paper, the authors explore market movements a few 

days before and after the receipt of an unsolicited email.  This paper finds that, as 

expected, these recommended stocks do increase in price and trading volume on the first 

day of recommended trading, with a subsequent significant decrease in stock value, 

 
5 The calculations employed in this paper are described in detail in Section IV. This section labels them as 
seldom-used because none of the literature related to any topics mentioned in this paper go through the 
exact calculations this study uses. 
6 My work is independent of the findings in this paper - this paper was not available when I began my study. 
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referred to earlier as a period of abnormal returns.  The work concludes with a discussion 

of the possibilities for great profits on the part of the people authoring and distributing 

spam emails, in the form of purchasing stock before the decision to send emails and then 

selling at the peak of high prices immediately afterward.  While this is a central theme of 

my paper as well, the major focuses of my research are the profit possibilities for 

investors on the receiving end of the messages, not on the authoring end for a longer 

investment horizon and analysis by a different dataset principle. 

There are several articles that describe spam messages, how accurate they may be 

about stock price increases, and possible explanations for this unexpected accuracy.  

Michael Dewally gives a possible explanation for positive returns generally observed 

after a stock recommendation is issued in his article: “Internet investment advice: 

Investing with a rock of salt.”  Dewally surmises that these stock recommendations are in 

fact able to predict upswings in price and thus generate what appear to be abnormal 

returns because they recognize when stocks are already climbing uphill in price and then 

“jump on the bandwagon.” (Dewally 2003).  That could explain most stock 

recommendations are overwhelmingly positive, in a ratio of approximately 7 to 1 buy to 

sell recommendations (Sarkar et al / Womack).  These two articles give exogenous 

reasons stock prices could increase just after the issuance of a buy recommendation 

(reasons mostly unrelated to the effect of the recommendation itself).  Many other articles 

discuss the possibility of a major event being the actual cause of an upswing in price, due 

to a period of abnormal returns following any important announcement or occasion. 
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Following a positive stock recommendation in the WSJ, abnormal trading 

volumes were more than double the normal prediction for an ordinary trading day for 

small-cap or penny stocks, which are precisely the types of companies this paper 

examines in depth (Hirschey et al).  Mathur and Waheed (1995) go a step further even 

and examine abnormal stock returns of 2.35 percentage points in the time after such 

recommendations were given in Business Week.  Hirschey, Richardson, and Scholz found 

1.62% rise in stock prices on the announcement day with returns of 2.4% from one day 

before to one day after announcement from The Motley Fool (Hirschey at al. 2000).  

Womack finds abnormal returns when consensus recommendations are changed to “buy” 

for a particular stock (Womack 1996).  Kim and Eum (2006) concur that abnormal 

returns are definitely present in stocks after a positive recommendation is dispersed to 

investors in their paper entitled: “The impact of analysts’ revisions in their stock 

recommendation and target prices on stock prices.”  Berber, Lehavy, McNichols and 

Trueman also calculate abnormal returns following an analyst recommendation, reporting 

that this is due to a market inefficiency that allows investors to take advantage of public 

information, concluding that the most highly recommended stocks outperform the least 

recommended stocks by approximately 102 basis points per month (Berber et al 2001).  

Prices also have very significant reactions up to two days before a recommendation is 

given, and even more so immediately afterward (Sarkar et al).  Sarkar and Womack both 

contribute greatly to the literature by noting that the diminishment in stock value lasts 

many days (a month was the period studied by Womack, much longer than most papers 

follow the stocks because this is outside of the conventional abnormal returns window) 
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after a recommendation is issued and is thus not an insignificant, small event for the 

stock’s life.  These existing studies then show that abnormal returns due occur following 

a recommendation, but stop short of showing investors what this information could imply 

in terms of a profitable trading strategy. 

Existing literature and studies have done an excellent job of establishing the 

convention that buy recommendations (and other major company events) are generally 

followed by a short period of abnormal returns, even noting that value decrease happens 

over quite some time after the event, but stop just short of suggesting a profitable trading 

strategy based on this documented abnormal behavior of stock prices after 

recommendations.  Knowing that a period of abnormal returns is incredibly likely to 

follow a general buy recommendation is helpful in beginning to formulate trading 

strategies, however further analysis than these papers perform is needed to apply this 

principle to the average investor.  At least one paper (Frieder and Zittrain 2007) does 

specifically target email spam recommendations, yet does not recommend a specific 

trading strategy to investors, instead discusses how the authors of such recommendations 

may be profiting from their endeavors.  Overall, existing literature proposes many 

interesting methods for studying stocks’ responses to major events, however it takes a 

more academic rather than real-life application approach to the findings. 

There are two main holes in the existing literature this paper aims to fill.  The first 

is that there has yet to be a study done using only unsolicited email recommendations 

received by the author in a personal email account, and a widely-available price data 

source such as Yahoo! Finance that everyone with a computer can access.  Using this as 
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the entire dataset for a study, I believe, makes my results more relevant to average 

investors because it uses only information that any investor could have, not just 

sophisticated or academic investors, and goes one step further and recommends a trading 

strategy that might be possible and profitable for all classes of investors (based on such 

widely available public information).  Secondly, the existing literature establishing the 

presence of abnormal returns after major company events has not yet extended its reach 

into the realm of spam email recommendations.  I intend to add to the literature by 

showing that it may be possible, on average, to turn an investing profit trading a portfolio 

of stocks based on unsolicited buy recommendations an individual receives for particular 

corporations. By analyzing the behavior of returns for touted stocks using the 

methodology described in Section IV of this paper, I believe a profitable trading strategy 

will become apparent.  

III. Theoretical Framework 

 According to the accepted convention of incentive theory, rational economic 

agents will only expend effort, time, or money on an activity if they have a specific 

incentive (or compensation) to do so.  Incentives are such a strong motivator for people 

that many companies and even cities have set incentive structures in place instead of 

punitive systems to entice employees and citizens to act in the manner considered 

preferable by the governing agency (Elswick 2002).  Incentive theory is one of the basic 

foundations of economics and motivates much modern research done in this science, 

because incentives arguably govern everything people do and has been accepted as 

economic fact.  The role incentives must play in the sending of spam email is the 



 

 

15 

15 

motivating factor behind using only such unsolicited emails as the entire dataset for this 

study.  Since these emails were received without payment for the service or even a 

subscription to an email stock recommendation service, they count as completely 

unsolicited.  This particular characteristic of the data adds depth to this analysis because 

the creators of such emails must have some incentive to engage in this activity, since 

formulating recommendations and emailing them to (assumedly) many addresses takes a 

good bit of time, effort, and more than likely some money.  Thus, in accordance with 

conventional incentive theory, there must be some way that the masterminds behind this 

email recommendation scheme are being compensated for their efforts.  This theory, 

when combined with the earlier discussion of abnormal returns theory, leads me to 

believe that they are probably profiting from a trading strategy based on the market 

motion the emails incite, which leads to the following discussion of abnormal returns 

theory.7 

Abnormal returns theory, as discussed in Section II of this paper, is how I 

hypothesize spammers formulate their trading strategies, which makes up their incentive 

or compensation structure.  Existing literature has shown that major events, including 

online recommendations, incite a period of abnormal returns for recommended stocks.  

The established presence and reliability of abnormal returns in the market give email 

authors an essentially guaranteed time of unusually high returns to capitalize on, since 

 
7 Since trading volumes are abnormally high on the day the emails recommend trading and several days 
thereafter for each stock studied, and in agreement with much of the literature, this paper assumes that there 
are at least some investors that do in fact trade in accordance with the strategies proposed in these emails.  
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they can control the start date of such a period with the timing of their messages.8  Thus, 

abnormal returns theory together with volume data for the stocks imply that spammers do 

buy shares in the companies they recommend one or a few days before the sending of the 

emails, and then unload these shares within a few days of the first sent message.9 

General incentive theory has driven my suspicion that email spammers are in 

some way profiting from the effects of their recommendations, and abnormal returns 

theory has given a plausible vehicle for spammers to do so.  These are the theoretical 

frameworks that not only drive this overall research topic, but also the explanations for 

specific restrictions imposed on the dataset and calculations.   

IV. Dataset and Calculations 

My dataset is comprised of unsolicited emails I have received to my personal 

email account and the email account of my advisor, Dr. Bjorn Eraker, during the year 

2006.  Only those stocks that have historical price lists available for at least twenty-five 

trading days before the initial recommended trading date for each company, hereafter 

called “T=0,”10 and fifty-nine trading days after on Yahoo! Finance were included in the 

mathematical model, which yields sixteen firms.  There are two main motivators behind 

using strictly unsolicited emails received personally by two parties: incentive and 

abnormal return theories, and general relevance to most investors.  As described in 

Section III, spam emails are particularly interesting to study because of the significant 

 
8 Assuming the recommendations are in fact responsible for at least some market movement (which is 
backed up by volume data for the days surrounding the initial recommendation date from Yahoo! Finance. 
9 As per the Frieder and Zittrain working paper. 
10 T = 0 corresponds to the date that the first spam recommendation for each company recommends to 
execute the first recommended trade. This is not necessary the same date as the receipt of the email 
message, because such messages were frequently received on weekends or after the markets closed for the 
day. For an example of such an email, please see Appendix A. 



 

 

17 

17 

effects they can have on the market for the stocks they tout, and also because of the 

possibilities that exist to make money, even on the receiving end of the messages, 

because of such dramatic movements in price caused (or coinciding with) spam emails. 

The overarching goal of this study is to formulate a profitable trading strategy that 

any investor can employ based on previously unwelcome information from of spam 

emails.  The emphasis on formulating a strategy that the average investor can employ in a 

private portfolio is the main motivation behind using not only emails personally received 

(not simply aggregating by a third party in a database or website) but also price 

information readily and costlessly available online.  I believe this collection of emails to 

be a representative dataset for most other investors, because neither recipient of the 

analyzed messages (neither myself nor Dr. Eraker) had at any point signed up for any sort 

of email recommendation service, ensuring that these emails were completely unsolicited.  

This implies that the originators of such messages have a way of discovering email 

addresses, which, combined with conversations I have had with many peers about this 

topic, leads me to believe that many people worldwide are receiving many of the same, or 

at least similar, email messages as the ones included in this study.  With such a 

remarkable volume of messages, evidenced by numbers recently released by the SEC, it 

becomes reasonable to assume that the hundreds of messages received between two 

parties are fairly representative of emails received by the average investor.  This not only 

makes it possible for investors to use these finding in actuality, but it also makes the 

findings and calculations presented in this study more relevant to a broad base of 
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investors by the fact that the vast majority of computer owners receive multiple of spam 

emails per day. 

I collected historical daily closing prices from Yahoo! Finance for each of the 

firms with such data available that had been recommended to either Dr. Eraker or I in the 

year 2006.11  The sixteen firms that had available historical prices for the time period in 

question are: Ever – Glory International Group (EGLY), Trimax Corporation (TMXO), 

Art4Love, Incorporated (ALVN), Lyric Jeans, Incorporated (LYJN), Las Vegas Central 

Reservations (LVCC), Capital Reserve Canada (CRSVF), Goldmark Industries (GDKI), 

Shallbetter Inds, Incorporated (SBNS), Forest Resources MGM (FIRM), PetroSun 

Drilling (PSUD), Industrial Minerals (IDSM), Infinex Ventures (INFX), Falcon Energy 

(FCYI), Biogenerics Ltd. (BIGN), China World Trade Corporation (CWTD), and 

Hollywood Intermediate, Incorporated (HYWI).12  For these firms, I gathered price data 

for twenty-five trading days prior to T=0 and the fifty-nine that followed.  After 

compiling the prices, using Microsoft Excel to do all calculations, I computed daily 

returns for each company by taking the natural log of the ratio of one day’s closing price 

to the closing price for the day before: Daily Return = ln(Pt / Pt-1). 

I then took the simple average of the return figures for each day over all sixteen 

companies to get a broad view of daily performance of the entire portfolio, called the AR 

for “average returns.”  This series of average returns are the basis for the cumulative 

 
11 A large proportion of the recommended stocks did not have historical prices available on this website. 
12 Two of these companies, Biogenerics Ltd. and Goldmark Industries, Inc., were included in 35 firms that 
the SEC banned trading on March 8, 2007. Many more companies for which I received spam 
recommendations touting were also included in the trading ban, however they did not have available 
historical price lists on Yahoo! Finance. 
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returns which actually lead to the statistical significance calculations described later in 

this section and then finally to a recommended trading strategy. 

 In keeping with the Fama et al (1969) paper, and various other event study 

methodology papers discussed in Section II of this paper, I calculated the cumulative 

average returns (CARs) from the simple averages for each day.  To do so, I simply 

aggregated the simple average returns for all sixteen companies for every day with 

available data (which totals eighty-four days).  The cumulative average return for day n is 

simply the sum of all the simple average returns from the first day in the time period 

through n.  For the first day of the data subset, the CAR for the entire portfolio is simply 

equal to the simple average on that day, since there is no data on a previous day to 

aggregate.  However, for subsequent time periods, the CAR would be the sum of all of 

the simple average returns up to the day in question.  The CAR formula for day n is as 

follows: CAR = Σ (AR0…ARn).  By graphing out and analyzing the CARs for the stocks 

in question, I was able to get a picture of the performance of this basket of stocks over the 

time period in question.  CARs allow us to see the portfolio returns as a flow measure 

instead of simply the overnight change in the stock price.  This is clearly the variable of 

choice when formulating a trading strategy, because it captures overall performance 

trends rather than daily fluctuations in price. 

For the sake of clarity and thoroughness, I analyzed CARs both over the entire 

time period with data (including twenty-five trading days prior to T=0) and also just 

beginning at T=0 to get two different viewpoints.  The CAR value-set plot using only 

data from the recommendation date and on gives a picture of what an investor can take 
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advantage of in trading based solely on the recommendation, while the CAR values for 

the entire time period gives a sense of the magnitude of the effect of such 

recommendations on the stocks’ returns over time, because the changes in stock behavior 

at T=0 can be noted in accordance with the recommendation date.  Both plots are 

included in Section V, and analysis of the trends pictured in these Figures is the main key 

to formulating a profitable trading strategy. 

 After the CARs were calculated, I then ran statistical significance analysis on the 

results by calculating a confidence band around the CAR trend.13  To do this, I used 

Microsoft Excel to form a standard deviation value based on the sample of simple 

average returns, using all eighty-four trading days measured for each company and then 

again for the post-recommendation only dataset.14  I then calculated a standard error 

value (σ) for each day analyzed by taking the standard deviation, stdev, (which by 

assumption was constant for each day),15 multiplied this value by the square root of the 

day number, √n, (which ranged from 1 to 84) and then divided by the square root of the 

sample size (√16) to get 4.  This formula mathematically looks as follows: σ = 

(stdev*√n)/4.  For the upper confidence interval bound, I took the daily CAR and added 

to it the standard error multiplied by 1.96.16  The formula for these confidence intervals is 

as follows: CI = (CAR +/- 1.96(σ)). 

 
13 Statistical calculations were performed as per conversations and recommendations from my faculty 
advisor, Dr. Eraker, and are based on general statistics knowledge tweaked to fit with the particular 
characteristics of this dataset and research question. 
14 Because CARs are simply an aggregate simple average return number, standard deviation calculations 
should be performed on the simple average return data as per the statistical formula. 
15 Individual stock samples were taken from different time periods, so returns should be uncorrelated. 
16 1.96 is the value used in constructing confidence intervals at the 5% significance level for a standard 
normal distribution, which by assumption is a defining characteristic of this dataset. 
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Although the sample size here (sixteen firms) seems small initially, the results are 

so dramatic within this basket of stocks, it seems sufficient to discuss the results of 

analysis on only these companies since this analysis produces such clear conclusions.  

Also, this paper’s aim is to assist individual investors in formulating trading strategies, so 

constructing a hypothetical portfolio based on sixteen companies seems like more of a 

reasonable number for an average household then does a portfolio with dozens of 

different stocks, which would be much more difficult for one individual to manage.  Thus, 

this dataset mimics a feasibly-sized investment vehicle for an individual or a household. 

The obvious weakness with my data is that I have no way of knowing what 

organization (or organizations) sent the emails.  Since the sender is unknown, there is 

also no way of discerning how many people globally have received the same or similar 

emails.  Although the vast majority of people with whom I am acquainted receive 

frequent unsolicited recommendations, generally multiple messages per day, there is still 

no way to ensure that the majority of people worldwide receive similar messages with a 

comparable frequency.  The unsolicited aspect of my dataset is one of the elements of this 

paper that makes the following conclusions interesting and relevant to modern 

economists and investors, however this is also the aspect that makes it the most difficult 

to control for or have a solid grasp of the prevalence of such recommendations.  

Prevalence of these email recommendations could have serious effects on the ability of 

the buy recommendations to move markets, because the reach of these emails must be 

broad enough to influence many investors.  This fact is the reason it is much easier to 

study widespread print recommendations, such as columns in The Wall Street Journal, 
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because there are relatively precise ways to measure how many people read such columns.  

Also, since only sixteen recommended companies had historical prices listed on Yahoo! 

Finance, my sample size was severely limited.  But again, since the results are so 

startlingly clear, as discussed in Section V, this weakness does not seem to muddle my 

findings, but could possibly provide an avenue of future research with a larger sample 

size.  These issues may limit the certainty and general reliability of my results, however, I 

still believe this study can produce meaningful conclusions.   

 

V. Findings  

 The pattern of returns and cumulative average returns for the stocks analyzed in 

this study fit rather well with my predictions.  As discussed in the literature review, 

stocks generally exhibit a period of positive, even abnormal, returns after a major event, 

such as a merger, acquisition, or buy recommendation.  This pattern held true for this 

particular basket of stocks after the initial unsolicited buy recommendation, in that the 

cumulative average returns were positive for several days after T=0.  However, these 

positive returns show a clearly diminishing trend in even the initial days following the 

recommendation (the trend is never positive and increasing at the same time).  The 

decreasing nature of the cumulative average returns continues through the next two 

months after the recommendation, as evidenced by the following Figure, labeled Figure 

One.17  Figure One shows the plot of the cumulative average returns for the basket of 

sixteen stocks analyzed in this study.  As mentioned earlier in the paper, the cumulative 

 
17 60 trading days was the maximum amount of time post-recommendation that was available for each 
company. 
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abnormal returns for each day are calculated by summing the simple returns for the day 

in consideration through T=0.18  The origin of Figure One represents T=0, and no 

previous trading days, to get a picture of the portfolio choices investors are facing when a 

recommendation hits. 

 

Figure One – Cumulative Average Returns Plot 

CAR Plot (beginning with T=0)
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Figure One plots the CARs with days since initial recommendation on the 

horizontal axis and the actual CAR value (interpreted as percent changes) on the vertical 

axis, calculated via the aforementioned formula.  This particular Figure begins the 

horizontal time axis with time T=0, which means that the first date on this graph 

corresponds directly with the first trading date recommended for each company in the 

first recommendation email received.  This graph makes the return pattern for this basket 

 
18 For example, the CAR on day T = 5 would be the sum of the simple returns for days 0, 1, 2, 3, 4, and 5. 



 

 

24 

24 

of stocks very clear visually.  The shape and data-points of this graph are what dictate the 

appropriate profitable trading strategy.  As is obvious from analyzing this figure, the 

cumulative average returns begin above zero at T=0, because, as discussed earlier in this 

paper, a small period of abnormally positive returns was expected immediately after the 

recommendation was issued, due to increased trading volume, and thus increased demand 

for the stocks.  Then, a mere few days later, the cumulative average returns cross zero 

and remain negative for the rest of the days analyzed in this paper, which is fifty-nine 

days total for this particular graph.  Thus, this graph and the CARs in general do follow 

the pattern predicted by the existing literature and my original hypothesis.  The CARs 

exhibit an almost strictly downward trend from T=0 through almost sixty trading days 

later.  The following graph, Figure Two, plots the same calculation, the cumulative 

average returns, however this data subset begins the CAR calculation and plot twenty-

five days prior to the recommendation.   
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Figure Two – Cumulative Average Returns Plot (over the entire time period 

analyzed)  

CAR Plot (T = 0 represents the initial recommended trading date)
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 Figure Two is a more comprehensive view of the behavior of this portfolio of 

stocks around the recommendation date because it encompasses both the response and the 

preceding behavior to the initial recommendation.  This graph begins the CAR 

calculations twenty-five days before Figure One’s data does.  The behavior of the trend 

around T=0 gives evidence that the recommendations actually move the market, because 

there is such a drastic change in stock behavior around that point.  This change obviously 

alters the absolute cumulative average returns numerical value that corresponds with 
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Figure One,19 however, the trend is the exact same shape over the time period common to 

Figure One, but allows for further analysis into the behavior that precedes 

recommendation.  Figure Two more fully shows the impact that these recommendations 

have on the stock price and returns.20  For the twenty-five days prior to recommendation, 

this basket of stocks exhibits relatively plain and unexciting behavior – nothing drastic 

enough to formulate a novel trading strategy around.  As soon as the recommendations 

hit, though, this portfolio enters a short period of abnormal returns, with the CARs 

venturing up to the zero mark exactly on the initial trading day (T=0), and then staying in 

only the single-digit negative percentages until the CAR hits (18%) on day 32, just six 

days after the portfolio high on T=0, and then continues its downward spiral until 

reaching approximately (100%) within fifty-nine trading days. 

 Figure Two is of particular interest to this paper because it so clearly shows that 

the returns for this basket of stocks react very sensitively to the receipt of the first email 

stock recommendation.21  This is exemplified through the way that the cumulative 

average returns are relatively steady for the twenty-five days preceding T=0 and then 

radically alter their previous pattern.  Although the CAR values do remain in the negative 

range for the entire period analyzed before the recommendation date, they exhibit the 

trend behavior that one would expect from an average stock not experiencing any sort of 

 
19 Actual number CAR values would be different in this case because I aggregated over more days, which 
introduced more numbers into the overall summation. This does not change the shape of the plot and 
should be interpreted the same way as Figure One. 
20 Clearly, we cannot attribute all of the movement in prices and returns to these recommendation without 
running further statistical significance tests. This paper does not claim that these unsolicited buy 
recommendations are the cause of these price changes, this paper simply looks for a profitable trading 
strategy based on the general behavior of stocks around the time a buy recommendation is issued. 
21 The mention of the initial receipt of a recommendation refers to the first recommendation I received in 
my inbox for a particular company. There is no way to verify this was the same date for other investors. 
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extraordinary event (such as T=0), in that there are no major disruption to prices or 

returns, and returns follow an almost horizontal path.  However, as soon as trading can 

begin based on information contained in these emails, these stocks reach an 84-day high 

at an exactly 0% CAR.  This is due to the entrance of the portfolio into a distinct period 

of abnormal returns, whose trend seems to begin two trading days before T=0, and last 

approximately eight days, as was hypothesized in Section II of this paper.   

There are obviously an infinite number of possible explanations for this behavior 

that are unrelated to the presence of unsolicited buy recommendations for these 

companies.  Regardless, this pattern is so clear that it is still very significant for my 

analysis.  After this “high” period for the portfolio,22 beginning slightly before the initial 

recommendation and pursuing for six days afterward, the CAR plot begins an 

unmistakable plummet to end at almost (100%) CAR after fifty-nine days of post-

recommendation trading.  While the standard abnormal return model predicts abnormally 

high returns following a major company event, it also predicts that trading will resume 

normal value levels soon afterward.  This dataset, however, dramatically exaggerates 

(outperforms) this model.  This data does exhibit classic signs of abnormal returns 

following the event of investors’ receipt of an unsolicited buy recommendation, but 

instead of returning to normal trading levels within a short number of trading days, this 

particular portfolio continues to devalue for a very extended period of time, with the 

stock prices not bouncing back in more than two months after the period of abnormal 

returns began and very frequently becoming nearly worthless.  This clarity in stock price 

 
22 Which I describe by exhibiting cumulative average returns that are only negative to the single-digit 
percent. 
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performance allows for simple analysis and the formulation of a clear optimal trading 

strategy. 

 

Figure Three – CAR Plot Bound by a 95% Confidence Level Band (Figure Two plus 

a 5% significance level confidence interval) 

CAR Plot with a 95% Confidence Interval Band (T = 0 represents the initial 
recommended trading date)
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Figure Three is evidence to support the statistical significance of the findings 

derived from Figure Two.  Figure Three plots a confidence interval for the cumulative 

average returns, calculated to the 5% significance level using the methodology described 

in Section IV.  This band shows that at the 5% significance level we can reject the  

null hypothesis that the trend seen in the CARs is simply coincidence.  The probability of  

seeing cumulative average returns so far from zero by chance (as predicted by a  

theoretical random walk model) under the null hypothesis is then less than 5%. The 
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tightness of this confidence band shows how small this area is, meaning that these results 

are very significantly different from zero, at the 5% (a relatively certain) significance 

level.  Thus, the returns that we see in this graph that lend themselves so clearly to a 

profitable trading strategy are most likely not a random coincidence, and in fact 

extremely helpful in portfolio management strategies for individual investors. 

 

Figure Four – CAR Plot beginning at T=0 Bound by a 95% Confidence Level Band 

(Figure One plus a 5% significance level confidence interval) 

CAR Plot with 95% Confidence Level Band (beginning with T - 0)
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Figure Four runs the same standard error and confidence interval calculations as 

the data subset used in Figure Three, however the following graph uses only the data 

from T=0 and onward; i.e. this confidence interval was run only on CAR data from the 

initial recommendation date and fifty-nine trading days following (or the last fifty-nine 
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trading days of Figure Three).  The purpose of this graph is to get a more focused view 

on the behavior of the portfolio after trading becomes possible based on information 

contained in unsolicited email recommendations, which represents the trading 

opportunity an actual investor would face upon receipt of a spam message.  This is a very 

useful plot for investors because it shows the portfolio performance and also the 

significance of such cumulative average returns in the time period in which traders would 

be able to trade based on spam messages.  This subset of CARs also exhibits a very tight 

confidence interval, showing that at a 5% significance level we can also reject the null 

hypothesis that the CAR trend is actually zero with some ease. 

Figure Five takes the basic cumulative average return plot and applies the 

exponent function to each data-point, to obtain a plot of the value of a hypothetical 

investment of one dollar ($1.00) in this portfolio of sixteen stocks. 

 

 

 

 

 

 

 

 

Figure Five – Plot of the Value of a Hypothetical Investment in the Analyzed 

Portfolio 
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Dollar Value of Hypothetical Investment in Portfolio
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This Figure again begins twenty-five trading days before the initial 

recommendation date, and runs fifty-nine trading days after T=0.  This Figure has the 

same underlying message as the plot of the cumulative average returns, however the 

vertical axis of this Figure is in dollar values instead of a natural log cumulative return 

values.  This Figure should be interpreted as what would have happened to a $1.00 

investment in this portfolio of sixteen chosen stocks made before T=0 – which clearly 

decreases approximately 60% over the total eighty-four trading days.23  This decrease in 

investment value is just another way of showing that taking a long position24 in this 

portfolio would have been a poor decision on the part of an investor.  The profitable way 

 
23 Essentially, this chart assumes that an investor put $1/16 in each stock recommended, denoted by an 
overall $1 investment. 
24 A long position simply means purchasing the stock outright, as opposed to buying on margin or short-
selling. Generally, a long position is connoted as having a long-term investment horizon, or at least not 
having plans to immediately sell the purchased shares. A long position is what the spam emails studied in 
this paper suggest investors should take in these particular stocks. 
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to have traded on this portfolio would have been to short-sell25 each stock as soon after 

receiving the unsolicited recommendation as possible, and then buying the shares back at 

least two months afterward, when the share value reached 40% of the initial value.26  

Figure Six plots the value of a long position in this portfolio taken the moment the initial 

recommendation was received, which is the equivalent of plotting simply the last fifty-

nine trading days of Figure Five. 

 

 

 

 

 

 

 

 

 

Figure Six – Plot of the Value of a Long Position in the Portfolio  

 

 
25 Selling-short involves borrowing shares from a third-party and selling them in the open market, with the 
promise to return the shares in a prespecified amount of time. This strategy is generally employed when the 
share price is believed to decrease after the initial open-market sale. 
26 This particular graph plots out the basket of stocks, with T=0 varying with time for each particular 
company. Figure Seven breaks it down by stock to see how a long position in each individual stock would 
have performed if purchased on T=0 and reevaluated fifty-nine days later. Thus, short-selling would have 
given gains approximately equal to the losses portrayed in this graph. 
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Figure Six coveys the same basic idea as Figure Five and should be interpreted 

very similarly, however this analysis begins on the day when trading was possible based 

only on information contained in spam emails.  Thus, this graph gives the perspective of 

a long position taken in each stock on the day the first buy recommendation was received 

for each company – which is what the spam messages advised recipients to do.  As 

evidenced by this graph, buying into the stocks at the recommendation date makes the 

loss over fifty-nine trading days even larger then 60%, which is obviously a poorly 

performing investment vehicle.  The results of Figures Five and Six clearly rule out the 

possibility of forming a profitable trading strategy on only the advice of email spammers.  

In fact, a long position is so clearly a bad idea that this Figure seems to support doing just 

the opposite and short-selling this basket of stocks, to get the inverse of this graph as the 

payoff function.  Short-selling this basket of stocks at T=0, or even the next trading day, 

would have resulted in gains of over $.60 for each $1.00 share sold short.  Employing this 
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strategy on these sixteen stocks, then, would have generated over 60% returns in less than 

sixty trading days, which is a phenomenal result considering reports that investors can 

expect to earn 6.3% on a general S&P 500 portfolio of stocks at this point in time (Tully 

2007). 

Figure Seven is also a value graph representing the value of a long position in the 

portfolio; however, this graph calculates the end value per stock instead of averaged over 

all sixteen firms.  These calculations assume that a hypothetical investor invested $1.00 

in each company’s stock on T=0.  Thus, the following bar graph simply shows how much 

an investment of this value would be worth after the fifty-nine trading days following 

T=0.  Each bar represents a different firm, arranged in ascending order, with the label “1” 

representing the firm whose share value declined the most, and the label “sixteen” 

representing the company whose shares performed the best of the group over this time 

period (the numerical labels have no mathematical importance – they were only assigned 

based on ending stock value).   

 

 

 

 

 

Figure Seven – Plot of the Value of a Long Position Taken on T=0 in Each Portfolio 

Stock 
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Figure Seven shows the value that would be left after fifty-nine trading days if an 

investor had invested $1.00 in each of the sixteen portfolio stocks on their respective 

T=0’s.  This Figure is useful in seeing what would happen to a person’s investment value 

if he or she actually took the advice of unsolicited email buy recommendations for each 

individual company included in this study27 and bought shares when recommended for 

each firm.  Obviously, this would have been a losing strategy in the case of every stock 

except for one, INFX, whose value ended up exactly equaling its initial value on the day 

before the initial recommendation.28  For each of the other stocks, purchasing shares on 

the recommendation date would have led to a strict decline in value, of almost 90% in 

 
27 Again, the requirements for being included in this study are not only the receipt of a spam 
recommendation, but also having historical and current price information available free of charge on Yahoo! 
Finance, so that theoretically any investor could access this same information. 
28 This particular stock follows the traditional abnormal returns model of exhibiting unusually high returns 
for a short period after the recommendation event and then returning to it’s normal (or pre-recommendation) 
trading level. Taking a long position in this stock for more than a few days would be a break-even, rather 
than strictly losing, strategy in this case, which still does not support the adherence to the strategy published 
in these emails. This clearly does not overcome the vast negative results seen for the rest of the stocks. 
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some cases.  This Figure is simply another way of presenting the results of Figures One 

through Six, separated into a long position by each company individually instead of the 

overall averaged basket.  This trend eliminates the possibility of a long trading strategy 

being profitable in this case, because not a single stock increased in value over this time 

period. 

These findings together support the idea of short-selling stocks that are 

recommended via unsolicited email services.  As this graph shows, if an investor had 

short-sold this particular basket of stocks, he or she could have taken advantage of a very 

clear decline in returns and general stock value after a couple of months.  Had an investor 

short-sold this basket of stocks on T=0 for each company and bought back fifty-nine 

trading days later, the portfolio value would have fallen 60%, allowing the investor to 

buy back at a significantly lower price than that of the initial sale.  The actual feasibility 

of such a strategy will be further explored in Section VI (or could prove to be an 

interesting future project), but it becomes obvious after viewing the data that the on 

average profitable trading strategy that emerges is definitely short-selling as soon as 

possible after the initial buy recommendation.  

 

 

 

VI. Conclusions 

The overarching goal of this study is to formulate an on average profitable trading 

strategy based only on information contained in unsolicited email stock recommendations.  
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To do so, I collected spam emails sent to my and Dr. Eraker’s personal email accounts.  

Since neither party had previously signed up for such a subscription service, these emails 

were completely unsolicited, which we can assume is representative of the sort of emails 

investors receive all over the globe since this is such widespread phenomenon.  Analysis 

on returns generated by hypothetical investments made in the recommended stocks 

clearly showed that investors would have uniformly lost money by taking the advice 

contained in the email messages and bought (or taken a long position in) the touted stocks.  

This leads to the main finding of this study, what has emerged as the appropriate way to 

trade the stocks recommended in spam messages: investors should always short-sell 

stocks immediately upon receipt of an unsolicited buy recommendation for a particular 

firm.   

Returns and dollar values for the portfolio of sixteen companies averaged together 

began a clear descent immediately beginning on T=0, as seen in the results presented in 

Section V of this paper.  These trends help show that there is no real value to be found in 

a long position taken in the basket of stocks when the spam messages recommend one be 

taken.  This theory applies not only to the average basket analyzed, but also to each 

individual firm’s stock.  As Figure Seven shows, there was not a single stock whose 

value increased over the period analyzed.  Thus, in aggregate and at the individual level, 

taking the advice of spam recommendations is a losing strategy. 

The simplest way for investors to take advantage of such facts is to take the 

opposite of the losing strategy and short-sell each time.  By short-selling, an investor 

would have to borrow another person or institution’s shares and sell them in the open 
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market as soon as possible after T=0, and then return the shares (by buying back the same 

number of shares in the market) later on, when the price has uniformly not increased.  

The requirements to execute such a trade are only that there is another party willing to 

participate, and obviously that there is demand to purchase the shorted shares in the 

market, which is generally assumed to always be present.  With the breadth of online 

brokerage houses, that charge only a flat, relatively small, fee per trade regardless of the 

actual number of shares traded, and importantly, regardless of the type of trade or the 

type of equity.  This means that any investor theoretically has the opportunity to simply 

go online upon receiving a spam message touting a firm’s stock, and short-sell without 

even having to speak to another person.29 

Hopefully this paper can pique the curiosity of other researchers and perhaps 

incite more studies similar in topic to this paper.  It would be useful to look at similar 

data and calculations from different people that may receive emails from different 

recommendation services.  The more emails that are analyzed, the more broadly 

applicable the results will be.  Broader results increase the likelihood of encompassing 

similar data to the emails received by actual investors, and thus making the results of 

such studies more helpful and accurate for readers.  Also, it would be useful to do these 

same calculations on a larger sample size, if available.  Larger sample sizes allow for 

more certainty in results and calculations.  Along with this theme of increasing the 

sample size, another possibility for a future study would be to take samples over a longer 

 
29 Clearly, the real-life feasibility of short-selling shares in each of these companies will depend on both the 
investor and the company, and must be determined on a case-by-case basis. 
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period of time, to try and adjust for possible seasonality trends in the stock market as a 

whole.   

On March 8, 2007 the SEC banned trading for ten day in the stocks of thirty-five 

OTC companies (SEC Suspends Trading 2007).  Two stocks included in the ban, 

Goldmark Industries, Inc. and Biogenerics Ltd., were included in this study.  The reasons 

behind such an action as stated in the press release centered around the recent growth in 

weekly spam stock touts and the possibility of a scam involving brokers or people 

affiliated with the companies making money from investors’ losses.  A great future study 

would be to analyze what effects, if any, this ban has on the penny stock market and the 

flow of email recommendations in the future, and also analyze any such future 

regulations and their effects on the market. 

Future studies could also be conducted within the very dataset used in this paper.  

One option could be to explore the legal, or less than legal, standing of the companies 

involved.  The knowledge of which are fraudulent companies and which are legitimate 

enterprises could add depth to the results and ease in foreshadowing future return and 

price trends – or in other words, compare the performances of legitimate enterprises with 

those, if there are any, companies are actually fraudulent.  Research into what kinds of 

brokers hold reserves of these shares to market them to investors would also be an 

interesting study.  Knowing whether trades made in shares o such touted stocks are 100% 

legal or moral could also influence the actions of possible investors.  These are several 

possible avenues for further research that I believe could add great depth and 

understanding to this particular field of research and general interest. 



 

 

40 

40 

Future policy implications of the issues described in this paper are surprisingly 

simple – if investors do begin to short-sell touted stocks with this new information, the 

market will tend to become more efficient, which would actually negate the need for new 

policy implementation.  If investors begin to short-sell during the short period of 

abnormal returns following T=0 (which is where we hypothesize spammers are being 

compensated, but unloading their shares during this period of artificially high demand), 

then the shares would be less artificially scarce, which drives down the price.  This would 

lessen, and hopefully eventually completely undo, the abnormal return period seen for 

several days following T=0, which would unravel the spammers’ compensation schemes.  

If the abnormal returns are lessened and eventually cancelled altogether, spammers would 

have no incentive to send out these emails, because they would lose their informational 

advantage over investors.  If investors were to use the tricks of the spammers to short-sell 

in the same window, spammers no longer have a competitive advantage, which leads to a 

more efficient overall market, which would imply less profit possibilities for the 

spammers.  Thus, as soon as returns were normalized once again, all incentive to send 

spam messages would be gone since there would no longer be any sort of compensation 

possibilities, and it is logical to assume that the emails would eventually stop.  Hence, 

there would be no real need for the SEC to govern spamming because there would be no 

incentive for the originators to continue their scam. 

Short-selling spam-advertised stocks is not only a way that investors could 

theoretically make money, but it is also an interesting way of stopping annoying emails.  

While it would take a decent amount of time for investors to gather the necessary 
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momentum to completely normalize returns, the results of this study make it very clear 

that investors should take short positions in all stocks supported by the receipt of an 

unsolicited email message.  Not only does this strategy make logical and analytical sense, 

but it also becomes easier to execute everyday with the exponential increases in 

technology we perpetually see in the world. 
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Appendix A: Example Email Spam Stock Recommendation30 

 
30 Received to angela.aldrich@duke.edu on Wednesday, November 1, 2006 at 7:06 PM, with a T=0 of 
Thursday, November 2, 2006. 

mailto:angela.aldrich@duke.edu
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