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Abstract

In this study, I examine the impact of the Regional Greenhouse Gas Initiative (RGGI) on

emission reductions in the electricity sector, focusing on three critical dimensions. First, I an-

alyze temporal trends in emissions reductions to evaluate whether previously demonstrated

progress has slowed as states exhaust low-cost mitigation pathways. Second, I assess regional

impacts within electricity grid management areas, particularly the Pennsylvania-Jersey-

Maryland Interconnection Regional Transmission Organization (PJM ISO) where partici-

pating and non-participating states coexist, including investigating emissions leakage where

reductions in RGGI states are offset by increases in neighboring non-RGGI states. Third,

I extend the analysis to other greenhouse gases and co-pollutants. Employing difference-in-

differences and synthetic control methods, the findings show that the RGGI has a significant

on the intensive margin, significantly reducing operating hours and heat input across all

types of power plants. Alongside these reductions, RGGI spurs net facility exits and pro-

motes fuel switching toward lower-carbon sources. As a result, both pollutant intensity and

aggregate emissions decline over time, underscoring the program’s effectiveness. Examining

these shifts in the context of regional electricity grids indicates that comprehensive coverage

across interconnected markets can minimize leakage and better achieve environmental ob-

jectives, offering insights for the design of future regional climate policies.

JEL classification: Q41, Q48, Q52, Q58

Keywords: Cap-and-Trade, Emissions Leakage, Environmental Policy, Regional Green-

house Gas Initiative
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1. INTRODUCTION

Climate change is one of the greatest global challenges of the 21st century, with carbon

dioxide (CO2) emissions widely identified as the primary driver of global warming. CO2 is

responsible for approximately 64% of the warming influence of human-produced greenhouse

gases (NASA, n.d.). Once released, CO2 can persist in the atmosphere for hundreds of

years, leading to long-lasting environmental consequences. In response to these challenges,

policymakers have increasingly turned to market-based mechanisms to attempt to mitigate

emissions. Among these, the Regional Greenhouse Gas Initiative (RGGI) stands out as the

first mandatory cap-and-trade program in the United States targeting CO2 emissions.

The origins of the RGGI trace back to 2003, when governors from Connecticut, Delaware,

Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont

initiated discussions to develop a regional cap-and-trade program for CO2. An important

milestone occurred on December 20, 2005, when seven of these states signed a Memorandum

of Understanding outlining the program’s framework. Massachusetts, Rhode Island, and

Maryland later joined the RGGI in 2007, birthing a regional market for CO2 allowances.

The RGGI was officially implemented in 2009 to reduce carbon dioxide emissions from

power plants with a capacity of 25 megawatts (MW) or larger. States can opt in to par-

ticipate in the program, which sets a per-state cap on total emissions and requires power

plants to obtain one RGGI CO2 allowance for each ton of CO2 they emit. These allowances

are primarily acquired through quarterly region-wide auctions, which account for 94% of all

allowances used in the program. During these auctions, states participating in the RGGI

proportionally receive the proceeds for a fixed number of allowances, and power companies

bid on them in a competitive process. The auction is structured as a sealed-bid, uniform-
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Chapter 1. Introduction 5

price auction, meaning that all winning bidders pay the same price per allowance, which is

determined by the lowest successful bid. Winning bids initially started at $3 per allowance,

and remained below $10 during every quarterly period until 2022. More recently, however,

they have risen, reaching a high of $25.75 per allowance in September 2024, reflecting tight-

ening emissions caps. Revenues generated from the auctions are typically reinvested by the

states into clean energy initiatives, energy efficiency improvements, and consumer bill assis-

tance programs.

Figure 1: Regional Greenhouse Gas Initiative (RGGI) timeline from initial 2003 discussions to the
2005 MOU signing and subsequent program evolution. The first compliance period began in 2009,
with certain states (e.g., New Jersey) withdrawing or rejoining over time.

The number of allowances permitted for each state is determined through a combina-

tion of regional and state-specific factors. Each RGGI state establishes its own CO2 Budget

Trading Program, based on the RGGI Model Rule 1 and implemented through each state’s

statutory or regulatory authority. The programs collectively form a regional cap-and-trade

system, with the total regional cap divided among the states according to an agreed method-

ology that considers historical emissions, electricity generation, and policy goals. Companies

1The Model Rule is a set of proposed regulations that form the basis for each RGGI state’s CO2 emissions.
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can purchase allowances to cover their current emissions, hold them in reserve for future

compliance, or trade them with other companies. These allowances can be traded across

state lines in secondary markets. Compliance is monitored at the state level, and compa-

nies must demonstrate that they hold enough allowances to cover their emissions over a set

three-year compliance period, while holding at least 50% of the necessary credits each year.

If a company does not hold sufficient allowances, it faces steep financial penalties, with vio-

lators having to surrender CO2 allowances equal to three times the number of tons of excess

emissions and also potentially being subject to state-specific penalties for non-compliance.

However, non-compliance does not appear to be a significant issue, with 99.5% of power

plants (221 out of 222) and 99.9% of emissions falling under compliance, with the sole vio-

lator forfeiting three times the amount of emissions of their shortfall. There have been five

control periods so far2, and we are currently in the sixth.

While RGGI implementation has been associated with notable reductions in CO2 emis-

sions within participating states, questions remain about its long-term effectiveness and po-

tential spillover effects. This thesis seeks to contribute to the growing body of research on the

environmental impacts of cap-and-trade programs by focusing exclusively on RGGI’s influ-

ence on emissions reductions. Specifically, I examine four interrelated aspects of RGGI’s per-

formance. First, I examine whether the pace of emissions reductions has diminished over time

as states potentially exhaust low-cost mitigation opportunities. Understanding this trend is

essential for assessing whether RGGI’s declining cap remains sufficiently stringent to produce

continued environmental benefits. Second, I investigate how RGGI has affected emissions

across different electricity grid management regions—particularly within the Pennsylvania-

2The control periods are 3-year periods as follows: Period 1: 2009-2011; Period 2: 2012-2014; Period 3:
2015-2017; Period 4: 2018-2020; Period 5: 2021-2023.
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Jersey-Maryland Interconnection Regional Transmission Organization (PJM ISO), where

both participating and non-participating states operate under the same regional transmis-

sion organization. I evaluate the presence of emissions leakage, whereby reductions in RGGI

states may be offset by increases in nearby non-RGGI states. This analysis provides insight

into how partial geographic coverage within a shared grid can affect the spatial distribu-

tion of emissions and regulatory effectiveness. Third, I explore whether RGGI participation

has influenced emissions and emission intensities of other pollutants—namely sulfur dioxide

(SO2) and nitrogen oxides (NOx)—which are often co-produced with carbon dioxide. These

co-pollutants have significant implications for local air quality and public health, and their

behavior under carbon regulation helps reveal whether RGGI produces ancillary environ-

mental benefits beyond its stated carbon targets. Finally, I look at the mechanisms through

which the emissions changes occur by separating the analysis into intensive versus extensive

margins. I specifically look at intensive margin adjustments as shifts in the operating profile

or efficiency of existing generating units and the extensive margin changes as entry or exit

via fuel switching, where carbon-intensive plants shut down in favor of more carbon-efficient

ones.

To achieve these objectives, I employ the synthetic control method developed by Abadie

and Gardeazabal, 2003 and extended by Abadie et al., 2010. This approach constructs

counterfactual scenarios for RGGI states by creating a weighted combination of non-RGGI,

non-Leaker states to simulate emissions trajectories in the absence of the program. This

analysis uniquely explicitly incorporates the announcement period in the baseline estimates

(2006–2008), contrasting with previous research which typically begins at program imple-

mentation in 2009. Furthermore, I employ a difference-in-differences (DiD) methodology to

analyze plant-level emissions data, examining the differential impact of RGGI participation
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on emissions, operating hours, heat input, and pollution intensity across various treatment

groups. Extending the analysis through the fifth control period (2021–2023) provides insights

into whether RGGI’s progressively declining emissions cap has continued driving meaningful

reductions or if the effects have diminished over time.

Moreover, I extend this analysis to the three electricity grid management regions that

the RGGI operates within: ISO New England (ISO-NE), New York ISO (NYISO), and

PJM Interconnection RTO (PJM). ISO-NE, which encompasses the states of Connecticut,

Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont, and NYISO, which

covers New York, are entirely within the RGGI region. In contrast, PJM spans both RGGI

and non-RGGI states, including Delaware, Maryland, and New Jersey (RGGI states) as

well as Virginia, West Virginia, Pennsylvania, Ohio, Kentucky, and Indiana (non-RGGI

states). These grid operators play a critical role in managing the electrical grid, coordinating

electricity flows, and facilitating energy market transactions across their respective regions.

In this analysis, I make the decision to include New Jersey continuously while excluding

Virginia and Pennsylvania to create a more cohesive treatment sample that captures poten-

tial lingering policy effects and institutional path dependencies. I also exclude Virginia and

Pennsylvania’s brief participation periods to prevent introducing noise from partial treat-

ments that could obscure the measurement of RGGI’s established, longer-term impacts.

This classification strategy creates a cleaner contrast between consistently regulated and un-

regulated states, enhancing the interpretability of your difference-in-differences results and

providing a more reliable assessment of RGGI’s sustained influence on emissions outcomes.

Since the PJM is the only region with a grid that contains a mixture of RGGI and non-

RGGI states, it creates conditions conducive to emissions leakage. Consequently, generation

from RGGI states that face capped emissions and higher compliance costs can easily be dis-
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Figure 2: Independent Service Operating and Regional Transmission Organization Regions
in the United States.

e

Source: Federal Energy Regulatory Commission (2024). Regional Transmission
Organizations/Independent System Operators. RTOs and ISOs. Retrieved November 17, 2024.

placed by generation from neighboring non-RGGI states within PJM. For instance, reduced

output from regulated plants in Delaware or Maryland can be offset by increased production

in non-regulated states within PJM, which have no comparable emissions constraints.

The designation of “Leaker” states in this analysis follows a specific methodology based

on both geographic proximity and electrical grid interconnection with RGGI states. Penn-

sylvania, Ohio, West Virginia, Kentucky, and Virginia were classified as potential ”Leakers”

based on two key criteria: (1) they operate within the same PJM Interconnection transmis-

sion organization as several RGGI states, and (2) they had substantial coal and natural gas

generation capacity that could potentially increase production in response to reduced output

from RGGI-regulated facilities. This classification expands on previous research by Fell and

Maniloff (2018) and Lee and Melstrom (2018), who primarily focused on Pennsylvania and

Ohio as the most likely to experience generation shifting due to their integrated transmission

systems and generation mix. The PJM region is uniquely positioned for examining leakage
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effects because it represents the only electricity market where both regulated and unregulated

states operate under a single dispatch system, allowing for frictionless substitution between

generators across state lines. This contrasts with ISO-NE and NYISO, which are entirely

within the RGGI regulatory boundary. By analyzing emissions per megawatt-hour across

RGGI, Leaker, and unaffected control regions, I assess how significantly leakage dynamics

may compromise the emissions reduction objectives of the RGGI program.

The remainder of this thesis is organized as follows. Section 2 presents a comprehen-

sive review of related literature, covering the theory behind cap-and-trade policies, empirical

evaluations of RGGI, and evidence from similar programs. Section 3 describes the data and

variables used in the analysis, including plant-level emissions, state-level policy indicators,

and macroeconomic controls. Section 4 outlines the empirical methodology, beginning with

an intensive-extensive margin framework, an associated difference-in-differences model to es-

timate plant-level impacts, followed by a synthetic control approach for state-level counter-

factuals. Section 5 reports the main results on emissions outcomes, leakage, and co-pollutant

effects, with additional robustness checks. Section 6 concludes.



2. LITERATURE REVIEW

Cap-and-trade systems have emerged as a cornerstone of climate policy, offering a flex-

ible, market-based mechanism to reduce greenhouse gas emissions. These systems operate

by setting an emissions cap and allowing the trading of allowances as needed, enabling

cost-effective reductions where they are most feasible. Alongside carbon taxes and hybrid

policy instruments, cap-and-trade mechanisms are widely recognized as economically effi-

cient strategies to address climate change (Aldy, 2015, Edenhofer et al., 2015, Metcalf and

Weisbach, 2009).

A robust body of theoretical and empirical literature underscores the efficacy of cap-

and-trade mechanisms. Du et al. (2011) utilize a game-theoretic model to investigate

emission-dependent supply chains, analyzing interactions between firms purchasing permits

and emission permit suppliers. By exploring Nash equilibria under diverse policy and mar-

ket conditions, they demonstrate how permit trading can significantly enhance compliance

flexibility and reduce abatement costs. Complementing this perspective, Zhou et al. (2022)

employ a computable general equilibrium model to contrast the macroeconomic impacts of

cap-and-trade policies and carbon taxes. Their findings suggest cap-and-trade systems miti-

gate sectoral disruptions by redistributing abatement costs across industries, whereas carbon

taxes maintain stable shadow prices, achieving superior national-level cost-effectiveness.

Empirical evaluations of prominent cap-and-trade programs, such as the European Union

Emissions Trading Scheme and California’s cap-and-trade offer insights into existing cap-and-

trade systems. Narassimhan et al. (2018) analyze these programs through criteria including

environmental effectiveness, economic efficiency, and stakeholder engagement. They high-

light the importance of gradually tightening emission caps and benchmark-based allocation
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methods, both of which reduce market volatility and promote fairness among participants.

The auction-generated revenues, when reinvested into renewable energy and energy efficiency

initiatives, were shown to amplify the environmental benefits of these programs. Similarly,

Haites (2018) emphasizes adaptive cap-setting mechanisms and comprehensive sectoral cov-

erage as attributes essential for success in a cap-and-trade, observing that effective systems

achieve emissions reductions without significant economic disruptions.

The RGGI represents the first mandatory cap-and-trade program in the United States

targeting CO2 emissions, requiring firms in participating states to comply with the program’s

emissions cap and trading mechanisms. While previous literature suggests the RGGI has

successfully reduced emissions within participating states, significant emissions leakage into

neighboring non-RGGI states has been also documented. Leakage occurs when production

shifts to unregulated states, such as those within the PJM ISO, where compliance costs

are lower. Studies by Roach and Gittings (2021) and Fell and Maniloff (2018) illustrate

how emissions reductions in RGGI states coincide with increased natural gas generation in

adjacent non-RGGI states. Yan (2021) quantifies this leakage, documenting a 30% reduction

in natural gas use for electricity in RGGI states coupled with a 237% increase in neighboring

states, translating to an additional 3.5 million tons of CO2 annually. Addressing such leakage,

Murray and Maniloff (2015) argue, may require broader regional coordination or mechanisms

like border adjustments, ensuring emissions reductions are not compromised by shifts in

production location. Notably, few existing studies incorporate the policy announcement

period preceding RGGI implementation in their main results, presenting an opportunity for

novel analysis in this thesis.

In addition to CO2, researchers have examined whether RGGI influences emissions of

other greenhouse gases and co-pollutants such as sulfur dioxide (SO2) and nitrogen oxides
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(NOx). Roach and Gittings (2021) find reductions in SO2 and NOx emissions in some RGGI

states though these reductions are not uniform across all plants and are primarily driven

by fuel switching and reduced coal usage. These reduced emissions have significant health

implications, as Chan and Morrow (2019) and Perera et al. (2020) find that when SO2 and

NOx emissions do decline, resulting improvements in air quality yield considerable public

health benefits, including fewer respiratory and cardiovascular disease cases. These findings

underscore the necessity of evaluating broader environmental co-benefits alongside carbon

reductions.

Synthetic control methods have emerged as a powerful tool for evaluating policy impacts,

particularly when addressing counterfactual scenarios. Abadie and Gardeazabal, 2003 first

created the SCM approach and later Abadie, 2010 formalized the approach to construct

counterfactual scenarios in regions unaffected by specific policy interventions. This method-

ology has been applied extensively in environmental economics to isolate the causal effects

of cap-and-trade programs on emissions. Specifically, studies examining the Regional Green-

house Gas Initiative have highlighted synthetic’s utility in evaluating environmental and

economic outcomes. For instance, Lee and Melstrom (2018) used synthetic controls to assess

leakage effects, demonstrating increased electricity imports into RGGI regions post-policy

implementation as local emissions were curtailed but production shifted elsewhere. Similarly,

Lee and Park (2019) utilized a quasi-experimental design incorporating synthetic controls

to reveal significant public health benefits, such as reductions in infant mortality rates, at-

tributed to improved air quality following RGGI’s implementation.

By situating RGGI within the broader literature on cap-and-trade systems and employing

synthetic control methods to assess its impacts, this thesis provides a comprehensive evalua-

tion of the program’s environmental performance across multiple dimensions. This research



Chapter 2. Literature Review 14

makes four distinct contributions to our understanding of regional carbon markets. First, it

extends analysis through the fourth (2018-2020) and fifth control period (2021-2023), cap-

turing the most recent outcomes of RGGI’s progressively tightening emissions cap. Second,

unlike previous studies that primarily relied on difference-in-differences frameworks, this pa-

per employs synthetic control methodology as its primary analytical approach. This relaxes

the parallel trends assumption and can improve the accuracy of the estimate of the treatment

effect, as a weighted combination of control regions often provides a closer approximation

to the treated region’s pre-intervention trajectory than a single region can. Third, this is

one of the few RGGI studies uniquely incorporates the announcement period (2006-2008)

prior to implementation, allowing for examination of anticipatory behavioral changes among

regulated entities. These methodological advances enable more precise isolation of RGGI’s

causal impact on emissions reductions while accounting for potential leakage effects and co-

pollutant outcomes, ultimately providing valuable insights for the design of future regional

climate policies. Finally, this thesis provides a regional breakdown of the RGGI electricity

markets, providing insight as to how policy harmonization impacts the effectiveness of cap-

and-trade programs.



3. DATA

This paper draws on a combination of firm-level, facility-level, and state-level data from

the U.S. Environmental Protection Agency’s Clean Air Markets Program (CAMP), which

provides unit-level emissions data for major CO2, SO2, and NOx from 1996 to 2023. Accord-

ing to the EPA, CAMP data covers approximately 96% of the fossil fuel generation in the

U.S.. The entirety of this thesis focuses on the 10 RGGI states, the 5 Leakers, and 32 control

states plus the District of Columbia3. This data facilitates an analysis of both the intensive

margin—changes in emissions at operating facilities—and the extensive margin—entries or

retirements of power plants. Plant-level characteristics such as heat input, operational hours,

and fuel type were used to construct control period averages by group.

While CAMP is the main source for facility-level behavior, the RGGI Emissions Dash-

board supplements these data by offering a view into operating schedules, gross load, and

unit retirement timing for regulated states. Table 1 summarizes the total number of facili-

ties by RGGI region and control period, and how they change over time. Notably, the years

closer to the onset of the RGGI saw the greatest number of operational declines, whereas

the later periods seemed to have the greatest net changes in unit counts across all regions.

To control for macroeconomic and demographic variation, I incorporate data from the

U.S. Energy Information Administration’s (EIA) State Energy Data System (SEDS), which

reports annual information from 1960 to 2023 on variables such as population, real GDP

(in chained 2017 dollars), fuel prices, and total energy consumption by sector. State-level

climate variation is captured through annual heating and cooling degree days. A comparison

3California is excluded from the control group because it started its own cap-and-trade program in 2013,
while Alaska and Hawaii are omitted because they aren’t part of the contiguous U.S. and due to their unique
electricity grids and limited comparability.

15
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Table 1: Plants by Control Period Start Year and Region

Year Region Total Units Units Added Units Retired Net Decline ≥50% Hrs

2006 CONTROL 2598 63 43 – 303
2009 CONTROL 2594 80 84 -4 640
2012 CONTROL 2593 49 50 -1 377
2015 CONTROL 2654 93 32 +61 392
2018 CONTROL 2677 38 15 +23 163
2021 CONTROL 2705 52 24 +28 197

2006 ISO-NE 179 2 0 – 30
2009 ISO-NE 187 8 0 +8 32
2012 ISO-NE 184 3 6 -3 33
2015 ISO-NE 183 1 2 -1 24
2018 ISO-NE 189 6 0 +6 16
2021 ISO-NE 182 0 7 -7 15

2006 LEAKER 691 7 7 – 99
2009 LEAKER 689 9 11 -2 133
2012 LEAKER 687 11 13 -2 115
2015 LEAKER 684 12 15 -3 86
2018 LEAKER 703 22 3 +19 58
2021 LEAKER 708 7 2 +5 35

2006 NYISO 338 7 5 – 110
2009 NYISO 344 8 2 +6 110
2012 NYISO 333 2 13 -11 27
2015 NYISO 328 3 8 -5 27
2018 NYISO 320 2 10 -8 24
2021 NYISO 318 2 4 -2 21

2006 PJM RGGI 246 1 11 – 62
2009 PJM RGGI 245 1 2 -1 102
2012 PJM RGGI 261 16 0 +16 57
2015 PJM RGGI 264 7 4 +3 65
2018 PJM RGGI 275 15 4 +11 27
2021 PJM RGGI 274 1 2 -1 13

Notes: (1) “Net” is computed as the difference in Total Units from the prior row for each region. (2)
“Decline ≥50% Hrs” indicates the number of units whose operating hours fell by at least half relative to

the previous period.

of summary statistics across RGGI, Leaker, and Non-RGGI states for the pre-announcement

and first two control periods is shown in Table 2. Several key differences emerge: Leaker

states consistently have higher average GDP per state, significantly larger populations, and
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Table 2: Summary Statistics for Primary Control Variables

NYISO ISO-NE PJM-RGGI Leaker Control

Pre-Announcement (Period 0)
Total Population (Thousands) 19,150 14,288 15,210 37,903 176,393
Total GDP (Thousands USD) 1,340,488 930,840 963,785 1,942,851 9,140,899
Avg. Population (Thousands) 19,150 2,381 5,070 7,581 5,345
Avg. GDP (Thousands USD) 1,340,488 155,140 321,262 388,570 276,997
Avg. Heating Degree Days 5,848.67 6,716.06 4,555.44 4,912.93 4,969.81
Avg. Cooling Degree Days 605.33 391.06 1,060.22 933.20 1,314.37
Avg. Natural Gas Price ($/MMBtu) 8.720 8.431 8.653 8.597 7.310
Avg. Coal Price ($/MMBtu) 2.443 1.937 2.813 2.009 1.603

First Control Period (Period 1)
Total Population (Thousands) 19,402 14,469 15,481 38,462 182,036
Total GDP (Thousands USD) 1,417,158 941,305 969,084 1,955,995 9,095,971
Avg. Population (Thousands) 19,402 2,412 5,160 7,692 5,516
Avg. GDP (Thousands USD) 1,417,158 156,884 323,028 391,199 275,635
Avg. Heating Degree Days 5,892.67 6,647.00 4,705.33 5,097.80 5,196.28
Avg. Cooling Degree Days 671.67 430.72 1,161.56 996.87 1,330.02
Avg. Natural Gas Price ($/MMBtu) 5.407 5.224 5.218 5.062 4.972
Avg. Coal Price ($/MMBtu) 2.990 2.365 3.622 2.575 2.021

Second Control Period (Period 2)
Total Population (Thousands) 19,618 14,651 15,706 38,871 186,863
Total GDP (Thousands USD) 1,511,158 973,424 1,004,033 2,064,635 9,724,731
Avg. Population (Thousands) 19,618 2,442 5,235 7,774 5,662
Avg. GDP (Thousands USD) 1,511,158 162,237 334,678 412,927 294,689
Avg. Heating Degree Days 5,872.67 6,666.44 4,712.11 5,087.13 5,022.10
Avg. Cooling Degree Days 632.33 429.61 1,040.67 900.13 1,305.67
Avg. Natural Gas Price ($/MMBtu) 4.740 5.571 4.164 4.290 4.315
Avg. Coal Price ($/MMBtu) 3.057 2.709 3.502 2.599 2.220

Third Control Period (Period 3)
Total Population (Thousands) 19,629 14,769 15,835 39,125 192,322
Total GDP (Thousands USD) 1,593,735 1,025,567 1,048,890 2,167,718 10,473,508
Avg. Population (Thousands) 19,629 2,462 5,278 7,825 5,828
Avg. GDP (Thousands USD) 1,593,735 170,928 349,630 433,544 317,379
Avg. Heating Degree Days 5,735.00 6,612.39 4,514.44 4,712.47 4,586.85
Avg. Cooling Degree Days 707.00 453.28 1,155.44 1,011.33 1,388.71
Avg. Natural Gas Price ($/MMBtu) 3.150 3.812 2.794 2.840 3.214
Avg. Coal Price ($/MMBtu) 2.517 2.662 2.994 2.253 2.067

Fourth Control Period (Period 4)
Total Population (Thousands) 19,704 14,916 16,087 39,440 197,127
Total GDP (Thousands USD) 1,675,168 1,067,586 1,077,113 2,237,519 11,144,494
Avg. Population (Thousands) 19,704 2,486 5,362 7,888 5,973
Avg. GDP (Thousands USD) 1,675,168 177,931 359,038 447,504 337,712
Avg. Heating Degree Days 5,879.67 6,708.56 4,532.44 4,829.40 5,019.38
Avg. Cooling Degree Days 744.00 520.94 1,236.44 1,104.67 1,416.33
Avg. Natural Gas Price ($/MMBtu) 2.947 4.000 2.706 2.721 2.717
Avg. Coal Price ($/MMBtu) 2.323 1.722 2.729 2.056 2.033

Fifth Control Period (Period 5)
Total Population (Thousands) 19,764 15,114 16,447 39,713 200,353
Total GDP (Thousands USD) 1,743,998 1,128,274 1,121,770 2,318,428 11,867,320
Avg. Population (Thousands) 19,764 2,519 5,482 7,943 6,071
Avg. GDP (Thousands USD) 1,743,998 188,046 373,923 463,686 359,616
Avg. Heating Degree Days 5,683.00 6,340.33 4,526.67 4,859.70 4,902.94
Avg. Cooling Degree Days 752.00 527.42 1,184.17 1,014.30 1,417.49
Avg. Natural Gas Price ($/MMBtu) 5.640 6.757 5.515 5.170 6.115
Avg. Coal Price ($/MMBtu) 0.000 1.756 2.729 2.469 2.172
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lower average heating degree days, implying a warmer climate that may alter seasonal de-

mand for power. RGGI states, meanwhile, tend to have higher heating degree days and

lower natural gas prices relative to the other groups, suggesting different baseload gener-

ation conditions. These differences support the use of a synthetic control approach that

flexibly weights pre-treatment trends rather than relying on simple difference-in-differences

models.

State-level emissions trends are further illustrated in Figure 3, which shows per capita

emissions of CO2, SO2, and NOx by group. Each panel includes vertical lines for the 2005

RGGI announcement and the 2009 implementation period. A sharp decline in emissions

is observable in RGGI states post-2009 for all pollutants, while Leaker and Control states

exhibit flatter or more gradual declines. This clear divergence in emissions paths post-2009

further supports the credibility of the intervention and provides visual evidence in support

of a treatment effect.

Figure 4 plots the fraction of total electricity generation (coal, natural gas, oil, and other)

from 1997 through 2021 for the five regions. I obtain these percentages by aggregating total

heat input (heatinputmmbtu) at the region-year-fueltype level, identifying each facility’s

primary fuel, and then summing the total heat input contributed by that fuel. I then divide

this figure by the region-year’s overall heat input, yielding a fuel-specific share of the region’s

total energy input. As shown, the RGGI states in the PJM region experience a dramatic

decline in coal’s share while natural gas rises. Although not bound by RGGI, non-Leaker

states nonetheless show a moderate shift away from coal after 2010. Overall, these figures

confirm that all regions moved toward lower-carbon resources, especially since the inset of

the RGGI states appearing to accelerate that transition.

Firm-level allowance trading data are obtained from the CO2 Allowance Tracking System
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(a) Per capita CO2 emissions

(b) Per capita SO2 emissions

(c) Per capita NOx emissions

Figure 3: Time-series plots of per capita CO2, SO2, and NOx intensities (from 1990 through
2023) across five groupings: NYISO, ISO-NE, and PJM RGGI (these three form part of the
RGGI), plus LEAKER and CONTROL (states not subject to RGGI). The dashed vertical
line at 2006 marks the RGGI announcement, and the dotted line at 2009 indicates the start
of the first compliance period. The data are aggregated at the regional level based on total
emissions divided by total energy generation, producing a per capita emissions metric for
each region.



Chapter 3. Data 20

(COATS), which records market behavior and compliance activities under the RGGI cap-

and-trade system. These data are used to characterize the exposure of power plants to

carbon pricing across time and facilitate plant-level treatment assignment for 1996-2022.

To control for renewable energy policy heterogeneity, I incorporate data on Renewable

Portfolio Standards (RPS) from Berkeley Lab’s Energy Markets and Policy Group, which

provides state-by-state information on renewable mandates, implementation dates, and strin-

gency from 2000-2023.

I assess the quality of the pre-treatment match for each outcome variable using covariate

balance tables in the Appendix (Tables A1–A3). These tables compare average pre-policy

emissions between treated units and their synthetic controls, constructed using the weights

optimized in the SCM procedure. For most outcomes, the synthetic matches closely track

the treated regions over the pre-treatment period, particularly for mid-sized states. However,

consistent with prior findings, I observe less precise fits for the smallest (e.g., Vermont) and

largest (e.g., New York) RGGI states, reflecting the difficulty of constructing counterfactuals

for states with few natural comparators in the donor pool. Overall, the balance statistics

support the validity of the synthetic control approach in this setting.

In this analysis, I make the decision to include New Jersey continuously while excluding

Virginia and Pennsylvania to create a more cohesive treatment sample that captures poten-

tial lingering policy effects and institutional path dependencies. I also exclude Virginia and

Pennsylvania’s brief participation periods to prevent introducing noise from partial treat-

ments that could obscure the measurement of RGGI’s established, longer-term impacts.

This classification strategy creates a cleaner contrast between consistently regulated and

unregulated states, enhancing the interpretability of my difference-in-differences results and

providing a more reliable assessment of RGGI’s sustained influence on emissions outcomes.
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Figure 4: Fuel share over time for the five selected regions. The “fuel share” in each region-
year was calculated by grouping all plants in that region by their primary fuel, summing
the total heat input for each fuel type, and dividing by the region’s total heat input in that
year. Leaker states refer to the PJM states that are not in the RGGI, namely Virginia, West
Virginia, Kentucky, Ohio, and Pennsylvania.
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4. EMPIRICAL SPECIFICATION

This study begins with a difference-in-differences (DiD) regression to capture impacts

from disaggregated plant-level data. Looking at plant operating hours, capacity, energy

production, and acitivity can reveal changes in intensive and extensive margins as firms

respond to the RGGI mandate. Then a state-level linear synthetic control model (SCM) is

constructed to estimate counterfactual emissions trajectories.

4.1 Intensive vs. Extensive Margins Framework

In order to explore the changes in emissions, this paper examines shifts in intensive and

extensive margins. In the context of emissions from electricity generation, the intensive

margin refers to adjustments made within existing facilities, such as changes in operational

intensity, hours of operation, fuel efficiency improvements, or fuel switching decisions. The

extensive margin encompasses shifts resulting from the entry or exit of facilities, plant re-

tirements, new plant construction, or broader structural shifts in the generation mix.

Formally, let total emissions Eit from state i at time t be expressed as the sum of emissions

from continuing facilities (intensive margin), Eintensive
it , and emissions from new or retiring

facilities (extensive margin), Eextensive
it :

Eit = Eintensive
it + Eextensive

it (1)

To empirically disentangle these margins, I proceed as follows. For the intensive margin,

the analysis focuses on the subset of plants that provided complete information of emissions,

heatinput, and operating time across the study period (this encompassed 83000 out of 114000

observations). Within this group, changes in the operating profile including heat input,
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operating hours, gross load, and emissions intensity reflect the plant-level responses.

For the extensive margin, the empirical approach evaluates whether RGGI participation

leads to systematic changes in the entry and exit behavior of plants. Specifically, I look at

(1) The changes in the number of operating plants (entry/exit dynamics) and (2) Changes

in fuel type shares within total electricity generation, switching from coal to a source less

carbon-intensive such as gas, reflecting structural shifts across generation sources.

Distinguishing between intensive and extensive margin effects can provide insights into

how RGGI primarily achieves emission reductions. Understanding these channels offers

crucial implications for designing future cap-and-trade policies that efficiently target both

margins to maximize environmental and economic outcomes.

4.2 Plant-Level Difference-in-Differences

The first empirical approach in this study is a plant-level difference-in-differences (DiD)

model designed to estimate the impact of RGGI participation on emissions. This approach

distinguishes between the announcement period after the RGGI was announced before 2009

and the post-implementation period, and it separately identifies the behavior of “Leaker”

states that may have been affected indirectly by the policy. The model is specified as follows:

Emissionspkit = α + δ1TREATi + δ2ANNOUNCEMENTi + δ3
(
TREATi × ANNOUNCEMENTi

)
+ θ1 POSTt + θ2

(
TREATi × POSTt

)
+ γ1 LEAKERi

+ γ2
(
LEAKERi × ANNOUNCEMENTi

)
+ γ3

(
LEAKERi × POSTt

)
+ β Xkit

+ f
(
Priceit

)
+ λt + νk + ϵkit.

(2)

where Emissionspkit represents emissions of pollutant p (such as CO2, NOx, or SO2) from
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plant k in state i at time t. The variable TREATi equals 1 if the plant is located in a state

that ultimately participates in RGGI. The model accounts for the possibility of anticipatory

behavior during the announcement period by including a ANNOUNCEMENTi indicator for

the years 2006 to 2009, equivalent to the announcement period, during which states publicly

committed to joining the initiative but before formal implementation began. The POSTt

variable is equal to 1 in years following the official start of RGGI in 2009. The coefficient δ1

captures baseline differences between treated and control plants prior to any RGGI activity,

while δ2 and δ3 capture how treated plants differed during the announcement period, both

on average and in interaction with treatment status. The coefficient θ1 captures time effects

common to all plants after implementation, and θ2 estimates the treatment effect of RGGI

in the post-implementation period.

In addition, LEAKERi identifies plants located in states adjacent to or economically

linked with RGGI states that did not formally join the program but may have been affected

by emissions leakage. The coefficients γ1, γ2, and γ3 estimate differences in emissions out-

comes for Leaker states relative to the control group in each phase of RGGI’s rollout. This

structure allows the model to separately capture both direct treatment effects and potential

spillovers to neighboring jurisdictions.

The model includes a rich set of plant-level and contextual controls, summarized in the

vector Xkit. These include the prices of natural gas and coal, which are key input costs

for electricity generation. Natural gas prices are modeled using a fractional polynomial

function, f(Priceit), to capture the nonlinear effects of the shale gas boom on emissions,

consistent with the methodology of Yan (2021). Coal prices are included to reflect the relative

cost competitiveness of more carbon-intensive power sources. Additional variables include

state renewable portfolio standards (RPS), which account for overlapping climate policies
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that may affect emissions outcomes independently of RGGI. Weather-driven fluctuations

in energy demand are controlled for using population-weighted heating and cooling degree

days, following the approach of Murray and Maniloff (2015). State-level employment and

population variables capture broader economic and demographic trends that may influence

electricity consumption and, by extension, emissions levels.

To account for unobserved heterogeneity, the model includes plant fixed effects (νk), which

control for time-invariant characteristics such as technology, location, and ownership. Time

fixed effects (λt) absorb national or region-wide shocks that affect all plants equally, such as

fuel market shifts or broader macroeconomic trends. A Hausman test indicates that fixed

effects are preferred over random effects, suggesting that unobserved plant characteristics

are correlated with the included covariates and that fixed effects yield unbiased coefficient

estimates. I also cluster standard errors at the plant level to better account for within-

facility correlation over time, capture the heterogeneity in plant-specific responses to RGGI,

and improve statistical inference with a larger number of clusters.

A core requirement for a DiD specification is the “parallel trends” assumption—that in

the absence of the RGGI, the treated and control units would have had similar outcome

trajectories over time. In other words, any systematic changes over time would have affected

both groups equally if RGGI had not been implemented. To bolster this assumption, I

conduct an event-study analysis (Appendix 8E: Figure 8), plotting leads and lags of the

treatment indicator and showing that there is no significant evidence of pre-trends in the

years prior to RGGI for each comparable type of plant. Although it is never possible to prove

parallel trends empirically, the event-study estimates and the graphical evidence suggest that

emissions trajectories for treated and control plants were similar prior to RGGI and did not

diverge in a statistically significant way. In addition, I include mixed DiD placebo tests,
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which randomly assign “fake” treatments in space and time to see whether the estimated

effects for the true treatment appear spuriously large. Finally, by controlling for multiple

covariates (fuel prices, plant characteristics, local economic factors) and including plant and

year fixed effects, I work to absorb any remaining differences over time are more plausibly

attributed to the policy rather than to differing regional or temporal shocks.

Overall, this DiD specification follows common best practices in the empirical literature

on environmental policy. By distinguishing pre-, announcement, and post-treatment periods;

accounting for leakage effects; and including both time and plant fixed effects, the model

aims to isolate the causal impact of RGGI participation on emissions while controlling for a

wide range of observed and unobserved confounders.

4.3 State-Level Synthetic Control Model

This study’s second empirical approach uses the synthetic control method to evaluate the

effect of the RGGI on state-level emissions and emission intensity. Developed by Abadie and

Gardeazabal (2003) and formalized by Abadie et al. (2010), SCM is a robust methodology

for estimating causal impacts in policy interventions. It constructs a weighted combination

of control units to create a synthetic counterpart for the treated unit, enabling the estima-

tion of counterfactual outcomes in the absence of treatment. Unlike difference-in-differences

(DiD) models, which rely on the parallel trends assumption, SCM uses pre-treatment char-

acteristics to select optimal comparison groups, offering greater flexibility in accounting for

time-varying unobserved confounders. While DiD models account for time-invariant traits

through fixed effects, SCM improves robustness in contexts where baseline characteristics

differ substantially between treated and control units, or when the treatment is applied to

a limited number of units (e.g., single states or firms). This flexibility ensures that any
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observed differences in outcomes are less likely to result from biased group selection.

In this study, SCM is applied to emissions data for all states within the study period,

including both RGGI and non-RGGI states. This comprehensive approach ensures that all

potential control states contribute to the construction of synthetic counterparts, improving

precision and minimizing selection bias.

The synthetic for the treated unit is constructed by assigning weights to non-treated,

non-PJM units called ”donor states.” These weights are optimized using a linear regression

approach to replicate the pre-treatment characteristics of the treated region as closely as

possible. Let XRGGI,m represent the vector of pre-treatment characteristics for the treated

region, and Xnon−RGGI,m denote the corresponding matrix of characteristics for non-treated

regions in the donor pool. The weights, wj, are selected to minimize the mean squared

prediction error (MSPE) of pre-treatment outcomes, subject to the constraints that the

weights are nonnegative and sum to one:

min
w

k∑
m=1

vm (XRGGI,m −Xnon−RGGI,mW)2 , (3)

where vm captures the relative importance of each characteristic m, k is the total number

of pre-treatment characteristics, and W is a vector of weights wj, constrained such that

0 ≤ wj ≤ 1 and
∑

wj = 1. The weights vm are determined through an optimization

process that minimizes the weighted sum of squared differences between the pre-treatment

characteristics of the treated unit and the weighted average of the control units (the synthetic

counterpart). This ensures that the synthetic control closely mirrors the pre-treatment

behavior of the treated unit, providing a valid counterfactual in the absence of treatment.

After constructing the synthetic control, the effect of the RGGI intervention is calculated

as the difference between the observed outcome for the treated region and the outcome for
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the synthetic counterpart. The treatment effect at time t, denoted as Effectt, is given by:

Effectt = YRGGI,t −
J+1∑
j=2

w∗
jYj,t (4)

where YRGGI,t represents the observed emissions outcome for the treated unit at time t, Yj,t

is the corresponding outcome for donor state j, J is the total number of states in the donor

pool, and w∗
j are the optimized weights derived from the pre-treatment period.

The variables I use in constructing the synthetic controls include lagged emissions paths

(1990–2005), and pre-treatment covariates from 2005: natural gas and coal prices, real GDP,

population, total energy production, and climate variables (CDD and HDD). These variables

ensure a strong pre-treatment match between the treated ISO and its synthetic counterpart

and reflect the economic and environmental factors most relevant for emissions behavior

(Yan, 2021; Xu, 2017). By explicitly constructing a counterfactual that accounts for pre-

treatment differences, the SCM provides a robust framework for evaluating policy inter-

ventions in the presence of unobserved time-varying confounders (Xu 2017, Gilchrist et al.

2018)).



5. FINDINGS

5.1 Plant-level Findings

5.1.1 Intensive Margin

I begin by examining how RGGI participation affected emissions at the plant level via the

DiD specifications outlined in Section 4.2. Table 3 reports the estimates of how participating

and leaker states were impacted by the RGGI.

The coefficient on RGGI × POST for CO2 is both substantively and statistically signif-

icant, indicating that RGGI adoption is associated with a meaningful reduction in carbon

emissions after 2009. Moreover, the announcement period also shows significance, suggest-

ing that some plants began curtailing or reallocating emissions prior to the policy’s formal

start—likely through anticipatory behavior, a finding contrasting previous literature. One

possible avenue through which emissions could have been reduced is increased fuel switching,

where high-emitting coal units may have switched to lower-carbon fuels such as natural gas,

or invested in efficiency upgrades, to mitigate the new costs of carbon allowances.

Interestingly, NOx outcomes reveal a positive and significant coefficient in RGGI states,

whereas SO2 exhibits a negative coefficient that is statistically smaller. One plausible ex-

planation is that the largest NOx emitters—often the same units producing substantial CO2

and SO2—had already installed substantial NOx-control technologies (e.g., selective cat-

alytic reduction) under previous federal rules, potentially muting additional NOx reductions

attributable solely to RGGI.

Turning to the Leaker-state coefficients, Table 3 indicates more modest or even mixed

29
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Table 3: Plant-Level Difference-in-Differences Estimates of RGGI and Leaker State Effects
on Emissions

Variables CO2 SO2 NOx

ANNOUNCEMENT −168, 314∗∗∗ −2, 399.09∗∗∗ −1, 090.15∗∗∗

(28, 294) (251) (95)

RGGI × ANNOUNCEMENT −50, 161∗∗ 76.84 202.86∗∗∗

(21, 914) (290) (61)

POST −178, 194∗∗∗ −1, 816.26∗∗∗ −1, 301.46∗∗∗

(39, 768) (393) (139)

RGGI × POST −92, 921∗∗∗ −351.48 269.22∗∗∗

(35, 732) (525) (104)

LEAKER × ANNOUNCEMENT −25, 679∗ −979.26∗∗∗ 53.79
(13, 691) (217) (58)

LEAKER × POST −32, 913 −2, 443.35∗∗∗ −112.81
(27, 305) (571) (116)

Observations 49,925 51,739 61,122
R2 (within) 0.0766 0.1180 0.1304

Notes: All regressions include plant and year fixed effects, with robust standard errors clustered by plant
(plantunitid). Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. ANNOUNCEMENT

indicates years 2006–2008; POST indicates years ≥ 2009.

responses. The Leaker states show surprising decreases in emissions across all emissions,

though most notably for SO2. While one might expect neighboring unregulated states to ab-

sorb some generation capacity from RGGI states, thereby raising their emissions (“leakage”),

the magnitude of these estimates is unanticipated. This suggests that both market forces

(e.g., relative fuel prices) and plant-level decisions (e.g., capacity expansions or retirements)

may interact to produce shifts in dispatch patterns, possibly in ways that amplify emissions

in certain unregulated regions.

Much of the aggregate emission decreases measured here seem to be coming from the

highest-emitting plants, as shown in Figure 7. The top 10% of emitters in RGGI states

exhibit steeper post-2005 declines than their non-RGGI counterparts. This is consistent
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with carbon pricing exerting its greatest pressure on units that can reduce emissions most

cost-effectively through fuel switching or curtailed operation. Since this is a measure of the

intensive margin, it is impossible without looking at additional measures to determine the

effects on overall output. Though the results are suggestive that plants started shifting their

behavior prior to 2009 when the RGGI was officially implemented.

There are a couple limitations to this analysis that later sections aim to address. Pri-

marily, the fuel-share changes associated with the shale revolution had an especially large

effect on the Leaker states, which were primarily reliant on coal prior to the RGGI, and thus

had the greatest margins to transition. This can be especially difficult to disentangle in the

DiD analysis, even with the specification controlling for factors such as state fuel share and

natural log pricing. Moreover, another critique of DiD models that operate on the plant

level comes from Roach and Gittings (2021), who find that intensive changes are masked by

changes in fuel share compositions. Indeed, holding constant the primary fuel type for coal

and natural gas plants reveals that much of the leaker’s substantive effects come from the

Coal plants, especially when it comes to CO2 (Table: C3). For the RGGI, it’s the coal plants

that experience the greatest decreases in emissions across all pollutants, which corroborates

the hypothesis that RGGI reduces emissions.

An analysis of different types of plants reveals what is driving the overall changes in

emissions. Table 4 presents the estimated effects of RGGI policy on coal and natural gas

plant operations over the announcement and post-implementation period. For coal-fired

generating units in RGGI states, perating time shows a substantial and significant decline

in the post-implementation period of 1,105.7 hours per unit, which is significant at the 1%

level, although though effects during the announcement period are more modest. However,

heat input exhibits significant reductions in both periods, with effects intensifying from
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−1,128,493 MMBtu during transition to −3,780,412 MMBtu post-implementation. The

gross load, or maximum generation in a day, follows a similar pattern, with particularly

strong reductions post-implementation (−355,349 MWh, significant at the 1% level). Leaker

states contrast these findings, especially post-implementation. While operating time de-

creases modestly, heat input increases significantly (+864,897.8 MMBtu) and gross load

shows a positive though statistically insignificant coefficient. This divergent pattern pro-

vides initial evidence consistent with the emissions leakage hypothesis, suggesting potential

substitution of generation from RGGI to neighboring non-RGGI states.

Natural gas plants in RGGI states exhibit significant operational reductions across all

metrics and in both time periods. Operating time decreases by a highly significant level

during transition (579 hours) and and post-implementation (1311 hours). Heat input follows

a similar pattern of escalating reductions, indicating that each unit is operating for less

time with lower intensity. Gross load shows substantial declines in both periods, though

proportionally smaller than the reductions observed for coal plants.

Interestingly, natural gas plants in leaker states show a more nuanced response. During

the transition period, these plants exhibit significant reductions in heat input and gross load,

potentially reflecting anticipatory adjustments to regional market conditions. However, in

the post-implementation period, coefficients for all operational metrics are small and statis-

tically insignificant, suggesting minimal long-term impacts on natural gas plant operations

in these neighboring states.

These findings have several important implications. First, they demonstrate that RGGI

had substantial effects on power plant operations in participating states, with impacts ex-

tending beyond the targeted high-emission coal plants to affect natural gas generation as

well. The magnitude of effects suggests that even modest carbon pricing can induce signifi-
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cant operational changes in electricity markets.

Second, the differential impacts across fuel types highlight the policy’s effect on relative

generation costs. While coal plants experienced the largest absolute reductions in operations,

natural gas plants in RGGI states also faced significant constraints, contrary to the common

expectation that carbon pricing would primarily shift generation from coal to natural gas.

Third, the contrasting patterns between RGGI and leaker states, particularly for coal

plants, provide evidence consistent with emissions leakage. The positive coefficients for heat

input and gross load in leaker states post-implementation suggest that some of the generation

reduced in RGGI states may have been replaced by increased generation in neighboring

states, potentially undermining the policy’s effectiveness in reducing aggregate emissions.
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Table 4: RGGI Policy Effects on Coal and Natural Gas Plant Operations

Panel A: Coal Plants

Outcome RGGI States Leaker States

Transition Post Transition Post

Operating Time (hrs) −81.877 −1105.703∗∗∗ −82.228 −120.628

(185.987) (320.403) (92.645) (205.444)

Heat Input (MMBtu) −1, 128, 493∗∗ −3, 780, 412∗∗∗ −160, 348.8 864, 897.8∗∗

(566,395.6) (841,237.4) (236,969.5) (434,149.6)

Gross Load (MWh) −24, 941.65 −355, 349∗∗∗ −25, 098.98∗∗∗ 19, 716.16

(67,903.68) (98,606.85) (3,262.8) (52,056.75)

Panel B: Natural Gas Plants

Outcome RGGI States Leaker States

Transition Post Transition Post

Operating Time (hrs) −578.912∗∗∗ −1, 311.049∗∗∗ 1.019 −9.695

(113.541) (137.934) (68.391) (132.688)

Heat Input (MMBtu) −400, 650.8∗ −1, 448, 420∗∗∗ −257, 830.2∗∗∗ 24, 712.39

(227,768.4) (212,303) (68,956.08) (207,754.9)

Gross Load (MWh) −73, 014.89∗∗∗ −165, 026.8∗∗∗ −63, 080.23∗∗∗ 15, 957.8

(20,898.29) (27,940.34) (9,349.306) (30,678.79)

Notes: Each cell reports the coefficient from fixed-effects (within) regressions with plant-

unit and year fixed effects and standard errors clustered by plant-unit. Standard errors

in parentheses. Transition period refers to 2006-2008, Post period refers to 2009 onwards.

Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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5.1.2 Extensive Margin

Table 5: Impact of RGGI on Power Generation Units

(1) (2)

RGGI × Post −21.241∗∗∗ —

(7.702)

Leaker × Post −5.095 —

(9.902)

RGGI Region Effects:

ISO-NE × Post — −24.004∗∗∗

(5.808)

NYISO × Post — 28.352∗∗∗

(5.133)

PJM RGGI × Post — −32.248∗∗∗

(5.580)

Leaker × Post — −5.095

(9.909)

Year Fixed Effects Yes Yes

State Fixed Effects Yes Yes

Observations 1,351 1,351

R-squared (within) 0.399 0.416

Number of States 48 48

Notes: Robust standard errors clustered at the state level in parentheses. ∗∗∗ p<0.01, ∗∗ p<0.05,
∗ p<0.1. The dependent variable in both columns is the count of unique generation units in each
state-year. Column (2) breaks RGGI states into ISO-NE (CT, MA, RI, VT, NH, ME), NYISO
(NY), and PJM RGGI (NJ, DE, MD).

This section investigates how RGGI participation influenced facility-level entry and exit

decisions, focusing on the extensive margin at the plant level. The ”units” I am looking at

are those large enough enough to fall under RGGI and EPA reporting requirements. When

a facility shuts down or downsizes below the reporting threshold, my dataset treats that as

an exit, because both scenarios appear as a reduction in the total unit count.

Existing literature suggests that cap-and-trade programs often prompt net facility ex-

its, especially for plants dependent on carbon-intensive fuels like coal (Yan, 2021). At the
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same time however, RGGI participation may encourage newer, lower-carbon sources such

as natural-gas or renewable-based facilities. To capture these dynamics, I explicitly track

changes in the absolute number of operational units at the state level, measuring how the

RGGI affects facility entry and exit decisions over time.

Table 5 presents two specifications for how RGGI participation affects the number of

operational units in each state-year, using fixed-effects to estimate the aggregate and regional

effects on number of units. Column (1) indicates that, on average, RGGI states experienced

a statistically significant decrease of about −21.24 units after the policy was implemented

(p < 0.01), a significant change in the extensive margin. By contrast, Leaker states show a

smaller and statistically insignificant reduction of around −5.10.

Turning to column (2), I separate RGGI states into subgroups based on the unit’s ISO

region. The ISO-NE states exhibited a sizable and statistically significant decline of about

−24.00 units. Interestingly, the PJM RGGI states record the largest drop in units which

are the most statistically signficant, at −32.25 units, a possible result of leakage. This also

stands out since the PJM region had less units to begin with than did NYISO and the Leaker

region.

By contrast, NYISO sees a significant increase of +28.35, suggesting that the effects

of RGGI may vary with market structure and the composition of new generating units.

Notably, the vast majority of NYISO’s newly added units over this period were natural gas

plants, indicating that New York’s net capacity expansion was largely driven by gas-fueled

generation rather than coal or oil, which is reflected in the temporal composition change of

unit production in 4. Once again, the coefficient for Leaker states is negative (approximately

−5.10) but remains statistically insignificant in this regional breakdown.

In addition to the RGGI affecting the overall count of operating units, I am interested
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(a) Coal (b) Oil

(c) Gas (d) Other

Figure 5: Percentage of generation units by fuel type across regions (1996–2023). Each panel
shows the share of active units categorized as Coal, Oil, Gas, or Other.

in looking at whether the fuel composition also shifted. The dataset includes each unit’s

primaryfueltype, which I group into four broad categories: Coal, Oil, Gas, and Other.

Figure 5 plots the percentage of active units in each category, broken down by region and

year, with a vertical reference line at 2006 to mark the RGGI’s announcement.

A clear pattern emerges for coal, where RGGI regions such as ISO-NE and NYISO

display a sharper decline in coal-based units relative to non-RGGI areas, especially after the

program’s implementation. This trend aligns with the difference-in-differences findings in

Table 4, indicating that RGGI states retire coal capacity more aggressively once the policy
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takes effect. By contrast, gas grows more quickly outside the RGGI boundary, particularly

in “Leaker” states like Pennsylvania and Ohio, suggesting a possible relocation of capacity

to avoid carbon compliance costs (Fell and Maniloff, 2018), (Chan and Morrow, 2019), (Lee

and Melstrom, 2018). Oil remains a small fraction of total units across all regions and

steadily declines over time, implying a minor role for oil-fueled generation under RGGI.

Meanwhile, the “Other” category— which includes biomass, waste, and other uncategorized

fuels—remains modest throughout the sample period.

5.2 State-Level Findings

I then move on to the synthetic control specification to examine the aggregate RGGI

changes. I start by constructing a counterfactual for RGGI at the state level, employing the

synthetic control method as implemented in the synth2 package for Stata.4 The algorithm

estimates an optimal weight vector w∗ by minimizing the discrepancy between pre-treatment

characteristics of the treated region (RGGI or Leaker) and a weighted average of control

regions (non-RGGI, non-Leaker).

While RGGI was announced in December 2005, formal allowance trading and compli-

ance began in 2009. Hence, my main specification assigns 2006 as the policy onset (with

alternative timing analysis conducted for robustness and displayed in Appendix D). Ta-

ble C1 displays the estimated donor weights that compose the “Synthetic RGGI” region.

Notably, only a handful of high-emitting states—Texas, Michigan, Indiana, Florida, and

Tennessee—receive positive weights, implying they best match RGGI’s pre-2006 emissions

trend. Figure 6 reports the Actual vs. Synthetic trajectories for total CO2, SO2, and NOx

emissions. The paths closely align before 2006, easing concerns about a poor pre-treatment

4See http://web.stanford.edu/~jhain/synthpage.html for documentation.

http://web.stanford.edu/~jhain/synthpage.html
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fit. From 2006 onward, the treated RGGI emissions diverge downward, suggesting that states

under the program cut emissions more sharply than their synthetic counterparts would have

predicted.

Table D2 further quantifies these gaps over each control period. For instance, from 2006–

2008, the treatment effect (T.E.) for CO2 is approximately −1.97× 107 tons, corresponding

to a statistically significant 11.2% reduction relative to the counterfactual synthetic RGGI,

which estimates where the RGGI would have been absent the policy (% CH in the table).

This already suggests some early impact, even before formal compliance began in 2009. The

gap then widens considerably over subsequent periods: by 2018–2020, the difference reaches

−5.96 × 107 tons (−40.9%). Likewise, SO2 exhibits a small initial effect of around −11.4%

during 2006–2008, but that grows to −65.4% by 2021–2022. NOx follows a similar pattern,

moving from a modest −3.6% difference at the start to a substantial −34.4% gap by the final

period. Thus, preliminary results seem to indicate that the greatest impacts manifest in the

later control periods, suggesting that RGGI’s cumulative abatement effect was maintained

as time went on.

A regional breakdown in Tables C4–C6 provides further insight into how RGGI’s impacts

evolve across time and differ by sub-region. Focusing on NYISO (Table C5), the treatment

effect for CO2 starts at about −1.06 × 107 tons (−17.4%) over 2006–2008 and deepens to

−1.84 × 107 tons (a −39.1% reduction) by 2018–2020, indicating a progressive abatement

within New York’s portion of the grid. Analogous patterns emerge in ISO-NE (Table C5),

where the early period also shows moderate reductions and escalate to −36.2% in later

control intervals. In contrast, for the PJM RGGI states (Table C6), I observe a smaller

initial CO2 gap of roughly −6.5% but still see it widen in later periods. Meanwhile, SO2

and NOx trends similarly intensify over time, showcasing that the program’s effects become
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more pronounced in successive compliance periods for all pollutants.

Overall, these sub-regional estimates reinforce two key conclusions. First, RGGI’s abate-

ment effect does not manifest evenly across states. The areas that don’t have the spillover

effect, like NY-ISO and ISO-NE appear to adopt cleaner generation mixes more rapidly than

others. Second, despite some heterogeneity in timing, each region under RGGI exhibits grow-

ing emission reductions in later years—particularly noticeable for SO2 and NOx, where many

states faced co-pollutant rules or installed additional scrubbers. The consistent deepening of

the gap by 2018–2020 underscores that RGGI’s cumulative abatement effect persisted (and

even accelerated) well after its initial launch, complementing the broad patterns found in

the aggregate analysis (Table D2).

A potential caveat to our synthetic control analysis is that total emissions can be dom-

inated by a few large states, potentially over-weighting high-emission donors in our limited

donor pool. While I have accounted for a number of major covariates, states differ substan-

tially in population, baseline energy mix, industrial output, and there could be some omitted

variable bias. These differences can confound the analysis, as comparisons of raw emission

tonnage may obscure important nuances in regional characteristics and trends.

To mitigate the above concerns, I re-estimate the synthetic control on all three pollutants

using a per-capita measure of emissions per unit of energy produced, which I call “emission

intensity.” This approach normalizes emissions by the magnitude of electricity generation

(e.g., MWh), capturing whether RGGI states reduced their carbon intensity per unit of

output more rapidly than their synthetic counterparts.

The emission intensity results reaffirm that after the policy onset in 2006 RGGI emissions

drift further below the synthetic trajectories, and the gap expands over each subsequent

control period. Table D2 illustrates how the RGGI’s effects persist and intensify over time.
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Reductions of SO2 and NOx likewise show larger negative percentage changes, suggesting

that co-pollutant abatement proceeded in tandem with greenhouse gas reductions.

For instance, CO2 emissions in RGGI are roughly 83% below synthetic projections by

2018–2020, indicating that the policy’s effect on intensity strengthens over time. In tandem

with the plant-level DiD evidence, these findings suggest that RGGI cut emissions both in

absolute terms and at an accelerating rate, even after accounting for variations in population

or baseline economic activity.

From our regional results, the ISO-NE region (Table D5) shows particularly strong re-

ductions, with CO2 emissions reaching 85.9% below the synthetic control by 2018–2020,

alongside substantial decreases in SO2 (69.8%) and NOx (95.9%). The results suggest that

the northeastern power market responded most dramatically to the policy intervention, likely

to changes in fuel composition. By contrast, the NYISO region (Table D4) exhibits a differ-

ent pattern in earlier periods, with CO2CO2 emissions actually 30.9% higher than synthetic

projections during 2006–2008. However, this anomaly reverses by 2009–2011, after which

emissions steadily decline below synthetic expectations, culminating in a 78.4% reduction

during 2018–2020.

The PJM-RGGI region (Table D6) demonstrates the highest absolute CO2 levels in the

early period (129.5 units compared to 93.4 overall RGGI average), but achieves comparable

percentage reductions (84.2% below synthetic projections) by 2018–2020. This region also

shows the most dramatic improvement in NOx abatement, reaching 97.1% below synthetic

projections in the 2018–2020 period. Interestingly, and in accordance with the leakage hy-

pothesis, the Leaker region (Table D7) presents a stark contrast to other regions, with CO2

emissions consistently higher than synthetic projections after 2012. By 2018–2020, emissions

are 15% above synthetic control estimates, suggesting possible emissions leakage or displace-
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ment from regulated to unregulated areas. However, SO2 reductions remain substantial even

in this region (31.9% below synthetic projections during 2018–2020).

The temporal dynamics across all regions reveal that the largest marginal improvements

often occur between the 2012–2014 and 2015–2017 periods, with the percentage gap between

actual and synthetic emissions widening substantially. Though it is important to note, that

a large reason why the effect grows during that time is due to a spike in the emissions

intensity of the controls. I will perform robustness checks modifying the control units to

establish the result’s validity. Nonetheless, the consistent acceleration of emission reductions

during this period could suggest that policy refinements enhanced RGGI’s effectiveness.

The data also demonstrate that energy-normalized emissions fell most dramatically for NOx

(reaching 95.8% below synthetic projections overall by 2018–2020), followed by CO2 (83.1%)

and SO2 (62.6%). This hierarchy of reduction intensities may reflect the interaction between

RGGI and other concurrent regulations targeting criteria pollutants, as well as the relative

technical and economic constraints governing abatement options for each pollutant.

5.3 Robustness Checks

I perform a number of robustness checks to assess the stability of the estimated treatment

effects. I begin by following the process of Yan (2021) by restricting the set of potential con-

trol states to those within the Eastern Interconnection (hence removing Arizona, Colorado,

Idaho, Montana, Nevada, New Mexico, Oregon, Texas, Utah, Washington, and Wyoming as

controls). States in the western grid may be weaker controls due to fundamentally different

market structures and greater geographical distance from the RGGI region. By selecting

only Eastern Interconnection states outside of RGGI and the Leaker definitions, I improve

the comparability between treated and control observations. Re-running the SCM under
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this restriction yields effectively the same significance levels with similar coefficients for all

RGGI regions, which confirms that the results are not driven by including distant western

states. For the Leaker region, solely using eastern weights changes the findings from the

earlier periods as the treatment effect switches from positive to negative, but the effects con-

verge after control period 3 and the number of donors reduce from 11 to 4 in the exclusion

specification, making it weaker than the baseline analysis.

Another important check involves redefining which states are considered “Leaker” states.

In my main model, I designate Ohio, Pennsylvania, Kentucky, Virginia, and West Virginia

as Leaker states. I then restrict the Leaker group to include only Ohio and Pennsylvania,

the two states that had been identified as the largest Leakers in most previous research. In

both cases, the resulting estimates of the treatment effect remain similar in magnitude and

significance, indicating that the primary findings on emissions leakage are robust to how the

boundary of the Leaker region is drawn.

To validate the robustness of the plant-level DiD estimates, I employ a mixed placebo

test that combines in-space and in-time placebo assignments, following the approach of

Chen and Yan (2023). The mixed placebo test uses a fake treatment time prior to the

actual treatment and applies the in-space placebo framework as if the fake treatment time

were the real one. This approach takes an otherwise visual validation approach and allows

for p-values, providing a way to evaluate the significance of treatment effects (Firpo and

Possebom, 2018). The use of the mixed placebo test ensures that the observed effects are

unlikely to be driven by chance or random noise, strengthening confidence in the findings.

I implement it using the didplacebo Stata module that Chen and Yan created (Chen et.

al, 2023). Specifically, I randomly assign treatment units and timing over 500 simulated

draws among potential donor states, then compare how often the observed DiD coefficient
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is matched or exceeded by these placebos. Turning to the results from the mixed placebo

tests, the CO2 and SO2 estimated effects are highly significant at conventional levels. By

contrast, the NOx estimates lie higher in the placebo distribution, offering no robust evidence

of emission reductions (Appendix Table: E1).

Finally, I perform three robustness checks on the synthetic-control estimates. First, for

each treated region, I re-run the synthetic control methodology but treat each donor state

(separately) as if it were “treated,” examining the post-treatment gaps in those placebo

assignments. Across the placebo distribution, the actual RGGI effect is consistently among

the most pronounced and negative, with the highest Mean Square Prediction Error ratio

from the pre-intervention period to the post. This reaffirms that the estimated impact

is significant compared to random reassignments of treatment. This result holds for both

aggregate emissions and intensity, across all types of pollutants. Second, I apply the Leave-

One-Out approach (Figure: 9) by removing each donor state in turn from the synthetic

control and then re-estimating the treatment effect. The finding that no single donor state

is disproportionately driving the estimated impact, reinforces the robustness of the findings.

Third, I use 2009 as the treatment date as has been done in most previous literature, and I

find a slightly more muted, yet significant effect (Table: E2.

5.4 Limitations

Although the findings are robust to many specifications, four principal limitations should

be acknowledged. First, this thesis makes a very precise specification for leaker states and

treated units in this analysis. It makes the assumption that all leakage is confined to the

leakage states with geographic proximity, though that may not be the case. In reality,

emissions leakage may occur through more complex channels, including through electricity
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imports from regions beyond the designated leaker states or through industrial production

shifts that cross multiple state boundaries.

Second, if electricity companies found New Jersey’s exit from the RGGI as credible in the

long-term, it may have also had a role as both a leaker state and an RGGI state that hasn’t

been thoroughly addressed in this analysis. This dual status creates identification challenges

that could confound the estimated treatment effects, particularly during the period when

New Jersey temporarily withdrew from the program.

Third, the methods used—particularly difference-in-differences—rely on assumptions of

parallel trends that may not perfectly hold for all states or plant types. While I conducted

event study analyses and placebo tests to validate these assumptions, heterogeneous plant

characteristics and regional electricity market structures may introduce unobserved time-

varying factors that affect the parallel trends assumption.

Fourth, many of the plant-level characteristics used in the DiD were state-level ob-

servations, such as state renewable energy policies. Unfortunately, due to data and time

constraints, I wasn’t able to find more granular data that would capture facility-specific

regulatory environments or compliance strategies. This aggregation may mask important

heterogeneity in how individual plants responded to RGGI, potentially introducing mea-

surement error in the estimated effects. Future studies could work to collect more granular

data on facility-specific environments, including using geospatial data on proximity to the

nearest plant from a non-neighboring state.



6. CONCLUSION

Climate change mitigation strategies are gaining greater momentum across regions, with

more states signing onto voluntary and mandatory climate initiatives in an effort to balance

environmental protection and economic growth. As the cost of inaction on global warming

grows clearer, programs like the Regional Greenhouse Gas Initiative have drawn heightened

scrutiny and interest.

This analysis shows that, over time, the RGGI framework has been increasingly effective

at driving down emissions within its participating states by making the cost of fossil-fuel-

based electricity more expensive and thereby nudging power producers toward lowering out-

put or seeking cleaner energy sources. I find that a moderate degree of emissions ”leakage”

does arise when electricity demand shifts toward facilities in neighboring states not covered

by RGGI’s cap. Nevertheless, the net result remains a measurable drop in overall carbon

emissions, supported by plant-level responses that involve both intensive (reduced operat-

ing hours, heat inputs, or altered efficiency) and extensive shifts (retirements or operating

fewer units and fuel switching). I identify the changes in the extensive margin, particularly

through switching from carbon-intensive coal power plants to more carbon-efficient natural

gas, as the most significant driver of emissions reductions across all regions.

The findings highlight how, despite its success at cutting emissions in the original states,

a partial regional program is unlikely to be seamless: without broader adoption, at least

some portion of the pollution may migrate. On balance, the results from the regional anal-

ysis suggest that policy harmonization where every state within a shared electricity market

participates leads to more effective outcomes.

Particularly noteworthy are the emissions reductions that continue to grow over time,

46



Chapter 6. Conclusion 47

with the greatest impacts observed in later control periods (2018-2023). This suggests

that RGGI’s progressively tightening emissions cap has maintained its effectiveness even

as states exhaust their initial low-cost abatement opportunities. Additionally, the significant

co-benefits observed for SO2 and NOx emissions highlight how carbon pricing policies can

simultaneously address multiple environmental objectives, potentially yielding substantial

air quality and public health improvements beyond their climate targets.

Future policy designs should consider these findings by prioritizing comprehensive re-

gional coverage to minimize leakage effects, implementing mechanisms to address cross-

border electricity transfers, and recognizing the value of gradually increasing stringency over

time. As more jurisdictions contemplate similar market-based approaches to emissions re-

duction, the RGGI experience demonstrates that regional cap-and-trade programs can be

effective climate policy tools when thoughtfully structured and adaptively managed.
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8. APPENDIX

8A. Synthetic Balance

For the first three tables in this appendix, the V.weight column indicates the importance

assigned to each predictor variable during the optimization procedure that minimizes the pre-

treatment root mean squared prediction error (RMSPE). Higher weights suggest a stronger

contribution to the synthetic control’s ability to approximate the treated unit’s pre-treatment

outcomes. For example, CO2 emissions in the early 2000s (e.g., 2005, 2004, 1999) receive

relatively higher weights, implying that these years were especially influential in constructing

the synthetic control.

The Bias (Synth.) column shows the percentage difference between the treated unit and

its synthetic counterpart for each predictor, calculated as:

Bias (Synth.) =
Synthetic− Treated

Treated
× 100

Smaller values (closer to 0%) reflect better balance and a more credible counterfactual.

These results were generated using the synth2 and allsynth commands in Stata, which

internally optimize both the predictor weights (v-weights) and donor unit weights (w-weights)

through a nested minimization procedure. The fig option was used to automatically produce

covariate balance, unit weight, and treatment effect plots. The predictor balance table was

manually recreated based on the output returned by synth2.

synth2 was developed by Guanpeng Yan and Qiang Chen as a Stata wrapper to expand

over traditional synthetic controls and include placebo tests, robustness test, and visual-

ization, while allsynth was developed by Justin C. Wiltshire as a tool for synthetic bias

correction.
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Table A1: Covariate Balance in the Pretreatment Periods: CO2

Covariate V.weight Treated Synthetic Control Average Control Bias (Synth.)

CO2(1990) 0.0520 1.698e+08 1.503e+08 4.070e+07 -11.48%

CO2(1991) 0.0511 1.654e+08 1.501e+08 4.078e+07 -9.29%

CO2(1992) 0.0491 1.583e+08 1.479e+08 4.142e+07 -6.57%

CO2(1993) 0.0534 1.523e+08 1.572e+08 4.351e+07 3.28%

CO2(1994) 0.0527 1.556e+08 1.568e+08 4.449e+07 0.76%

CO2(1995) 0.0546 1.590e+08 1.570e+08 4.468e+07 -1.29%

CO2(1996) 0.0580 1.563e+08 1.639e+08 4.643e+07 4.82%

CO2(1997) 0.0639 1.719e+08 1.675e+08 4.791e+07 -2.52%

CO2(1998) 0.0684 1.781e+08 1.750e+08 5.014e+07 -1.72%

CO2(1999) 0.0696 1.763e+08 1.779e+08 5.068e+07 0.94%

CO2(2000) 0.0731 1.745e+08 1.823e+08 5.327e+07 4.47%

CO2(2001) 0.0684 1.729e+08 1.768e+08 5.259e+07 2.27%

CO2(2002) 0.0700 1.696e+08 1.771e+08 5.216e+07 4.38%

CO2(2003) 0.0701 1.729e+08 1.762e+08 5.266e+07 1.94%

CO2(2004) 0.0714 1.730e+08 1.791e+08 5.393e+07 3.53%

CO2(2005) 0.0741 1.796e+08 1.808e+08 5.482e+07 0.65%

coal price(2005) 0.0000 1.9310 1.4332 1.3215 -25.78%

natural gas price(2005) 0.0000 9.4380 6.8388 7.9403 -27.54%

population(2005) 0.0000 4843.8000 17127.2120 6106.5294 253.59%

real GDP(2005) 0.0000 3.129e+05 5.550e+05 3.174e+05 173.21%

CDD(2005) 0.0000 751.6000 1917.8000 1312.0000 155.16%

HDD(2005) 0.0000 6333.3000 3965.1840 4835.5882 -37.39%

total energy bil btu(2005) 0.0000 1.116e+07 7.935e+06 2.111e+06 -28.90%
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Table A2: Covariate Balance in the Pretreatment Periods: SO2

Covariate V.weight Treated Synthetic Control Average Control Bias (Synth.)

SO2(1990) 0.1022 1.217e+06 1.119e+06 2.794e+05 -8.05%

SO2(1991) 0.0975 1.118e+06 1.162e+06 2.771e+05 3.85%

SO2(1992) 0.0843 1.030e+06 1.012e+06 2.711e+05 -1.79%

SO2(1993) 0.0791 9.400e+05 1.037e+06 2.720e+05 10.36%

SO2(1994) 0.0709 8.495e+05 1.010e+06 2.638e+05 18.86%

SO2(1995) 0.0521 8.482e+05 8.060e+05 2.366e+05 -4.97%

SO2(1996) 0.0585 8.200e+05 8.536e+05 2.510e+05 4.09%

SO2(1997) 0.0697 9.580e+05 9.038e+05 2.609e+05 -5.66%

SO2(1998) 0.0716 1.019e+06 8.723e+05 2.619e+05 -14.38%

SO2(1999) 0.0629 9.409e+05 8.482e+05 2.479e+05 -9.86%

SO2(2000) 0.0508 9.272e+05 7.767e+05 2.251e+05 -16.23%

SO2(2001) 0.0401 8.011e+05 7.081e+05 2.147e+05 -11.60%

SO2(2002) 0.0416 7.272e+05 7.019e+05 2.144e+05 -3.48%

SO2(2003) 0.0396 7.707e+05 7.144e+05 2.048e+05 -7.30%

SO2(2004) 0.0393 7.514e+05 7.469e+05 1.999e+05 -0.59%

SO2(2005) 0.0397 7.133e+05 7.455e+05 1.990e+05 4.53%

coal price(2005) 0.0000 1.9310 1.3866 1.3594 -28.19%

natural gas price(2005) 0.0000 9.4380 8.4517 8.1913 -10.45%

population(2005) 0.0000 4843.8000 9958.2770 5350.8438 105.59%

real GDP(2005) 0.0000 3.129e+05 4.930e+05 2.701e+05 57.54%

CDD(2005) 0.0000 751.6000 1455.8180 1315.4062 93.70%

HDD(2005) 0.0000 6333.3000 4745.0700 4919.8750 -25.08%

total energy bil btu(2005) 0.0000 1.116e+07 4.988e+06 2.024e+06 -55.31%
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Table A3: Covariate Balance in the Pretreatment Periods: NOx

Covariate V.weight Treated Synthetic Control Average Control Bias (Synth.)

NOx(1990) 0.0978 5.161e+05 4.768e+05 1.754e+05 -7.61%

NOx(1991) 0.1002 5.022e+05 4.970e+05 1.758e+05 -1.04%

NOx(1992) 0.0867 4.726e+05 4.636e+05 1.709e+05 -1.90%

NOx(1993) 0.0926 4.486e+05 4.860e+05 1.790e+05 8.33%

NOx(1994) 0.0854 4.183e+05 4.674e+05 1.777e+05 11.73%

NOx(1995) 0.0711 4.718e+05 4.111e+05 1.306e+05 -12.86%

NOx(1996) 0.0672 4.129e+05 4.073e+05 1.346e+05 -1.35%

NOx(1997) 0.0719 4.522e+05 4.025e+05 1.352e+05 -11.00%

NOx(1998) 0.0732 4.537e+05 4.275e+05 1.370e+05 -5.77%

NOx(1999) 0.0599 3.690e+05 4.031e+05 1.285e+05 9.23%

NOx(2000) 0.0540 3.476e+05 3.934e+05 1.233e+05 13.18%

NOx(2001) 0.0388 3.080e+05 3.328e+05 1.153e+05 8.07%

NOx(2002) 0.0374 2.874e+05 2.851e+05 1.148e+05 -0.80%

NOx(2003) 0.0255 2.807e+05 2.663e+05 9.832e+04 -5.13%

NOx(2004) 0.0206 2.666e+05 2.409e+05 9.095e+04 -9.61%

NOx(2005) 0.0178 2.614e+05 2.186e+05 8.674e+04 -16.36%

coal price(2005) 0.0000 1.9310 1.6843 1.3594 -12.78%

natural gas price(2005) 0.0000 9.4380 8.2903 8.1913 -12.16%

population(2005) 0.0000 4843.8000 18694.2060 5350.8438 285.94%

real GDP(2005) 0.0000 3.129e+05 9.326e+05 2.701e+05 198.08%

CDD(2005) 0.0000 751.6000 2826.0000 1315.4062 276.04%

HDD(2005) 0.0000 6333.3000 1661.4000 4919.8750 -73.77%

total energy bil btu(2005) 0.0000 1.116e+07 7.791e+06 2.024e+06 -30.19%
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8B. Summary Statistics

Table B1: Summary Statistics by Fuel Category

Panel A: Coal Plants

Variable Mean SD Min p25 Median p75 Max

CO2 Mass (short tons) 1932187 1786287 0 529967 1297322 3068205 12400000

CO2 Rate (short tons/mmBtu) 0.10 0.06 0 0.10 0.10 0.10 6.20

SO2 Mass (short tons) 6669 9799 0 1025 3087 8442 173285

SO2 Rate (lbs/mmBtu) 0.96 2.39 0 0.19 0.59 1.30 308.5

NOx Mass (short tons) 2612 3678 0 522 1364 3288 81109

NOx Rate (lbs/mmBtu) 0.33 0.26 0.001 0.17 0.31 0.43 22.16

Heat Input (mmBtu) 17400000 17100000 0 4127945 11100000 27800000 121000000

Operating Time Count 6289 2378 0 5284 7241 8027 8784

Sum of Operating Time 6273 2380 0 5260 7226 8015 8784

Gross Load (MWh) 2016625 1803128 0 592224 1388023 3194285 13900000

Panel B: Gas Plants

Variable Mean SD Min p25 Median p75 Max

CO2 Mass (short tons) 209506 299598 0 9489 47039 340430 4200325

CO2 Rate (short tons/mmBtu) 0.06 0.14 0 0.059 0.059 0.059 21.71

SO2 Mass (short tons) 20 402 0 0.06 0.36 2.21 42457

SO2 Rate (lbs/mmBtu) 0.01 0.08 0 0.001 0.001 0.001 7.38

NOx Mass (short tons) 83 327 0 4.4 19.2 56.5 13140

NOx Rate (lbs/mmBtu) 0.11 0.16 0 0.03 0.05 0.13 3.91

Heat Input (mmBtu) 3186285 4772625 0 134750 683495 4553272 105000000

Operating Time Count 2559 2725 0 295 1232 4664 8784

Sum of Operating Time 2488 2724 0 254 1096 4549 8784

Gross Load (MWh) 393637 630085 0 11011 61943 539746 8557859

Panel C: All Plants (Total)

Variable Mean SD Min p25 Median p75 Max

CO2 Mass (short tons) 658407 1222715 0 13055 129784 687716 12400000

CO2 Rate (short tons/mmBtu) 0.07 0.14 0 0.059 0.059 0.10 21.71

SO2 Mass (short tons) 1770 5782 0 0.12 1.53 274 173285

SO2 Rate (lbs/mmBtu) 0.27 1.28 0 0.001 0.001 0.14 308.5

NOx Mass (short tons) 712 2149 0 6.1 37.0 287 81109

NOx Rate (lbs/mmBtu) 0.21 0.27 0 0.04 0.11 0.31 22.16

Heat Input (mmBtu) 6425414 11300000 0 143993 1236562 8403424 121000000

Operating Time Count 3275 3127 0 293 2057 6581 8784

Sum of Operating Time 3223 3134 0 254 1932 6535 8784

Gross Load (MWh) 724062 1228238 0 11112 117701 982852 38700000

Note: This table shows summary statistics for power plant emissions and operations by fuel type. Panel A shows statistics for
coal plants, Panel B for gas plants, and Panel C for all plants combined. All mass values are in short tons.
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8C. Aggregate Outcomes

8C.1 Overall RGGI

Table C1: Optimal Unit Weights by Pollutant

State CO2 SO2 NOx

TX 0.5560 0.2230 0.5230

MI 0.4440 – –

IN – 0.7770 –

FL – – 0.3330

TN – – 0.1440

Table C2: RGGI Overall Synthetic Control Results by Control Period for Pollutants

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 1.59e+08 -1.97e+07** -11.2 5.89e+05 -6.85e+04 -11.4 2.20e+05 -7.78e+03 -3.6

2009–2011 1.25e+08 -4.70e+07** -27.5 3.83e+05* -1.25e+05 -33.4 1.32e+05 -1.66e+04 -11.4

2012–2014 1.12e+08 -6.21e+07** -36.2 1.10e+05** -1.76e+05 -63.8 1.18e+05 -1.96e+04 -15.0

2015–2017 1.07e+08 -6.12e+07** -37.9 7.59e+04* -7.29e+04 -58.6 9.47e+04 -2.94e+04 -25.5

2018–2020 9.52e+07 -5.96e+07** -40.9 4.50e+04 -3.96e+04 -59.0 7.77e+04 -3.20e+04 -30.6

2021–2022 8.69e+07 -5.50e+07** -38.7 2.19e+04 -3.34e+04 -65.4 6.40e+04 -3.36e+04* -34.4

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.

(a) CO2 (b) SO2 (c) NOx

Figure 6: Synthetic Control Results for Aggregate RGGI Region.
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Plant Pollutant Decomposition

(a) CO2 Emissions by Percentile Group (RGGI
vs Non-RGGI, 1995–2022)

(b) SO2 Emissions by Percentile Group (RGGI
vs Non-RGGI, 1995–2022)

(c) NOx Emissions by Percentile Group (RGGI
vs Non-RGGI, 1995–2022)

Figure 7: Comparison of CO2, SO2, and NOx emissions by percentile group (based on 2005
baselines), contrasting facilities in RGGI vs. Non-RGGI states. Vertical lines in the original
plots mark the 2009 start date of RGGI implementation.

Discussion: The graphs indicate that the largest CO2 and SO2 emitters (top 10%) in RGGI

states exhibit a notably sharper decline in emissions than their Non-RGGI counterparts. There

was an immediate drop after the announcement, and a similar nosedive after the implementation

of the RGGI program in 2009. This divergence suggests that carbon pricing has a greater

influence on high-emitting facilities, likely through fuel switching, investments in efficiency, or

curtailed operation of the highest-emitting units. Interestingly, the top 10% fall below the 75-90%

after 2009, likely indicating the higher-polluting plants closed down. This effect only happened for

the RGGI states, with similar trends not seen for the non-RGGI, further providing evidence to

support the hypothesis that RGGI accelerated fuel-switching (as the dirtiest coal plants with

highest emissions shut down). NOx emissions follow a similar, though more modest pattern to the

other pollutants, with the highest-emitting percentile groups driving overall reductions. While

emissions for SO2 and NOx seemed to follow similar trends to the non-RGGI regions, CO2

uniquely sees a much greater drop following implementation.
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Table C3: Plant-Level DiD Estimates of RGGI and Leaker State Effects on Emissions

Panel A: Coal Plants

Variables CO2 SO2 NOx

ANNOUNCEMENT 180, 079.4 −1, 639.32∗ −1, 394.81∗∗∗

(115, 383.5) (893.06) (335.23)

RGGI × ANNOUNCEMENT −39, 508.7 −295.52 −601.05∗∗

(64, 859.88) (1, 014.38) (248.73)

POST −305, 782.1∗ −1, 795.94 −3, 945.78∗∗∗

(157, 741.7) (1, 743.83) (552.19)

RGGI × POST −370, 007∗∗∗ −4, 196.38∗∗ −931.82∗∗

(92, 872.57) (1, 714.03) (395.82)

LEAKER × ANNOUNCEMENT −40, 872.69 −1, 511.11∗∗∗ 110.92

(28, 814.55) (422.04) (112.88)

LEAKER × POST 9, 713.94 −4, 041.64∗∗∗ −241.91

(47, 179.74) (1, 143.4) (245.05)

Observations 12,279 12,416 13,943

R2 (within) 0.3789 0.3555 0.3628

Panel B: Gas Plants

ANNOUNCEMENT −78, 543.62∗∗∗ −38.85∗∗ −171.19∗∗∗

(13, 298.99) (17.32) (21.77)

RGGI × ANNOUNCEMENT −36, 750.44∗∗∗ −17.57 10.07

(12, 098.46) (27.63) (7.48)

POST −101, 858.2∗∗∗ −6.70 −126.09∗∗∗

(19, 143.01) (20.94) (20.27)

RGGI × POST −77, 474.31∗∗∗ −23.45 −1.60

(17, 183.71) (33.16) (7.92)

LEAKER × ANNOUNCEMENT −17, 117.42∗∗∗ 15.11∗∗ 7.56

(5, 100.51) (7.70) (5.14)

LEAKER × POST 11, 637.78 26.04∗∗∗ 6.37

(14, 948.91) (8.63) (7.57)

Observations 32,254 33,484 38,127

R2 (within) 0.1041 0.0184 0.0848

Notes: All regressions include plant and year fixed effects, with robust standard errors clustered by plant
(plantunitid). Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. ANNOUNCEMENT

indicates the announcement period (2006-2008); POST indicates the post-implementation period(2009-
Present).
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8C.2 Regional Analysis

For Tables C3-C5,

Table C4: NYISO Synthetic Control Results by Control Period for CO2, SO2, and NOx

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 5.14e+07 -1.06e+07** -17.4 1.22e+05 -1.06e+05* -46.5 6.40e+04 -1.60e+04 -22.2

2009–2011 3.81e+07 -1.83e+07** -37.7 5.89e+04 -6.66e+04 -53.1 4.41e+04 5.56e+03 14.7

2012–2014 3.57e+07 -1.80e+07** -34.3 3.08e+04 -6.06e+04 -67.0 4.03e+04 1.16e+04 40.4

2015–2017 3.27e+07 -1.91e+07* -38.7 2.17e+04 -2.43e+04 -58.5 3.53e+04 6.65e+03 25.3

2018–2020 2.79e+07 -1.84e+07* -39.1 1.07e+04 -2.39e+04 -77.2 2.89e+04 6.65e+03 32.4

2021–2022 2.84e+07 -1.50e+07 -33.5 7.10e+03 -2.38e+04 -75.8 2.64e+04 8.37e+03 46.0

Table C5: ISO-NE Synthetic Control Results by Control Period for CO2, SO2, and NOx

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 5.04e+07 -6.57e+06 -11.9 1.09e+05 -5.06e+04 -32.6 5.43e+04 -1.05e+04 -17.5

2009–2011 4.11e+07 -1.22e+07** -24.3 9.91e+04 -1.95e+04 -19.6 4.45e+04 1.84e+03 4.8

2012–2014 3.48e+07 -1.76e+07** -35.8 3.25e+04 -3.59e+04 -58.5 3.91e+04 1.86e+03 5.5

2015–2017 3.20e+07 -1.70e+07* -36.2 1.89e+04 -2.54e+04 -57.0 3.09e+04 -1.31e+03 -4.4

2018–2020 2.73e+07 -1.55e+07* -36.3 1.22e+04 -2.31e+04 -70.4 2.53e+04 -8.70e+02 -3.5

2021–2022 2.74e+07 -1.34e+07 -33.3 8.24e+03 -2.20e+04 -71.4 2.21e+04 -1.51e+03 -6.5

Table C6: PJM Synthetic Control Results by Control Period for CO2, SO2, and NOx

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 5.68e+7 -3.99e+6* -6.5 3.57e+5 18,568 5.9 1.01e+5 -1,835 -2.0

2009–2011 4.59e+7 -9.28e+6 -16.6 2.25e+5 -19,934 -14.3 43,133 -16,343 -27.3

2012–2014 4.18e+7 -1.08e+7 -20.6 46,791 -28,099 -39.2 38,187 -17,565 -32.5

2015–2017 4.18e+7 -7.43e+6 -15.6 35,243 -11,432 -29.5 28,479 -19,179 -42.7

2018–2020 3.99e+7 -8.38e+6 -19.7 22,117 -15,290 -53.5 23,442 -18,815 -49.5

2021–2022 2.93e+7 -1.22e+7 -29.3 6,562 -20,003 -77.9 15,989 -19,736 -56.0
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8D. Intensity Outcomes
8D.1 Overall RGGI

Table D1: Optimal Unit Weights for RGGI by Pollutant (Intensity Specification)

State CO2 SO2 NOx

AR 0.4940 – –

AZ 0.2230 – 0.0320

DC 0.1040 0.2290 0.0790

MN 0.0680 – –

FL 0.0630 0.0380 0.0930

GA 0.0360 – 0.0960

NV 0.0110 0.0590 0.0010

TN 0.0010 0.0810 0.0340

WA – 0.2430 –

IL – 0.2150 –

MI – 0.1010 –

IA – 0.0340 –

ID – – 0.2010

CA – – 0.1950

ND – – 0.1490

MS – – 0.0650

NC – – 0.0550

Table D2: Overall RGGI Synthetic Control Results by Control Period for CO2, SO2, and
NOx per Unit of Energy

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 93.4 -2.1 -2.1 0.3464 0.0824 32.5 0.1294 -0.0050 -4.1

2009–2011 66.9 -39.0 -36.7 0.2044 -0.1326 -49.2 0.0704 -0.0261 -27.6

2012–2014 60.3 -42.2 -42.2 0.0592 -0.0627 -53.9 0.0632 -0.0427 -41.5

2015–2017 54.6 -126.2* -71.1 0.0389 -0.0381 -55.5 0.0485 -0.5440* -92.5

2018–2020 48.3 -216.4* -83.1 0.0229 -0.0274 -62.6 0.0395 -0.8145 -95.8

2021–2022 43.5 -69.8 -60.7 0.0112 -0.0240 -67.9 0.0330 -0.2769 -89.3
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8D.2 Regional Analysis

Table D3: Optimal Unit Weights by Region and Pollutant

State NYISO ISO-NE PJM-RGGI Leaker

CO2 SO2 NOx CO2 SO2 NOx CO2 SO2 NOx CO2 SO2 NOx

AL – – – – – – – – – 0.0850 – –

AR 0.5890 – – 0.3090 – – – – – – – –

AZ – – – – – – 0.5880 – – 0.0320 0.0100 –

CO 0.0920 – – 0.1190 – – – – – – – 0.1240

DC 0.1110 0.2170 0.0870 0.0700 0.1430 0.0210 0.1400 0.1730 0.1000 – – –

FL 0.0290 0.0650 0.0540 0.0740 0.0240 0.0200 0.0930 0.0480 0.1260 0.0020 0.0160 0.0210

GA 0.0370 – 0.0070 0.0760 0.0060 0.0590 0.0030 – 0.0750 0.0010 0.0300 –

IA 0.0700 – 0.0460 – – – 0.0010 0.1120 0.0120 – 0.0410 –

ID – 0.0040 0.4830 0.3190 – 0.2540 – – – – – –

IL – – – – 0.7860 – – – – – – 0.0210

IN – – – – 0.1210 – – 0.1210 – 0.0070 0.0230 –

KS – – – – – – – – – – – 0.0750

LA – – – – – – – – 0.5100 0.0070 0.6960 0.5100

MI – – – – – – 0.0610 0.0080 0.2410 – – –

MN – 0.5080 – – – – 0.0810 0.5080 – – 0.0710 –

MO – – – – – – – – – – 0.0120 –

MS – – – – – – – – 0.3590 – 0.0980 –

NC 0.0370 – 0.1030 – – 0.0440 – – – – – 0.0370

ND – – 0.0220 – – 0.1330 – – – – – –

NE – – – – – – – – 0.0290 0.0050 – –

NM – – – – – – – – – – – 0.0100

NV 0.0350 0.1230 0.0140 0.0130 0.0260 – – – – 0.0010 – –

OK – – – – – – – – – 0.6400 – –

SC – – 0.1850 – – – – – – – – –

SD – 0.1000 – – – – – – – – – –

TN – 0.0460 – 0.0210 0.0140 0.0830 – 0.0290 0.0570 0.0260 0.0040 0.0250

TX – – – – – 0.3870 – – – – – –

UT – – – – – – – – – 0.1930 – –

WA – 0.4460 – – – – – – – – – –

WI – – – – – – 0.0330 – – – – –

WY – – – – – – – – – – – 0.1760
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Table D4: NYISO Synthetic Control Results by Control Period for CO2, SO2, and NOx per
Unit of Energy

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 79.9 22.4 30.9 0.1733 0.0096 4.7 0.0860 0.0145 18.0

2009–2011 68.9 -12.0* -15.3 0.1659 -0.0582 -30.8 0.0745 0.0091 15.6

2012–2014 59.6 -20.8* -27.1 0.0558 -0.0428 -47.3 0.0671 -0.0214 -25.7

2015–2017 53.6 -80.3* -62.3 0.0318 -0.0354 -60.9 0.0518 -0.1499* -76.9

2018–2020 43.2 -146.1* -78.4 0.0192 -0.0193 -54.4 0.0401 -0.2127 -84.9

2021–2022 44.0 -46.8 -51.4 0.0132 -0.0106 -43.6 0.0354 -0.0660 -65.4

Table D5: ISO-NE Synthetic Control Results by Control Period for CO2, SO2, and NOx per
Unit of Energy

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 81.8 -25.8 -23.8 0.1937 -0.0004 -0.2 0.1018 -0.0260 -21.5

2009–2011 58.2 -63.4 -50.8 0.0899 -0.1403 -60.7 0.0673 -0.0326 -32.1

2012–2014 55.2 -63.5 -54.8 0.0477 -0.0633 -58.7 0.0623 -0.0881 -58.9

2015–2017 47.1 -143.4 -77.0 0.0312 -0.0291 -52.4 0.0508 -0.6142* -93.0

2018–2020 38.6 -233.4 -85.9 0.0148 -0.0285 -69.8 0.0399 -0.9010* -95.9

2021–2022 41.4 -72.1 -61.8 0.0104 -0.0235 -67.2 0.0385 -0.3025* -88.3

Table D6: PJM-RGGI Synthetic Control Results by Control Period for CO2, SO2, and NOx

per Unit of Energy

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 129.5 -0.9 -0.8 0.8144 0.1595 30.8 0.2313 -0.0053 -2.8

2009–2011 74.1 -39.5 -34.7 0.3629 -0.1941 -50.3 0.0697 -0.0635 -47.9

2012–2014 66.2 -36.5 -35.7 0.0741 -0.1130 -62.2 0.0605 -0.0403 -41.2

2015–2017 63.3 -157.6* -71.4 0.0533 -0.0469 -52.4 0.0431 -0.6783 -94.4

2018–2020 65.2 -292.3* -84.2 0.0361 -0.0224 -51.3 0.0382 -1.0393 -97.1

2021–2022 45.3 -109.5 -70.1 0.0102 -0.0232 -72.0 0.0247 -0.3675 -93.8
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Table D7: Leaker Region Synthetic Control Results by Control Period for CO2, SO2, and
NOx per Unit of Energy

CO2 SO2 NOx

Period Actual T.E. % Ch. Actual T.E. % Ch. Actual T.E. % Ch.

2006–2008 34.8 -0.9 -2.6 0.2042 -0.0189 -9.2 0.0547 0.0067 14.5

2009–2011 31.9 -0.7 -2.0 0.1313 -0.0255 -18.0 0.0288 -0.0004 -1.3

2012–2014 32.0 0.5 1.5 0.0748 -0.0293 -27.6 0.0316 0.0034 11.1

2015–2017 29.1 1.0 3.8 0.0520 -0.0147 -29.2 0.0275 -0.0029 -11.1

2018–2020 25.8 3.2 15.0 0.0233 -0.0095 -31.9 0.0179 -0.0045 -21.6

2021–2022 23.0 2.6 13.4 0.0190 -0.0049 -21.2 0.0134 -0.0030 -19.0

8E Robustness

8E.1 Parallel-Trends Event Study

(a) Coal: CO2 (b) Coal: SO2 (c) Coal: NOx

(d) Natural Gas: CO2 (e) Natural Gas: SO2 (f) Natural Gas: NOx

Figure 8: Event-Study Estimates of Pre-Trends in Emissions

Each subfigure plots point estimates and 95% confidence intervals from the event study,
which I create using eventdd package for Stata (Clarke, 2021) of the form:
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Emissionsit = α +
10∑

k=−10
k ̸=−1

βk ⊮
(
timeToTreatit = k

)
+ X′

itΓ

+ µi + λt + εit ,

(5)

, where t∗ = 2006 is the RGGI implementation year, and Xit including the controls in the
DiD specification ( population, weather, GDP, energy prices, fuel mix, and energy consump-
tion). The top row shows effects on coal plants’ CO2, SO2, and NOx emissions; the bottom
row shows effects on natural gas plants (all in short tons). Time 0 indicates RGGI imple-
mentation, with the pre-period coefficient at t = −1 normalized to zero. The models use
facility fixed effects µi with standard errors clustered at the plant unit level. The x-axis
spans from 10 years before to 10 years after the event, showing emissions changes relative to
the year before RGGI began.

8E.2 DiD Placebo

Table E1: Mixed Placebo Test Results

Pollutant Treatment Left-Sided Two-Sided

CO2

RGGI Post 0.038 0.092

RGGI Transition 0.038 0.116

Leaker Post 0.046 0.128

Leaker Transition 0.050 0.132

SO2

RGGI Post 0.032 0.134

RGGI Transition 0.894 0.142

Leaker Post 0.018 0.036

Leaker Transition 0.240 0.100

NOx

RGGI Post 0.876 0.154

RGGI Transition 0.862 0.168

Leaker Post 0.032 0.174

Leaker Transition 0.852 0.182

Note: P-values from 500 repetitions of mixed placebo tests. Left-sided and two-sided p-values
are reported for each pollutant and treatment combination.
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8E.3 Synthetic LOO Placebo

CO2 SO2 NOx

RGGI

Leaker

NY-ISO

NE-ISO

PJM-RGGI

Figure 9: Leave-one-out (LOO) synthetic control results for each pollutant across the five
regions. In each panel, LOO lines represent treatment effects estimated after sequentially
removing individual control units that received positive weights in the baseline synthetic
control model. This sensitivity analysis assesses whether any single control unit dispropor-
tionately influences the estimated treatment effects. Across all pollutants and regions, the
results remain mostly consistent when individual donors are excluded, indicating that the
estimated effects are robust and not driven by any one control unit.
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8E.4 Synthetic In-Space Placebo

(a) (a) CO2 Emissions by Region. (b) (b) SO2 Emissions by Region.

(c) (c) NOx Emissions (Placebo).

Figure 10: Aggregate Emissions Over Time. Three illustrations of average CO2, SO2,
and NOx emissions by region (including a “placebo” specification). The top row compares
CO2 and SO2 by region, while the bottom plot shows NOx emissions under a placebo speci-
fication.

Note: The leaker and RGGI specifications were omitted from the placebo tests due to
their unique characteristics. Given their size and the constraint that synthetic control weights
must sum to one, there were no comparable control units available. Both specifications
would have received the majority of their weight from Texas, which is the largest state that
minimizes the difference between treatment and control. This reliance on a single state as the
primary control unit undermines the interpretability of the results for aggregate emissions.
Synthetic regions could have been constructed as more useful counterparts, but that would
have required subjective judgment with no established precedent in the literature.
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(a) CO2 Emission Intensity. (b) SO2 Emission Intensity.

(c) NOx Emission Intensity.

Figure 11: Emission Intensities Over Time. The top row shows CO2 and SO2 intensities
(per unit of output), and the bottom plot shows NOx intensity under a placebo specification.
Black vertical lines mark 2006 and 2009 (announcement and implementation), and the red
line marks 2014 (cap reduction).
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8E.5 Using 2009 as Implementation

Table E2: Avg. Treatment Effects by Control Period & Pollutant (Short Tons/Bil BTU)

Control Periods Avg. Actual Avg. Synthetic Avg. Effect % from Synthetic

CO2 — RGGI States
1 (2009–2011) 67.36 90.57 -23.21 -25.63%
2 (2012–2014) 57.82 79.89 -22.07 -27.63%
3 (2015–2017) 51.26 159.61 -108.35 -67.88%
4 (2018–2020) 44.12 245.43 -201.31 -82.02%
5 (2021–2023) 45.17 110.18 -65.01 -59.01%

CO2 — Leaker States
1 (2009–2011) 33.25 32.49 0.76 2.35%
2 (2012–2014) 33.32 31.40 1.92 6.10%
3 (2015–2017) 28.11 26.68 1.43 5.37%
4 (2018–2020) 24.91 21.55 3.37 15.62%
5 (2021–2023) 22.36 19.00 3.36 17.66%

SO2 — RGGI States
1 (2009–2011) 0.1371 0.2880 -0.1508 -52.38%
2 (2012–2014) 0.0536 0.1273 -0.0737 -57.88%
3 (2015–2017) 0.0306 0.0776 -0.0469 -60.51%
4 (2018–2020) 0.0164 0.0469 -0.0305 -65.01%
5 (2021–2023) 0.0114 0.0440 -0.0327 -74.20%

SO2 — Leaker States
1 (2009–2011) 0.1160 0.1259 -0.0099 -7.86%
2 (2012–2014) 0.0768 0.0974 -0.0207 -21.21%
3 (2015–2017) 0.0356 0.0449 -0.0094 -20.92%
4 (2018–2020) 0.0204 0.0264 -0.0061 -23.08%
5 (2021–2023) 0.0182 0.0195 -0.0013 -6.43%

NOx — RGGI States
1 (2009–2011) 0.0684 0.0915 -0.0231 -25.24%
2 (2012–2014) 0.0602 0.0975 -0.0373 -38.24%
3 (2015–2017) 0.0438 0.6237 -0.5799 -92.97%
4 (2018–2020) 0.0360 0.9110 -0.8750 -96.05%
5 (2021–2023) 0.0333 0.3324 -0.2991 -90.00%

NOx — Leaker States
1 (2009–2011) 0.0326 0.0352 -0.0027 -7.57%
2 (2012–2014) 0.0336 0.0307 0.0029 9.46%
3 (2015–2017) 0.0233 0.0246 -0.0013 -5.28%
4 (2018–2020) 0.0163 0.0180 -0.0016 -9.09%
5 (2021–2023) 0.0128 0.0142 -0.0013 -9.54%
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NYISO

Figure 12: Synthetic control analysis for CO2 emissions in NYISO, which primarily covers
the state of NY.

Figure 13: Synthetic control analysis for SO2 emissions in NYISO.

Figure 14: Synthetic control analysis for NOx emissions in NYISO.
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ISO-NE

Figure 15: Synthetic control analysis for CO2 emissions in ISO-NE. This includes Connecti-
cut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

Figure 16: Synthetic control analysis for SO2 emissions in ISO-NE.

Figure 17: Synthetic control analysis for NOx emissions in ISO-NE.
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RGGI-PJM

Figure 18: Synthetic control results for CO2 emissions in PJM. This includes New Jersey,
Maryland, and Delaware.

Figure 19: Synthetic control results for SO2 emissions in PJM.

Figure 20: Synthetic control results for NOx emissions in PJM.
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