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Abstract 

Iowa is a national leader in wind energy, producing nearly two-thirds of its electricity 

from wind turbines. However, the development of wind energy infrastructure across the state 

has been uneven—some counties host hundreds of turbines while others have none. This paper 

investigates whether county-level economic conditions influence the likelihood of wind turbine 

development. Using panel data from 1990 to 2023 and a two-way fixed effects regression 

framework, I examine the relationship between wind energy development and three economic 

indicators: farm income per capita, non-farm income per capita, and unemployment rate. I 

control for political affiliation, farming success, prior turbine presence, land availability, and 

demographic variables. Contrary to existing qualitative literature that suggests economic need 

drives local acceptance of wind projects, my analysis finds that these economic indicators are 

not statistically significant predictors of turbine development. One exception is political 

affiliation, which in some regressions indicates that a higher share of Democratic votes is 

associated with a lower probability of turbine development—contradicting national-level 

trends linking Democratic support with renewable energy expansion. All models have low 

between-county explanatory power (R² < 0.05), suggesting that factors not captured in 

county-level economic data—such as individual landowner decisions, developer strategies, or 

transmission infrastructure—may better explain wind energy siting patterns. These findings 

call for deeper investigation into localized, non-economic factors that shape renewable energy 

development, particularly as the push toward decarbonization accelerates. 

JEL Classification: O13, R11, Q42,  

Keywords: Wind Energy, Renewable Development, Agriculture  
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1. Introduction 

In 1983 Governor Terry Branstad made Iowa an unlikely pioneer in climate action by 

signing the nation’s first renewable energy portfolio standard. Iowa’s investor-owned utilities 

(IOUs)–for-profit companies owned by shareholders that provide electricity and gas to 

consumers as a highly regulated monopoly–were required to purchase 105 megawatts of 

renewable energy generation capacity (EIA, 2024a). This “stick” was followed by economic 

carrots, including national wind energy production tax credits authored and won by Iowa 

Senator Chuck Grassley (Grassley, 2017). Over the decades, a blend of economic incentives 

and regulatory policies established an environment where renewable energy has thrived with 

bipartisan support. Iowa now boasts over 6,000 wind turbines, 13,000 megawatts of installed 

wind capacity, and the nation’s highest percentage of electricity generated by wind (Iowa 

Environmental Council, 2024).  

While Iowa has seen significant deployment of wind energy, it is not uniformly 

distributed across the state. Some counties attract significant wind energy investments while 

others attract very little. There is also uneven distribution over time, with some areas being 

developed years before others. This raises questions as to the cause of the geographic and 

chronological patterns of wind turbine development. I seek to investigate the economic 

attributes of counties before wind turbine development in Iowa to better understand why 

some counties attract heavier wind energy investments than others. By examining factors 

such as county GDP and political affiliation I aim to create a comprehensive analysis of the 

economic attributes that may predict future wind energy development.  

According to the Intergovernmental Panel on Climate Change, climate change is 

occurring at an alarming rate and human activity is its primary cause. Moving towards net zero 
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emissions is crucial for the future stability of our planet, and that requires transitions towards 

more renewable energy sources (IPCC, 2023). Understanding how and why wind energy 

development has occurred in Iowa counties over the past three decades will allow developers 

and residents to prepare for the continuing and increasing wind energy development that is 

highly probable in the future not just in Iowa but around the world.  

2. Background 

2.1 Wind Development in Iowa  

With over 13,000 MW of wind energy capacity, Iowa has the second largest capacity in 

the United States and produces 64.7% of its electrical generation from wind energy, the largest 

percentage in the nation (Iowa Environmental Council, 2024). Iowa’s leadership in wind 

energy can be attributed to a variety of geographic, economic, and political factors. Successful 

and profitable wind farms need the appropriate wind speeds, topography, transmission 

infrastructure, permitting environment, economic incentives, and political support, among 

other things (Grassi et al., 2012), and Iowa is fortunate to have a combination of these factors 

that have encouraged wind energy to thrive.  

Annual average wind speeds should be at least 13 mph for utility-scale turbines (EIA, 

2024b). Top land wind speeds are concentrated in the central U.S. in a “wind belt” stretching 

from North Dakota down to Texas; Iowa is on the right edge of this wind belt and has more 

than enough wind to sustain robust energy generation. Iowa also has an abundance of open, flat 

agricultural land–absent of protected ecosystems and species–that is eligible for turbine 

construction. After taking into account federal lands designated as parks or monuments, 

national conservation areas, wildlife areas, wetlands, airfields, urban districts, land with slopes 

over 20%, and more, the National Renewable Energy Laboratory (NREL) estimated in 2010 
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that 78.32% of Iowa’s surface is eligible for wind energy development and that Iowa had a 

potential installed capacity of 570,714.2 MW (Grassi et al., 2012).  

Figure 1 

U.S. Wind Power Resource at 100-Meter Hub Height, NREL  

Note. (Roberts, 2023).  

Iowa's leadership in wind energy also stems from its early and proactive policy 

initiatives. In 1983, the state became the first in the U.S. to adopt a Renewable Portfolio 

Standard (RPS) which required investor-owned utilities to procure a minimum amount of 

renewable energy—an unprecedented move at the time (EIA, 2024a). Although modest by 

today’s standards, the RPS provided an early foundation for utility-scale wind development 

and encouraged investor confidence in the state’s renewable energy market. In addition to the 

RPS, Iowa has implemented various tax incentives and financial supports for wind energy 

projects. These include a state production tax credit (PTC) of $0.015 per kilowatt-hour of 
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electricity, which supplements the federal PTC and further reduces the cost of wind generation 

(Good, 2019), and sales and property tax exemptions for wind energy equipment, which 

significantly lower upfront capital costs for developers (NC Clean Energy Technology Center, 

2025). These fiscal policies have helped accelerate the pace of wind turbine installations and 

expand the reach of wind infrastructure across rural communities. 

Critically, political support for wind energy in Iowa has been bipartisan. Iowa 

politicians from both major parties have embraced wind as a key economic driver. Republican 

Governor Terry Branstad, who served from 1983–1999 and again from 2011–2017, was an 

early and consistent proponent of wind energy, signing the RPS, and Republican Senator 

Chuck Grassley is an influential wind energy supporter on a national scale (Dorrell & Lee, 

2020). Democratic leaders in the state legislature have similarly supported renewable 

initiatives. This bipartisan consensus has been further reinforced by the role of large utility 

companies, particularly MidAmerican Energy. The company has aligned its business model 

with state policy goals, pledging significant investments in wind energy and committing to 

serve all its Iowa customers with 100% renewable electricity usage on an annual basis 

(MidAmerican Energy Company, 2023). By partnering with state regulators and leveraging 

available incentives, MidAmerican has effectively become a national case study in the 

successful integration of public and private efforts in clean energy development. MidAmerican 

is not the only utility in Iowa to do so; Alliant Energy, the second largest utility, is also heavily 

invested in wind energy in Iowa with plans for further growth. In January of 2025, the U.S. 

Department of Energy’s Loan Programs Office announced commitments for $3 billion in loan 

guarantees to Alliant Energy for a portfolio of wind power and battery storage projects in Iowa 

and Wisconsin (Loan Programs Office, 2025).  
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In addition to tax and policy incentives for developers, there are also financial 

incentives in Iowa for individual landowners and local governments who allow turbines to be 

built in their communities. Landowners who lease their land for turbines are paid to sign the 

lease, paid annually while the developer makes turbine location decisions, and then paid 

annually for any turbines on their land. Statewide, wind turbines generate an estimated $72 

million per year in lease payments to Iowa landowners, making wind energy a significant 

contributor to rural household income (Iowa Environmental Council, 2024). Farmers lose only 

a couple acres of farmland as they can plant crops or graze livestock right up to the base of the 

turbine and it’s access road, and the lease payment is larger than the potential profit from any 

other crop that could have been planted in that area. County-level incentives primarily involve 

Tax Increment Financing (TIF) and Urban Renewal Areas (URAs). TIF is a financial 

mechanism that allows counties to capture the increase in property tax revenue—known as the 

"increment"—resulting from the rise in property values due to wind energy development. 

These funds are then reinvested into infrastructure, community projects, or other public goods 

without raising taxes (Center for Innovative Finance Support, n.d.). In Iowa, TIF is commonly 

used within URAs, which are designated districts where economic development is encouraged 

through public investment. For instance, in Story County, TIF has generated approximately 

$8.97 million for urban renewal initiatives to improve streets, parks, and community centers, 

with an equivalent dollar amount allocated to schools and other county services (Delworth, 

2023). Similarly, Howard County leveraged TIF funds to finance $21.5 million worth of 

infrastructure projects to improve roads, bridges, infrastructure maintenance equipment, and 

parks and conservation (Delworth, 2025). Local governments in Iowa can use the financial 

gains from wind energy to fund long-term improvements and community reinvestments 
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without additional tax burdens. Wind farms across Iowa generated $57 million in state and 

local tax revenue and $67 million in landowner lease payments in 2021 alone (Delworth, 

2023). 

2.2 Wind Energy Development Process 

Developing a new wind farm is complicated and lengthy, but understanding the process 

is important to understanding my research methodology.  

Figure 2 

Timeline of  New Wind Power Plant 

 
Note. (U.S. Department of Energy, 2021). 
 

To start, a developer–either a utility or a private development company–will identify 

potential sites with optimal wind resources. They employ meteorological data and geospatial 

analyses to evaluate wind speed, consistency, and overall energy potential. Other key site 

selection criteria include minimal environmental constraints and proximity to existing 
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transmission infrastructure. A comprehensive environmental review is conducted to assess 

potential impacts on ecosystems, wildlife, and cultural resources. This process often involves 

preparing Environmental Impact Statements (EIS) or Environmental Assessments (EA) in 

compliance with the National Environmental Policy Act (NEPA). Regulatory permits are 

sought from pertinent federal, state, and local agencies, ensuring adherence to environmental 

laws and zoning regulations (U.S. Department of Energy, 2021). Integrating the wind farm's 

output into the electrical grid requires detailed interconnection studies to evaluate the capacity 

of existing transmission lines and identify necessary upgrades. Developers collaborate with 

grid operators to design interconnection facilities that maintain grid stability and reliability 

(Energy Transitions Commission, 2023). 

Once possible sites are identified, developers negotiate lease agreements with 

landowners. Terms often include annual payments based on the MW nameplate capacity (the 

maximum MW that a turbine can generate at a given time), reimbursement for crop damage 

during construction, and reimbursement for crop yield decreases in the following years. 

Concurrent with land acquisition, engaging with local communities is essential to address 

concerns, disseminate project information, and foster public support. Transparent 

communication strategies can mitigate opposition and facilitate smoother project 

implementation (U.S. Department of Energy, 2022). 

Wind energy projects demand substantial capital investment. Developers typically 

secure financing through a combination of equity, debt, and tax incentives. Establishing Power 

Purchase Agreements (PPAs) – long term contracts between power suppliers and customers – 

with utilities or corporate buyers ensures a stable revenue stream, thereby enhancing the 

project's financial viability (U.S. Department of Energy, 2022). The construction phase 
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encompasses site preparation, foundation laying, turbine assembly, and electrical infrastructure 

installation. Adherence to environmental mitigation measures during construction is critical to 

minimize ecological disturbances. Post-construction, the commissioning phase involves 

rigorous testing of turbines and electrical systems to verify performance and safety standards. 

The date a turbine is “commissioned” is the date it is connected to the wider power grid and 

begins generating electricity. At the end of the project's life cycle, decommissioning entails 

dismantling turbines, restoring the site to its original condition, and responsibly disposing of 

materials. Alternatively, repowering involves upgrading existing turbines with advanced 

technology to boost efficiency and extend operational life (U.S. Department of Energy, 2021). 

3. Literature Review 

3.1 Economic Impacts of Wind Development  

 Current literature investigating the economics of wind energy focuses on the economic 

impacts of wind development and concludes that new wind projects bring economic benefits 

both during construction and for the lifespan of the project after commissioning. Many studies 

utilize the NREL’s Jobs and Economic Development Impacts (JEDI) Wind Energy Model to 

examine direct, indirect, and induced impacts of the development, construction, and operation 

and maintenance phases on jobs, earnings, and economic output. Direct impacts result from 

expenditures by the wind industry, indirect impacts result from supporting industries like 

construction or manufacturing, and induced impacts result from spending and reinvestment by 

beneficiaries of the direct and indirect impacts. The JEDI Wind model inputs include basic 

project information (year, size, turbine specifications, costs, etc.) and allows the user to modify 

the allocation of costs between different industries and the allocation of expenditures within an 

industry that go to local businesses and contractors (Slattery et al., 2011). A 2016 study utilized 
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the JEDI Wind model to investigate Illinois's 23 largest wind farms and concluded that the 

projects are forecasted to bring lifetime economic benefits totalling $5.98 billion (Loomis et 

al., 2016). The researchers determined that the projects’ construction period created the 

equivalent of 19,047 full-time jobs with a payroll of over $1.1 billion and are also sustaining 

approximately 814 permanent jobs in rural Illinois–a total annual payroll of $48 million after 

construction completion (2016). A similar report from the NREL utilized the JEDI Wind 

model and found that wind development in Nebraska contributes to local and state tax bases, 

creates temporary and permanent jobs, and strengthens Nebraska’s position as an energy 

exporter (Lantz, 2008). The report investigated future wind farms and found that the potential 

development and construction of 7,800 MW of wind energy in Nebraska would create the 

equivalent of between 20,600 and 36,500 full-time jobs and result in $140 million to $260 

million annually between 2011 and 2030. The subsequent operation of the wind generation 

fleet would support 2,000 to 4,000 full-time jobs and result in $250 million to $442 million 

annually.  

 A study by Michael Slattery, Eric Lantz, and Becky Johnson utilized the JEDI Wind 

model to perform a more granular case study of two wind farms in west Texas (2011). The 

first, Capricorn Ridge Wind Farm, is a 407-turbine, 662.5 MW facility completed in 2008, and 

the second, Hollow Wind Energy Center, is a 421-turbine, 735.5 MW facility completed in 

2006. The four year construction period created 1900 full-time equivalent jobs for Hollow 

Horse and 2200 full-time equivalent jobs for Capricorn Ridge. 58% of those full-time 

equivalent jobs were accounted for by supply chain impacts and 900 employed local workers 

within 100 miles of either site. These jobs generated $160 million in economic output and $57 

million in earnings for Texas. Between the two farms, the operation and maintenance phase 
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supports 350 annual jobs, 225 of which are local and 63 of which are permanent including 33 

permanent onsite at Hollow Horse and 30 at Capricorn Ridge. The permanent positions 

generate about $3.6 million in earnings annually, and the total economic activity for Texas 

from the two farms, assuming 20-year turbine lifespans, is over $1.8 billion ($1.3 million per 

MW of installed capacity). Hollow Horse and Capricorn Ridge will bring almost $730 million 

of economic activity to their local communities over the four-year construction and 20-year 

operation periods (Slattery et al., 2011).  

 Local economic impacts of wind energy development can be studied using methods 

other than the NREL’s JEDI Wind model. Eric J. Brunner and David J. Schwegman 

investigated county-level impacts utilizing turbine-level location data from the United States 

Wind Turbine Database (USWTDB) maintained by the U.S. Geological Survey and 

county-level economic data from the Bureau of Economic Analysis, the U.S. Census Bureau, 

and the Federal Housing Finance Agency Housing Price Index (2022). Their variables of 

interest were county-level GDP per-capita, income per-capita, median household income, 

median home values, total employment, and the share of employment by industry. They related 

these economic variables to annual installed MW capacity per capita in each county using 

difference-in-differences models and separated the treatment effects of those variables into two 

periods, the construction phase and the operation phase. The construction phase has direct and 

indirect impacts on the local county. Direct effects come from developers hiring local 

construction companies or using locally sourced non-turbine construction materials such as 

sand, concrete, or asphalt for construction of foundations and roads. Indirect effects come from 

out-of-town workers entering communities and spending wages on local goods and services 

like hotels and restaurants, increasing local income and employment (Brunner & Schwegman, 
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2022; Loomis et al., 2016). After construction, developers pay annual fees to landowners who 

leased their land for a turbine, further increasing income, and taxes on the new turbines, 

increasing the county’s tax base. Brunner and Schwegman concluded that, through these 

mechanisms, new wind energy development leads to “exogenous and economically meaningful 

increases in county-level GDP per-capita, income per-capita, median household income and 

median home values” (2022). They further found that the increases in county GDP and income 

began during construction and accelerated during operation. Contrary to the state-level findings 

of Loomis and Lantz, Brunner and Schwegman found little impact on total employment but 

noted that employment shifted from farm employment towards nonfarm employment (2022).  

 The local economics of wind energy development are the basis for my research 

question, but the current literature studies the relationship between local economies and wind 

farms opposite to my approach. Rather than investigating how development impacts the 

economy, I am investigating how economic attributes may predict development. However, the 

presence of clear economic benefits suggests the possibility of the relationship I am 

investigating. Perhaps counties that are struggling economically are more receptive to wind 

energy development, on either the level of an individual landowner or the county government, 

and therefore may be targeted by developers or seek out development themselves.  

3.2 Local Attributes Impact Turbine Development  

 The current literature establishes that location attributes do impact wind farm 

development. A study by Christiane Bohn and Christopher Lant used linear regressions to 

examine the impact of population (a surrogate for energy demand), wind energy potential 

(estimated energy the wind could provide in an area), accessibility of transmission 

infrastructure, wind energy price, utility structure, green power preferences, renewable power 
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standards, and siting processes on state-level installed wind generation capacity (2009). Their 

regression results revealed that installed capacity was impacted primarily by population and 

political siting processes. After conducting five case studies on wind projects that faced local 

opposition in various states, Bohn and Lant further concluded that siting procedures were 

significantly impacted by local involvement with and opposition to wind farm development, 

and that turbine development increased when local involvement or local opposition decreased 

(Bohn & Lant, 2009). Bohn and Lant’s finding of the significance of local opposition suggests 

that the impact of local attributes on wind development is worth studying.  

Kate Mulvaney, Patrick Woodson, and Linda Stalker Prokopy investigated local 

opposition to and acceptance of wind energy projects through a qualitative study of three 

counties in rural Indiana, one with a wind farm and two with proposed wind farms (2013). 

They used a mixed methods approach that included interviews, mailed surveys, and reviews of 

newspaper articles and reports to study both local acceptance of projects within that 

community and acceptance of wind energy more generally. Mulvaney et al. reported a high 

level of support for wind energy across all three counties and found that the support was driven 

by wind energy’s local economic benefits. One resident of Benton County that was interviewed 

stated, “We are a pretty poor county, I mean all we have is agriculture. Because we don’t really 

have any business, it has pumped a lot of money into our economy” (Mulvaney et al., 2013). 

Additionally, 75% of the Benton County survey respondents with turbines on their land stated 

that they accepted the development at least in part due to financial compensation. A similar 

qualitative study of four Texas counties and eight Iowa counties, all either with wind farms or 

adjacent to counties with wind farms, was conducted by Michael Slattery and colleagues 

(2012). They developed a survey questionnaire aimed to link physical and environmental 
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characteristics to positive or negative wind energy attitudes by determining the respondents 

overall opinion on and knowledge of wind energy, construction and operations processes, 

socio-economic impacts of development, and environmental issues. The surveys revealed both 

strong support for wind energy development and that the support was primarily due to the local 

perception of increased employment and economic activity. Slattery et al. concluded that 

support for wind energy is strongly associated with socioeconomic factors rather than morals 

or aesthetics (2012).  

These results suggest that perhaps struggling counties may be more likely to support 

and thus experience wind turbine development, which is the foundation for my research 

question. However, the quantitative nature of Slattery et al. and Mulvaney et al.’s research 

means that it is possible respondents were misattributing their support for or opposition to 

turbine development either unconsciously or intentionally. Combined with the small sample 

sizes of the studies, this leaves their results anecdotal. This paper will use empirical evidence 

to investigate the suggested relationship between a county’s economic status and the likelihood 

of wind energy development.  

4. Theoretical Framework 

My data, which will be detailed in the next section of this paper, is panel data with 

values per county per year. This is the same format as Brunner and Schwegman (2022). Bruner 

and Schwegman utilize a difference-in-differences model to examine the impact of wind 

energy development on county-level economic attributes, and I will be following in their 

footsteps but reversing the relationship direction. I will utilize a two-way fixed effects 

regression to create a difference-in-differences model with the primary dependent variable 

being a binary representing whether or not new turbines were commissioned in a given county 
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(i) at time (t). The model will examine the differences between counties and between years. 

The binary dependent variable allows me to interpret my regression results to understand how 

the likelihood of wind development within a county changes as economic attributes change.  

The independent variable within my regression equation will be county-level measures 

of economic attributes. The development of a new wind farm is dependent on individual 

landowners’ decision to lease their land to a developer. As established by the existing 

literature, the decision to lease land for wind development is largely an economic decision 

(Mulvaney et al. 2013; Slattery et al., 2012). In Iowa, most landowners are farmers, and the 

yearly payments from developers to landowners offer a level of economic certainty whereas 

yearly farm revenues are subject to exogenous variables like commodity pricing and weather. 

Wind farms also come with significantly increased property tax revenues for the county 

(Delworth, 2023), which may influence a local government’s likelihood of allowing the 

permitting of new turbines or possibly an individual’s acceptance of a new turbine on their 

property. Hypothetically, if a county is suffering economically, its residents may be more likely 

to accept or allow new turbine installation due to the economic benefits to individuals and 

county tax bases.  

My first control variable will represent year-to-year county-level political affiliation. In 

Iowa, as in the rest of the U.S., wind energy is becoming an increasingly partisan issue. A 

study by John Dorrell and Keunjae Lee of state-level political ideology and wind energy 

development found that U.S. states led by Democratic Governors are more likely to support 

renewable energy initiatives, while states led by Republican Governors are more likely to 

prioritize traditional energy sources (2020). While the study focused on state-level beliefs, it 

suggests that local political beliefs could play a role in development. For example, the siting 
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and permitting process is carried out by each county’s Board of Supervisors and is subject to 

the political beliefs of those supervisors and their constituents, and thus the overall political 

affiliation of a county may impact whether wind development occurs.  

My second control variable will represent farming success. The success of farming 

operations in a given county in a given year will affect the overall economic prosperity of a 

county, but may or may not have a different effect on turbine development from farming’s 

overall contribution to county-level economic attributes. Again, in Iowa, wind turbines are 

placed on agricultural land (because it is flat and abundant), and therefore wind farm 

development depends on farmers’ decisions. A farming community struggling with production 

(due to drought, for example) may be more inclined to accept turbines as a form of income 

diversification. Whether measures of farming success impact turbine development and whether 

they are correlated with county-level economic attributes are questions I will endeavor to 

answer through regression analysis.  

My third control variable is the pre-existence of turbines in a county prior to the new 

turbine installation. The existence of wind turbines in a county may impact the community’s 

acceptance of new turbines: perhaps they see the turbines, dislike them, and are resistant to 

future development. Perhaps they grow accustomed to the turbines, recognize their economic 

benefits, and are receptive to future development.  

My fourth control variable is the amount of land available for turbine development. 

While land is usually a constant variable that can be controlled for with fixed effects, the 

amount of available land for new turbine construction decreases as new wind turbines are 

constructed. Wind turbines require a certain amount of space to operate and once you put in 

one turbine on an area of land, you cannot place another turbine in its vicinity. Therefore, 
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available land is no longer constant. I will also be controlling for demographic factors, 

including average race, gender, ethnicity, and age of the county as measured by the U.S. 

Census Bureau.  

I will be using county fixed effects to control for geographic differences between 

counties, including in average wind speeds, land grade (how level the terrain is), proximity to 

transmission infrastructure. I will also be using time fixed effects to control for differences 

between years that are constant across all counties, such as state-wide policy changes to 

renewable energy incentives in Iowa. Having both county and year fixed effects is what creates 

the difference-in-differences model structure. I considered nonlinear models for my analysis, 

such as a probit model used to predict a binary outcome, a logit model used to give the 

probability of an event occurring, or an Andersen-Gill or Prentice-Williams-Peterson model 

used to analyze recurrent event data. However, using fixed effects with nonlinear models 

causes the incidental parameters problem, leading to biased estimates of the main parameters. 

Due to this, I opted to utilize a linear regression model like Brunner and Schwegman (2022).  

The independent and control variables will be lagged because the process of developing 

a wind farm takes multiple years. Within the turbine data, which will be detailed in the next 

section, there is only the year the turbine was commissioned (the year the turbine became 

operational) and no indicator of when development began. According to “Land-Based Wind 

Energy Siting: A Foundational and Technical Resource” by the U.S. Department of Energy, 

site development typically takes about three to four years. However, the process is not always 

completed with each step in quick succession. Some farms may be in the midst of development 

just months after landowners sign leases while other farms are developed years after lease 

signing. I am going to start my regressions with a five year lag of the independent and control 
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variables, hopefully capturing average development time and obtaining a more accurate sense 

of the conditions the county residents and developers were facing when making the decisions 

to install the turbines. Because my other data begins in the year 1990, this five year lag will 

mean that one turbine commissioned in Dickinson County in 1992, one turbine commissioned 

in Story County in 1993, and one turbine commissioned in Story County in 1994 will not be 

included in my regression analysis. Given that these three turbines are instances of the 

development of one standalone turbine rather than large commercial projects, this is a required 

compromise to obtain the correct lag.   

5. Data 

5.1 Wind Turbine Data 

Following the footsteps of Brunner and Schwegman (2022), I utilize the United States 

Wind Turbine Database (USWTDB), which contains location and technical specification 

information on all utility-scale wind turbines currently in operation within the U.S., both on 

and offshore (Hoen et al., 2018b). The USWTDB combines public and private information 

from the Lawrence Berkeley National Laboratory (LBNL), the Federal Aviation 

Administration (FAA), the U.S. Geological Survey (USGS), the American Clean Power 

Association (ACP), and online resources. Analysts verify turbine location with visual analysis 

of high-resolution aerial imagery. Residential-scale wind turbines—turbines shorter than 30 

meters or rated at a less than 65-kilowatt nameplate capacity—are excluded from the 

USWTDB. The database is actively maintained by the LBNL, USGS, and ACP, and the 

version utilized in this paper is volume 7.2, last updated on November 20, 2024, containing 

74,695 observations (individual turbines) and 28 variables. According to the USWTDB, there 

21 



 

are 6,421 utility-scale turbines currently located in Iowa. For an image of the USWTDB map 

of Iowa, see appendix A.  

Figure 3 

Number of Wind Turbine Commissions Per Year: United States vs. Iowa 

 

Relevant to this paper were the following variables: FIPS code of the turbine’s county 

and the name and commissioning year (year brought online) of the project associated with the 

turbine. Of the 6,421 utility-scale turbines in Iowa, 63 are not associated with a commissioning 

year in the USWTDB. 60 of those turbines are located in Tama County and are part of a project 

that has not been built; I dropped those observations from my data.1 One turbine was located in 

1 Visual confirmation of these turbines’ absence can be conducted by searching “Unknown Tama County Project” 
on the USWTDB Viewer. There are 66 turbines classified as part of this project. 6 have commissioning dates and 
their presence can be visually confirmed. The absence of the other 60 without commissioning dates can also be 
visually confirmed. This discrepancy is likely because a large wind farm has been in development in Tama County 
for many years but has been embroiled in legal battles, meaning that while turbines have been proposed they have 
not been built (McAllister, 2025). These turbines being listed before construction is a unique discrepancy in the 
USWTDB data. 
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Buena Vista County, IA, and after visual examination of aerial imagery provided by the 

USWTDB viewer I determined this turbine was part of the Storm Lake II wind farm 

commissioned in 19992; I set this turbine’s commissioning year to 1999. One turbine was 

located in Chickasaw County, IA, and after visual examination of aerial imagery I determined 

this turbine was a duplicate3; I dropped it from my data. The final turbine was located in Sac 

County, IA, and after visual examination of aerial imagery I determined it was part of the 

Richland Wind Farm commissioned in 20204; I set this turbine’s commissioning year to 2020. 

The resulting dataset contained 6,360 individual utility-scale turbines.  

The USWTDB only contains information on turbines currently in operation, but 

turbines that were built, operated, and subsequently decommissioned (taken out of operation 

and torn down) are also important to my analysis. For this, I turned to a separate dataset, 

Decommissioned turbine data (Hoen et al., 2018a), maintained by the same entities as the 

USWTDB. The version utilized in this paper is volume 7.2, last updated on November 20, 

2024, containing 11,616 observations (individual turbines) and 22 variables. While this dataset 

contains the latitude and longitude of each decommissioned turbine, it does not contain the 

state or county. Ryan Denniston, Ph.D., from the Duke University Center for Data and 

Visualization Studies ran a spatial join adding the Decommissioned turbine data dataset to a 

dataset containing GIS data on U.S. counties and returned to me a dataset containing 11,616 

observations and 28 variables. Each turbine was identified with a state FIPS code and a county 

FIPS code. The variables relevant to this paper were county FIPS code, project name, project 

commissioning year, and turbine decommissioning year (year taken offline).  

4 This turbine’s ID is 3108637. Visual analysis can be conducted by searching the ID on the USWTDB Viewer. 

3 This turbine’s ID is 3131500, and it is a duplicate of turbine 3131987.  Visual analysis can be conducted by 
searching the IDs on the USWTDB Viewer. 

2 This turbine’s ID is 3085854. Visual analysis can be conducted by searching the ID on the USWTDB Viewer.  
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There were 62 turbines decommissioned in Iowa. Three were not associated with a 

commissioning year in the dataset. The first was located in Cerro Gordo County, IA, and after 

visual examination of aerial imagery I determined this turbine was part of the Cerro 

Gordo/Hawkeye Power/Clear Lake wind farm commissioned in 19995; I set this turbine’s 

commissioning year to 1999. The second was located in Clay County near the Upland Prairie 

wind farm, however the turbine was decommissioned in 2018 and Upland Prairie was 

commissioned in 2019, meaning the data suggests that there was a single turbine constructed 

and removed prior to Upland Prairie’s commissioning. I could not find sources verifying the 

instance of a singular turbine in Clay County prior to 2019 and I dropped this observation. The 

third was located in Scott County, but there are no other records of any turbines in Scott 

County, and so I dropped this observation as well. There was one turbine in this dataset without 

a decommissioning year, but it was part of the Cerro Gordo/Hawkeye Power/Clear Lake wind 

farm. The Cerro Gordo/Hawkeye Power/Clear Lake wind farm was decommissioned in 2020, 

and therefore I assigned the turbine 2020 as its decommissioning year. After these 

transformations, the dataset included 60 observations (60 decommissioned turbines).  

 I then collapsed the commissioned and decommissioned turbine data into one dataset 

that counted the number of new commissioned and decommissioned turbines in each county 

per year, counted the number of projects in each county per year, and calculated a cumulative 

total of the number of turbines in each county. I also created a binary variable indicating 

whether any new turbines had been commissioned in each county in any given year.  

 The first wind turbine was installed in Iowa in 1992. Therefore, all of my data spans 

from 1990 (in order to assess economic conditions before construction of the initial turbine) to 

5 This wind farm can be found by searching “Cerro Gordo/Hawkeye Power/Clear Lake” on the USWTDB 
Viewer.  
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2023. I will be lagging all of my variables by five years, meaning that the three turbines 

commissioned in 1992, 1993, and 1994 will be excluded from regression analysis. This is 

because my demographic data is only available starting in the year 1990, which represents a 

limitation to my dataset. I have similarly chosen to exclude 2024 because many data from 

2024, such as demographics, have not yet been made public and thus cannot be incorporated 

into my analysis. Nine turbines were commissioned and three were decommissioned in Iowa in 

2024, and those developments are excluded from my analysis. From 1990 to 2023, 6,411 

turbines were commissioned in Iowa. 57 of those turbines were decommissioned during that 

same time period, leaving 6,354 still in operation as of the end of 2023.  

Figure 4 

Wind Turbine Commissions vs. Decommissions Per Year in Iowa, 1990–2023 
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Of the 99 counties in Iowa, 58 have utility-scale wind turbines. At the end of 2023, 

those 58 counties had an average of 109.6 turbines each. Adair County, IA has the most 

turbines with 528 and Winneshiek County, Buchanan County, Henry County, and Linn County 

have the least with 1 turbine each. For a full list of the number of turbines in each of the 58 

counties in 2023, see appendix B.  

5.2 Economic Attributes Data 

I sourced indicators of county-level economic performance from both the Bureau of 

Labor Statistics (BLS) and the Bureau of Economic Analysis (BEA). The BLS’s Local Area 

Unemployment Statistics is a joint state-federal effort preparing monthly estimates of 

employment and unemployment for a variety of areas; I pulled yearly unemployment data for 

the 99 counties in Iowa from 1990 to 2023 (Bureau of Labor Statistics, 2025). For yearly 

measures of personal income,6 farm income,7 and non-farm personal income8 from 1990 to 

2023, I utilized the BEA’s “CAINC4 Personal income and employment by major component 

by county” dataset (2025). This data was only available in current dollars not adjusted for 

inflation. I used the BLS’s Consumer Price Index to calculate the measures of income in real 

terms in 2017 dollars (2025). Then, using annual population data also contained in the BEA’s 

8 Personal income minus farm income (U.S. Bureau of Economic Analysis, 2025). 

7 Farm income “consists of wages and salaries, employer contributions for employee pension and insurance funds, 
and proprietors' income in the farm industry (NAICS subsectors 111-Crop Production and 112-Animal 
Production). Farm personal income comprises the net personal income of sole proprietors, partners, and hired 
laborers arising directly from the current production of agricultural commodities, both livestock and crops. It 
excludes corporate farm income” (U.S. Bureau of Economic Analysis, 2025).  

6 Personal income “consists of the income that persons receive in return for their provision of labor, land, and 
capital used in current production as well as other income, such as personal current transfer receipts. In the state 
and local personal income accounts the personal income of an area represents the income received by or on behalf 
of the persons residing in that area. It is calculated as the sum of wages and salaries, supplements to wages and 
salaries, proprietors' income with inventory valuation (IVA) and capital consumption adjustments (CCAdj), rental 
income of persons with capital consumption adjustment (CCAdj), personal dividend income, personal interest 
income, and personal current transfer receipts, less contributions for government social insurance plus the 
adjustment for residence” (U.S. Bureau of Economic Analysis, 2025).  
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“CAINC4 Personal income and employment by major component by county” dataset I created 

per capita measures for my income variables9.  

Figure 5 

Average County-Level Personal Income per capita, Farm Income per capita, and Non-Farm 

Income per capita, 1990-2023 

 

5.3 Political Affiliation Data 

To calculate political affiliation, I utilized data from a paper on nationalism and 

partisanship in American elections published in Electoral Studies (Algara & Amlani, 2021a). 

9 I considered using county-level GDP as an economic attribute, but the BEA’s data on county-level GDP only 
goes back to 2001. Using GDP would exclude data from the years 1990 through 2000, and therefore I decided to 
only use income measures.  
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The data was published for replication purposes by Harvard Dataverse (Algara & Amlani, 

2021b) and includes county-level voting data on presidential, gubernatorial, and senatorial 

elections from 1872 to 2020. I separated the senatorial elections data by the senate seat class10, 

and then for all four types of election in each election year (presidential, gubernatorial, 

senatorial class II and senatorial class III), I pulled the total number of raw votes, the number 

of raw Democrat votes, and the number of raw Republican votes and calculated the percent 

Democrat and percent Republican. For every non-election year, I assigned the values of the 

most recent election at the same level.  

Table 1 

Correlation Between % Democrat in all Four Election Types  

 1 2 3 4 

1 % Democrat Votes in Presidential Election 1    

2 % Democrat Votes in Gubernatorial Election 0.684 1   

3 % Democrat Votes in Senate Class II Election 0.797 0.652 1  

4 % Democrat Votes in Senate Class III Election 0.608 0.502 0.407 1 

 
Given the high correlation coefficients between the four election variables, I regressed 

the four variables with the count of new turbines and tested the variance inflation factor (VIF). 

Percent Democrat in presidential elections had a VIF of 3.93, percent Democrat in 

gubernatorial elections had a VIF of 3.04, percent Democrat in senatorial class II elections had 

a VIF of 2.08, percent Democrat in senatorial class II elections had a VIF of 1.69, and the 

mean VIF was 2.69. Despite the VIFs being below 5, I was still concerned with 

10 Seat class (I, II, or III) determines the seat’s election year. Iowa has two senate seats, one class II and one class 
III.  
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multicollinearity and clarity in my potential findings, and so I opted to index the four variables 

together. I averaged the percentage of Democrat votes in the four types of elections for every 

year, weighing them by the total number of votes in each respective election. The resulting 

variable, political affiliation, represents a county’s affiliation with the Democratic Party in a 

given year.  

Figure 6 

Average County-Level Political Affiliation, 1990-2023 

 
Note. % Republican was calculated in the same manner as % Democrat and displayed here for 
context, but it is not used in my regressions.  
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5.4 Farming Success & Available Land Data 

I gathered data from the Census of Agriculture taken every five years by the United 

States Department of  Agriculture (USDA)’s National Agricultural Statistics Service (NASS). 

The Census of Agriculture counts both urban and rural plots of land that have raised and sold 

(or would ordinarily have raised and sold) over $1,000 worth of products (USDA, 2025). I 

pulled county-level data tables titled “Farms, Land in Farms, Value of Land and Buildings, and 

Land Use” for Iowa for years 198711, 1992, 1997, 2002, 2007, and 2012 from the Census of 

Agriculture Historical Archive (NASS, 1987; NASS, 1992; NASS, 1997; NASS, 2002; NASS, 

2007; NASS, 2012) and for years 2017 and 2022 directly from the NASS (NASS, 2022). The 

data was in the form of a PDF that I was unable to scrape, and so instead I manually recorded 

data on the number of acres, number of farms, acres of farmland, acres of cropland, and acres 

of cropland harvested for each county in each census year. “Farmland” encompasses all land 

used for agricultural activities like crop production or livestock rearing and includes cropland, 

pastureland, woodland, farmsteads, livestock buildings, and more. To quantify farm success for 

my regression, I chose to focus on cropland (land in crop rotation). I calculated each county’s 

cropland yield for every census year by dividing cropland harvested by total cropland and used 

it as a proxy for farm success. For every non-census year, I assigned the values of the most 

recent census. This measure does not take into account success of livestock operations, 

however provides some context for the success of farming in a given county.    

Additionally, I used the data from the Census of Agriculture to calculate the land 

available for turbine development in each county in a given year. In Iowa, turbines are 

primarily placed on agricultural land. Therefore, I used the total acres of farmland from the 

Census of Agriculture as a proxy for the total land available for turbine development. To take 

11 For the year 1987, the table is titled Farms, Land in Farms, and Land Use: 1987 and 1982.  
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into consideration land already occupied by a turbine, I used the Iowa Environmental Council’s 

recommended turbine setback of 1,250 feet (Iowa Environmental Council, 2018) as a radius to 

calculate the approximate area a wind turbine takes up. Then, I multiplied that area by the 

number of turbines in a given county in a given year.  Dividing the area occupied by turbines 

by the total farmland gives me the percentage of farmland occupied by turbines, and 

subtracting the area occupied by turbines from the total farmland gives me the total farmland 

remaining for potential turbine development.  

For both of these variables, I kept only observations from 1990 to 2023.  

5.5 Demographic Data 

 I gathered county-level demographic data for 1990 through 2023 from the Center for 

Disease Control (CDC) WONDER online database (U.S. DHHS et al., 2021; U.S. DHHS et al., 

2025). For each county, I pulled yearly July 1st estimates of population, white population, 

Hispanic population, female population, and population aged 65 and older (retirement age). I 

chose to only pull the white population–and therefore only have the ability to calculate the non 

white population–because Iowa is 89.6% white (U.S. Census Bureau, 2025). All racial 

minority groups are in the vast minority, and therefore there is little insight to be gleaned from 

further breaking down racial minority percentages. From the data, I calculated percent white, 

percent Hispanic, percent female, and percent aged 65 and older for my regressions.  

5.6 Summary Statistics  

Table 2  

Dependent Variables  

Variable Definition Source 

New Turbines Binary indicating whether new turbines were commissioned in county i in year t USWTDB 

Total New Turbines Number of new turbines commissioned in county i in year t USWTDB 

 

31 



 

Table 3 

Independent Variables  

Variable Definition Source 

Unemployment Rate The percentage of people in county i's labor force who are unemployed during time t but 
actively seeking work 

BLS 

Personal Income Per 
Capita 

Per capita measure of all income that persons receive in return for their provision of labor, 
land, capital used in current production and more in county i during time t; in 2017 dollars 

BEA 

Farm Income Per 
Capita 

Per capita measure of all wages, salaries, proprietors income, and more resulting from 
farming in county i during time t; in 2017 dollars 

BEA 

Non-Farm Income 
Per Capita 

Per capita measure personal income minus farm income; in 2017 dollars BEA 

 
Table 4  

Control Variables  

Variable Definition Source 

Political Affiliation Measure of how affiliated county i is with the Democratic Party in time t; calculated as 
a weighted average of Democratic vote-share from presidential, gubernatorial, and 
senatorial elections 

Harvard 
Dataverse 

Cropland Yield Ratio of cropland harvested over total cropland in county i during time t NASS 

Prior Turbines Binary indicating whether county i had turbines prior to time t USWTDB 

Available Land Acres of farmland in county i that are available for turbine development at time t NASS, NREL 

Population Total population in county i at time t Census Bureau 

% White Percentage of total population that is white in county i at time t Census Bureau 

% Hispanic Percentage of total population that is Hispanic in county i at time t Census Bureau 

% Female Percentage of total population that female in county i at time t Census Bureau 

% Retirement-Aged Percentage of total population that is 65 or older in county i at time t Census Bureau 

 
Table 5  

Summary Statistics  

Variable Obs Mean Std. dev. Min Max 

New Turbines 3,366 0.0502 0.2184 0 1 

Unemployment Rate 3,366 4.0291 1.3104 1.6 10.2 

Personal Income Per Capita 3,366 39.8796 8.0905 22.23401 89.2199 

Farm Income Per Capita 3,366 2.9915 2.8848 -1.1242 21.8048 

Non-Farm Income Per Capita 3,366 36.8880  7.4221 21.7945 82.5712 
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Political Affiliation 3,366 0.3986 0.0841 0.1033 0.6713 

Cropland Yield 3,366 0.8709 0.1063 0.4889 1.2042 

Prior Turbines 3,366 0.2540 0.4354 0 1 

Available Land 3,366 314998.6 137395.9 52699.6 3244394 

Population 3,366 30379.49 51332.8 3544 505255 

% White 3,366 0.9723 0.0311 0.7941 0.9996 

% Hispanic 3,366 0.0318 0.0419 0.0004 0.3104 

% Female 3,366 0.5052 0.0101 0.4514 0.5295 

% Retirement-Age 3,366 0.1870 0.0331 0.0740 0.2889 

 
6. Empirical Methodology 

 The following section specifies the methodology for my two-way fixed effects 

regression models using variables detailed in section 4 and the data detailed in section 5.  

6.1 Regressions with New Turbines 

My first regression equation investigates the relationship between New Turbines 

(whether or not new turbines are commissioned in county i in year t) and Farm Income, 

Non-Farm Income, and Unemployment Rate while controlling for Political Affiliation, Crop 

Yield, Prior Turbines, Available Land, the five demographic variables, county fixed effects, 

and year fixed effects. This regression will provide insight into whether the economic attributes 

of a county impact the presence of wind farm commissioning in a given year, no matter how 

big that wind farm is.  

NewTurbinesi,t = β0 + β1FarmIncomei,t-5 + β2NonFarmIncomei,t-5 + β3UnemploymentRatei,t-5 + 
β4PoliticalAffiliationi,t-5 +  β5CroplandYieldi,t-5 + β6PriorTurbinesi,t-5 + β7AvailableLandi,t-5 + 
β8Populationi,t-5 + β9PercentWhitei,t-5 + β10PercentHispanici,t-5 + β11PercentFemalei,t-5 + 
β12PercentRetirementAgei,t-5 + ɣi,t-5 + δi,t-5 + ϵi,t-5 

(1) 
 

ɣ represents county fixed effects, δ represents year fixed effects, and ϵ is the error term. 

All of the variables are weighted by the amount of available farmland in each county in 1987 

to correct for unequal representation caused by differing county sizes or urban centers. I have 
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chosen to include both Farm Income and Non-Farm Income because the decision to lease land 

for turbines is primarily made by farmers, and so the economic well being of farmers and 

nonfarmers may have different effects on turbine development. I will run this same regression 

for each independent variable individually in order to check for multicollinearity and ensure 

that the presence of all three economic attribute variables does not reduce their significance or 

the model’s predictive power. I will also run this regression with and without the Cropland 

Yield control to check that Cropland Yield is not interfering with the statistical significance or 

magnitude of Farm Income.  

Examining the timeline of turbine development in Iowa as displayed in Figure 3 

(located in section 5.1), the first large commercial wind projects were commissioned in 1999. 

Three counties in Iowa received wind turbines in 1999: Cherokee County received 27 turbines, 

Cerro Gordo County received 55 turbines, and Buena Vista County received 230 turbines. 

Prior to 1999, only twelve turbines were installed across the state in seven counties. Perhaps 

because there had not been a successful commercial wind energy project in Iowa, people were 

not yet aware of the potential economic benefits until 1999. In order to investigate this, I 

decided to run the same regression again but restrict commissioning years to 2004 through 

2023, starting five years after 1999 (the size of my lag). This way, only projects whose 

development began after the 1999 construction and completion of 312 turbines would be 

included in the data. As with the regression run for all years, this regression will be weighted 

by the amount of available farmland in each county in 1987, run with all three independent 

variables together and then with each one independently, and run with and without Cropland 

Yield.  
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6.2 Regressions with Total New Turbines 

 My second regression equation investigates the relationship between Total New 

Turbines (the number of new turbines commissioned in county i in year t) and Farm Income, 

Non-Farm Income, and Unemployment Rate while controlling for Political Affiliation, Crop 

Yield, Prior Turbines, Available Land, the five demographic variables, county fixed effects, 

and year fixed effects. This regression will provide insight into whether the economic attributes 

of a county impact the number of individual turbines commissioned in a given year.  

TotalNewTurbinesi,t = β0 + β1FarmIncomei,t-5 + β2NonFarmIncomei,t-5 + 
β3UnemploymentRatei,t-5 + β4PoliticalAffiliationi,t-5 +  β5CroplandYieldi,t-5 + β6PriorTurbinesi,t-5 
+ β7AvailableLandi,t-5 + β8Populationi,t-5 + β9PercentWhitei,t-5 + β10PercentHispanici,t-5 + 
β11PercentFemalei,t-5 + β12PercentRetirementAgei,t-5 + ɣi,t-5 + δi,t-5 + ϵi,t-5 

(2) 
 

 As with my first regression equation, ɣ represents county fixed effects, δ represents 

year fixed effects, and ϵ is the error term. All of the variables are weighted by the amount of 

available farmland in each county in 1987 to correct for unequal representation caused by 

differing county sizes or urban centers. I will run this regression with all three independent 

variables together, with each independent variable individually, and with and without Cropland 

Yield. Then, I will repeat that process restricting commissioning years from 2004 to 2023.  

7. Results 

7.1 Regressions with New Turbines 

Table 6  

Regression Results: New Turbines, Farm Income Per Capita, Non-Farm Income Per Capita, 

and Unemployment Rate, 5 Year Lag, All Years, Weighted for Available Farmland in 1987  

Variable Coefficient 
Robust  

Standard Error T-Value P-Value 
95% CI 

Lower 
95% CI 

Upper 

Farm Income Per Capita -0.002 0.004 -0.48 0.632 -0.010 0.006 

Non-Farm Income Per Capita 0.002 0.004 0.44 0.659 -0.006 0.009 
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Unemployment Rate -0.006 0.007 -0.81 0.423 -0.020 0.008 

Political Affiliation -0.210 0.156 -1.35 0.181 -0.518 0.099 

Cropland Yield 0.134 0.094 1.42 0.159 -0.053 0.321 

Prior Turbines -0.039 0.024 -1.61 0.11 -0.087 0.009 

Available Land 0.000 0.000 1.38 0.171 0.000 0.000 

Population 0.000 0.000 0.38 0.704 0.000 0.000 

% White 0.829 0.657 1.26 0.21 -0.475 2.132 

% Hispanic 0.033 0.331 0.1 0.922 -0.625 0.690 

% Female 0.304 1.393 0.22 0.827 -2.459 3.068 

% Retirement Age -0.747 0.689 -1.08 0.281 -2.114 0.620 

Year (Base Year = 1995)       

1996 -0.028 0.024 -1.17 0.246 -0.076 0.020 

1997 -0.046 0.028 -1.65 0.101 -0.101 0.009 

1998 -0.039 0.022 -1.76 0.082 -0.084 0.005 

1999 0.001 0.040 0.01 0.989 -0.078 0.079 

2000 -0.059 0.032 -1.84 0.068 -0.123 0.005 

2001 -0.032 0.030 -1.06 0.29 -0.093 0.028 

2002 -0.039 0.036 -1.09 0.277 -0.111 0.032 

2003 -0.024 0.043 -0.57 0.57 -0.109 0.061 

2004 -0.043 0.044 -0.98 0.329 -0.130 0.044 

2005 -0.006 0.051 -0.12 0.907 -0.108 0.096 

2006 -0.045 0.044 -1.03 0.304 -0.132 0.042 

2007 0.018 0.052 0.34 0.732 -0.086 0.122 

2008 0.108 0.057 1.87 0.064 f 0.222 

2009 0.051 0.044 1.16 0.25 -0.037 0.139 

2010 -0.018 0.051 -0.35 0.729 -0.119 0.083 

2011 0.078 0.062 1.25 0.213 -0.045 0.201 

2012 0.128 0.073 1.76 0.081 -0.016 0.272 

2013 -0.010 0.061 -0.17 0.867 -0.131 0.110 

2014 0.010 0.062 0.16 0.873 -0.113 0.132 

2015 0.032 0.068 0.48 0.633 -0.102 0.167 

2016 0.025 0.060 0.42 0.674 -0.094 0.144 

2017 0.179 0.080 2.22 0.028 0.019 0.338 

2018 0.051 0.075 0.69 0.494 -0.097 0.200 

2019 0.035 0.084 0.42 0.676 -0.131 0.202 

2020 0.072 0.082 0.88 0.381 -0.090 0.234 

2021 0.015 0.086 0.17 0.862 -0.156 0.187 

2022 -0.001 0.088 -0.01 0.992 -0.176 0.175 

2023 -0.006 0.091 -0.07 0.945 -0.188 0.175 

Constant -0.859 0.812 -1.06 0.292 -2.470 0.751 

R^2 (Between) 0.0441      
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The results of my first fixed-effects regression model analyzing new wind turbine 

development reveal low between-county explanatory power (R² = 0.0441). Additionally, none 

of my independent variables or control variables were statistically significant. I thought 

perhaps that I was encountering a collinearity problem with my three independent variables, 

Farm Income, Non-Farm Income, and Unemployment Rate. However, after running the same 

regression three times for each of the independent variables individually, only one variable was 

ever statistically significant. Prior Turbines, a control variable, was just barely statistically 

significant with a p-value of 0.096 when Non-Farm Income was the only independent variable. 

The coefficient of Prior Turbines in this regression was -0.0409, indicating a small negative 

relationship between the presence of turbines five years before year t and the commissioning of 

new turbines in year t; having prior turbines leads to a 4.09% decrease in likelihood of turbine 

commissioning five years later. I also thought perhaps my control variable Cropland Yield 

could be too correlated with Farm Income, but removing it resulted only in a change to Prior 

Turbines. Prior Turbines became barely statistically significant with a p-value of 0.097 and a 

coefficient of  -0.04008.  

Table 7  

Regression Results: New Turbines, Farm Income Per Capita, Non-Farm Income Per Capita, 

and Unemployment Rate, 5 Year Lag, 2004-2023, Weighted for Available Farmland in 1987 

Variable Coefficient 
Robust 

Standard Error T-Value P-Value 
95% CI 

Lower 
95% CI 

Upper 

Farm Income Per Capita -0.003 0.005 -0.620 0.535 -0.012 0.006 

Non-Farm Income Per Capita 0.002 0.005 0.410 0.680 -0.008 0.012 

Unemployment Rate -0.014 0.009 -1.570 0.119 -0.032 0.004 
Political Affiliation -0.559 0.279 -2.000 0.048 -1.114 -0.004 

Cropland Yield 0.121 0.212 0.570 0.571 -0.301 0.542 

Prior Turbines -0.081 0.029 -2.800 0.006 -0.139 -0.024 

Available Land 0.000 0.000 1.750 0.083 0.000 0.000 
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Population 0.000 0.000 -0.200 0.841 0.000 0.000 

% White 0.929 0.912 1.020 0.311 -0.880 2.739 

% Hispanic -0.024 0.718 -0.030 0.973 -1.448 1.400 

% Female 0.350 2.287 0.150 0.879 -4.188 4.888 

% Retirement Age -0.094 0.896 -0.100 0.917 -1.871 1.684 
Year (Base Year = 2004)       

2005 0.039 0.022 1.740 0.084 -0.005 0.083 

2006 0.005 0.019 0.240 0.808 -0.032 0.042 

2007 0.077 0.032 2.420 0.017 0.014 0.140 

2008 0.172 0.046 3.740 0.000 0.081 0.264 

2009 0.111 0.040 2.760 0.007 0.031 0.191 

2010 0.041 0.035 1.190 0.238 -0.028 0.110 

2011 0.131 0.047 2.810 0.006 0.039 0.223 

2012 0.183 0.056 3.250 0.002 0.071 0.294 

2013 0.066 0.047 1.420 0.159 -0.026 0.159 

2014 0.108 0.055 1.940 0.055 -0.002 0.218 

2015 0.127 0.064 2.000 0.048 0.001 0.254 

2016 0.119 0.054 2.190 0.031 0.011 0.226 

2017 0.264 0.070 3.770 0.000 0.125 0.404 

2018 0.138 0.068 2.010 0.047 0.002 0.273 

2019 0.085 0.081 1.050 0.296 -0.076 0.246 

2020 0.116 0.084 1.380 0.170 -0.050 0.283 

2021 0.040 0.082 0.480 0.631 -0.124 0.203 

2022 0.017 0.090 0.190 0.847 -0.161 0.196 

2023 0.014 0.094 0.150 0.884 -0.173 0.201 
Constant -0.958 1.219 -0.790 0.433 -3.377 1.460 
R^2 (Between) 0.029      

 
 This regression revealed that when only considering turbines commissioned starting in 

2004, five years after the successful installation of the first major wind farms in Iowa, Political 

Affiliation, Prior Turbines, and Available Land all become statistically significant. Political 

Affiliation has a p-value of 0.048, meaning it is statistically significant with an ɑ of 0.05. The 

coefficient is -0.559, meaning that when the percentage of votes cast for Democrats is 10% 

higher, there is a 5% decrease in the likelihood that turbines will be commissioned in that 
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county five years later. This is interesting given that the relationship contradicts the prior 

literature on state-level political affiliation which finds that states with Democratic leadership 

are more likely to support renewable energy initiatives (Dorrell & Lee, 2020). Additionally, 

even in regressions where Political Affiliation is statistically insignificant it has a negative 

relationship with New Turbines, suggesting that more Democrats predicts less wind farm 

development. I am not sure why this is the case, but if this relationship holds true it is worth 

further research beyond this paper.  

Available Land is technically statistically significant but has a coefficient of 0.0, 

meaning that it holds no practical significance. I had expected the amount of available land for 

turbine development to have a negative relationship with New Turbines purely for logistical 

reasons, but the findings of this regression contradict that. Perhaps most counties have plenty 

of farmland that is available for turbine development and so the actual difference in acres does 

not impact development decisions. This is supported by Adair County, which had 528 turbines 

at the end of 2023 (the largest amount in Iowa) and still had 288619.4 acres of available land. 

Using recommended setbacks from the Iowa Environmental Council (2018), this still leaves 

enough acres for over two thousand additional turbines. In Adair County available land is not a 

development constraint. Prior Turbines is also statistically significant (p = 0.006) and has a 

coefficient of -0.081, meaning that having prior turbines leads to an 8.1% decrease in the 

likelihood of turbine commissioning five years later.  

Overall, this model has extremely low between-county explanatory power (R² = 0.029). 

Additionally, the three independent variables, Farm Income, Non-Farm Income, and 

Unemployment Rate, remain statistically insignificant. Running the regression four more 

times, once with each independent variable individually and once omitting Cropland Yield, 
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reveals the same results as the first regression: Political Affiliation, Prior Turbines, and 

Available Land are statistically insignificant with little variation in their p-values or 

coefficients.  

7.2 Regressions with Total New Turbines 

Table 8 

Regression Results: Total New Turbines, Farm Income Per Capita, Non-Farm Income Per 

Capita, and Unemployment Rate, 5 Year Lag, All Years, Weighted for Available Farmland in 

1987 

Variable Coefficient 
Robust 

Standard Error T-Value P-Value 
95% CI 

Lower 
95% CI 

Upper 

Farm Income Per Capita 0.353 0.259 1.370 0.175 -0.160 0.866 

Non-Farm Income Per Capita 0.115 0.190 0.610 0.544 -0.261 0.492 

Unemployment Rate -0.139 0.481 -0.290 0.773 -1.092 0.815 

Political Affiliation -12.502 8.705 -1.440 0.154 -29.777 4.772 

Cropland Yield 3.994 7.614 0.520 0.601 -11.116 19.105 

Prior Turbines -1.760 1.424 -1.240 0.219 -4.585 1.065 

Available Land 0.000 0.000 1.680 0.097 0.000 0.000 

Population 0.000 0.000 -0.440 0.663 0.000 0.000 

% White 63.890 47.112 1.360 0.178 -29.603 157.382 

% Hispanic -19.985 29.703 -0.670 0.503 -78.930 38.960 

% Female 31.301 112.911 0.280 0.782 -192.767 255.370 

% Retirement Age -19.006 53.078 -0.360 0.721 -124.337 86.325 

Year (Base Year = 1995)       

1996 0.415 0.308 1.350 0.181 -0.197 1.027 

1997 -1.074 0.639 -1.680 0.096 -2.342 0.194 

1998 -0.270 0.901 -0.300 0.765 -2.058 1.519 

1999 2.405 2.902 0.830 0.409 -3.353 8.164 

2000 -0.670 0.931 -0.720 0.473 -2.518 1.178 

2001 -0.549 1.076 -0.510 0.611 -2.684 1.585 

2002 0.417 1.586 0.260 0.793 -2.731 3.564 

2003 -0.177 1.406 -0.130 0.900 -2.968 2.614 

2004 -0.145 1.576 -0.090 0.927 -3.271 2.982 

2005 0.411 1.929 0.210 0.832 -3.417 4.238 

2006 0.125 1.716 0.070 0.942 -3.280 3.531 

2007 2.125 2.170 0.980 0.330 -2.182 6.432 

2008 10.125 3.131 3.230 0.002 3.911 16.338 
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2009 4.468 2.728 1.640 0.105 -0.945 9.881 

2010 0.094 1.923 0.050 0.961 -3.722 3.910 

2011 3.171 3.119 1.020 0.312 -3.018 9.360 

2012 3.887 2.856 1.360 0.177 -1.780 9.554 

2013 0.701 2.599 0.270 0.788 -4.456 5.859 

2014 4.022 3.168 1.270 0.207 -2.265 10.310 

2015 4.094 3.397 1.210 0.231 -2.647 10.836 

2016 3.421 2.988 1.140 0.255 -2.509 9.351 

2017 5.905 3.772 1.570 0.121 -1.580 13.390 

2018 5.787 4.427 1.310 0.194 -2.998 14.573 

2019 8.126 5.022 1.620 0.109 -1.841 18.093 

2020 6.773 4.265 1.590 0.116 -1.691 15.236 

2021 3.161 4.377 0.720 0.472 -5.525 11.847 

2022 2.598 4.273 0.610 0.545 -5.882 11.078 

2023 2.158 4.758 0.450 0.651 -7.284 11.600 

Constant -77.621 62.805 -1.240 0.219 -202.254 47.013 

R^2 (Between) 0.0409      

 
 In this regression, none of the independent or control variables are statistically 

significant, save for Available Land. Available Land is barely significant at the p<0.1 level (p = 

0.097), and as in the previous regressions the coefficient is 0.0 meaning it has no practical 

significance. The amount of available land for turbine development does not increase or 

decrease the number of turbines commissioned in the county five years later. The model also 

has extremely low between-county explanatory power (R² = 0.0409). Running the regressions 

for each independent variable individually yielded very similar results. All independent and 

control variables were statistically insignificant save for Available Land. There was one 

exception to this: when running the regression with just Farm Income, Available Land became 

barely statistically insignificant with a p-value of 0.106. Running the regression without 

Cropland Yield as a control again yielded similar results, with all variables statistically 

insignificant except for Available Land (p = 0.094). Available land still had a coefficient of 0.0. 

Interestingly, while Farm Income had a negative coefficient when New Turbines was the 

dependent variable, Farm Income has a positive coefficient when Total New Turbines is the 
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dependent variable. The lack of consistent directionality highlights Farm Income’s lack of 

statistical significance in this model and could suggest that this model may not be well-suited 

to reflect the real world.   

Table 9  

Regression Results: Total New Turbines, Farm Income Per Capita, Non-Farm Income Per 

Capita, and Unemployment Rate, 2004-2023, All Years, Weighted for Available Farmland in 

1987 

Variable Coefficient 
Robust 

Standard Error T-Value P-Value 
95% CI 

Lower 
95% CI 

Upper 

Farm Income Per Capita 0.353 0.259 1.370 0.175 -0.160 0.866 

Non-Farm Income Per Capita 0.115 0.190 0.610 0.544 -0.261 0.492 

Unemployment Rate -0.139 0.481 -0.290 0.773 -1.092 0.815 

Political Affiliation -12.502 8.705 -1.440 0.154 -29.777 4.772 

Cropland Yield 3.994 7.614 0.520 0.601 -11.116 19.105 

Prior Turbines -1.760 1.424 -1.240 0.219 -4.585 1.065 

Available Land 0.000 0.000 1.680 0.097 0.000 0.000 

Population 0.000 0.000 -0.440 0.663 0.000 0.000 

% White 63.890 47.112 1.360 0.178 -29.603 157.382 

% Hispanic -19.985 29.703 -0.670 0.503 -78.930 38.960 

% Female 31.301 112.911 0.280 0.782 -192.767 255.370 

% Retirement Age -19.006 53.078 -0.360 0.721 -124.337 86.325 

Year       

1996 0.415 0.308 1.350 0.181 -0.197 1.027 

1997 -1.074 0.639 -1.680 0.096 -2.342 0.194 

1998 -0.270 0.901 -0.300 0.765 -2.058 1.519 

1999 2.405 2.902 0.830 0.409 -3.353 8.164 

2000 -0.670 0.931 -0.720 0.473 -2.518 1.178 

2001 -0.549 1.076 -0.510 0.611 -2.684 1.585 

2002 0.417 1.586 0.260 0.793 -2.731 3.564 

2003 -0.177 1.406 -0.130 0.900 -2.968 2.614 

2004 -0.145 1.576 -0.090 0.927 -3.271 2.982 

2005 0.411 1.929 0.210 0.832 -3.417 4.238 

2006 0.125 1.716 0.070 0.942 -3.280 3.531 

2007 2.125 2.170 0.980 0.330 -2.182 6.432 

2008 10.125 3.131 3.230 0.002 3.911 16.338 

2009 4.468 2.728 1.640 0.105 -0.945 9.881 

2010 0.094 1.923 0.050 0.961 -3.722 3.910 
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2011 3.171 3.119 1.020 0.312 -3.018 9.360 

2012 3.887 2.856 1.360 0.177 -1.780 9.554 

2013 0.701 2.599 0.270 0.788 -4.456 5.859 

2014 4.022 3.168 1.270 0.207 -2.265 10.310 

2015 4.094 3.397 1.210 0.231 -2.647 10.836 

2016 3.421 2.988 1.140 0.255 -2.509 9.351 

2017 5.905 3.772 1.570 0.121 -1.580 13.390 

2018 5.787 4.427 1.310 0.194 -2.998 14.573 

2019 8.126 5.022 1.620 0.109 -1.841 18.093 

2020 6.773 4.265 1.590 0.116 -1.691 15.236 

2021 3.161 4.377 0.720 0.472 -5.525 11.847 

2022 2.598 4.273 0.610 0.545 -5.882 11.078 

2023 2.158 4.758 0.450 0.651 -7.284 11.600 

Constant -77.621 62.805 -1.240 0.219 -202.254 47.013 

R^2 (Between) 0.0409      

 
 My independent variables, Farm Income, Non-Farm Income, and Unemployment Rate 

remain statistically insignificant, and the model still has extremely low between-county 

explanatory power (R² = 0.0409). Interestingly, running the regression with Total New 

Turbines as the dependent variable while restricting for commissioning years from 2004 to 

2023 does not change the significance of Political Affiliation as it did when New Turbines was 

the dependent variable. Political Affiliation remains insignificant, but it does still have a 

negative coefficient implying the relationship that more votes for Democrats in presidential, 

gubernatorial, and senatorial elections leads to fewer turbines commissioned five years later. 

This remains true when each independent variable is regressed individually with the controls 

and when Cropland Yield is removed as a control.  

7.3 Discussion  

 In each of my regressions, Farm Income, Non-Farm Income, and Unemployment Rate 

were statistically insignificant, meaning that the economic indicators I chose do not increase or 

decrease the likelihood of new turbines being commissioned five years later. There was also 

not consistent directionality of the coefficients between regressions run with New Turbines as 
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the dependent variable and regressions run with Total New Turbines as the dependent variable. 

This would suggest that there is no relationship between the economic wellbeing of a county 

and whether or not wind development occurs there, perhaps because landowners, developers, 

or county officials do not take their current economic state or possible future economic benefits 

into consideration when they make their decisions. This contradicts the findings of previous 

qualitative studies that have found that support for wind energy is strongly related to 

socioeconomic factors and primarily due to local perception of increased employment and 

economic activities (Slattery et al. 2012, Mulvaney et al., 2013). However, Slattery et al. and 

Mulvaney et al. interviewed people in counties where wind development was either well 

underway or already completed, meaning that people responding to their surveys could be 

biased about what influenced their original decisions. Perhaps a landowner who accepted a 

turbine on her land only later recognized the economic benefits and now attributes her original 

decision to those benefits incorrectly.  

 The most interesting finding was the impact of Political Affiliation on New Turbines. 

When including all commissioning years in my regression, Political Affiliation was statistically 

insignificant, but when only including the years 2004-2023 Political Affiliation was 

statistically significant. If these results reflect reality, then perhaps political affiliation only 

became important after the first large wind farms were commissioned in 1999 as a “proof of 

concept.” It is possible that people were wary about wind turbines prior to 1999 because there 

had never been wind energy on a large scale in Iowa, but once people saw that it was possible 

they started to make their decision based on their political affiliation leading to a rise in the 

influence of political affiliation on wind farms commissioned in 2004 and onwards. The results 

of the regression indicated that 10% more votes cast for Democrats in the county led to a 5% 
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decrease in the likelihood that turbines will be commissioned in that county five years later. 

This finding is at odds with both my expectations that increased support for Democrats would 

lead to more turbines and with existing literature (Dorrell & Lee, 2020). This could underscore 

the complexity of energy politics at the local scale and suggest that factors such as land use 

preferences, cultural identity, or local political dynamics may diverge from national trends. My 

data is limited in that I was not able to find a way to capture local political affiliation–the 

election data I utilized was for presidential, gubernatorial, and senatorial elections, which are 

federal and state-level. Future researchers may want to utilize county-level elections as a better 

indicator of political affiliation when it comes to county issues, like the results of elections for 

County Commissioner or the Board of Supervisors. I recommend further research prior to 

reaching the conclusion that the relationship represented in this model reflects the political 

reality in Iowa counties.  

It is important to note that the R2 of all of my models was very low, meaning that only a 

small portion of the variability in New Turbines or Total New Turbines could be attributed to 

the independent variables or control variables that I chose. My data is limited by the fact that I 

chose to use county fixed effects to control for differences in transmission infrastructure, wind 

speed, land grade, and more, and it may be this decision that limits my model. If one were to 

expand on this research in the future, perhaps they would glean more insight by including 

transmission infrastructure location data or wind energy potential data as a control rather than 

my method of using county fixed effects. There may be better measures of county-level 

economic wellbeing such as GDP that would lead to a better model than my income and 

unemployment variables. There is also private company information, such developer strategies 

or guidelines, that I did not have access to that could have improved my model. Future research 
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could attempt to interview developers in order to account for variation in development 

approaches and goals.  

8. Conclusion  

This paper set out to explore whether a county’s economic attributes could predict 

future wind turbine development in Iowa. Using a comprehensive panel dataset spanning from 

1990 to 2023 and leveraging a two-way fixed effects regression approach, I investigated the 

impact of farm income, non-farm income, and unemployment rates—lagged by five years—on 

the likelihood and volume of wind turbine development in a given county. Contrary to the 

assumptions embedded in previous qualitative literature, my findings do not support the 

hypothesis that counties with weaker economic performance are more likely to experience 

wind energy development. Across all model specifications, my primary independent variables 

were statistically insignificant and lacked consistent directionality, suggesting that economic 

hardship or prosperity at the county level does not meaningfully shape turbine siting decisions. 

Interestingly, one of the most robust findings emerged around political affiliation. 

While political leanings had no significant effect in regressions including all years of turbine 

commissioning, they became statistically significant in models restricted to post-2004 

development—suggesting that once wind energy had been proven viable and profitable in 

Iowa, political identity may have played an increasing role in shaping public and governmental 

attitudes toward future projects. Notably, this relationship was negative: counties with higher 

Democratic vote shares were less likely to see new wind development. This result is surprising 

given the strong association between Democratic leadership and support for renewable energy 

at the national level.  

46 



 

In all cases, my models demonstrated very low between-county explanatory power 

(R²), indicating that even when statistically significant, my independent and control variables 

explained only a small fraction of the variation in wind turbine development. This points to the 

presence of unobserved factors—such as specific landowner decisions, developer strategies, or 

unmeasured physical attributes like grid interconnection costs—that may be more decisive in 

the siting process. 

Ultimately, while this paper does not find a clear economic pathway for predicting wind 

turbine development, it provides an empirical test of an intuitive hypothesis and highlights the 

need for more granular, site-specific data to understand the true determinants of wind energy 

expansion. Future research might benefit from incorporating physical geography data, 

transmission access metrics, or qualitative accounts of developer-landowner negotiations. As 

Iowa and other regions continue to pursue decarbonization goals, understanding what drives 

renewable energy siting—and where political and economic support converges or 

diverges—will remain critical to informed policymaking and community engagement. 
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Appendix A  

USWTDB Viewer  

 
Appendix A. Map of wind turbines in Iowa from the USWTDB viewer (U.S. Geological 
Survey, 2025).  
 

Appendix B  

Number of Turbines per Iowa County 

FIPS Code County 
Turbines Commissioned, 
1990-2023 

Turbines Decommissioned, 
1990-2023 

Turbines in 
Operation in 2023 

19001 Adair 528 0 528 

19141 O'Brien 318 0 318 

19195 Worth 305 0 305 

19069 Franklin 262 0 262 

19021 Buena Vista 260 0 260 

19081 Hancock 248 0 248 

19157 Poweshiek 240 0 240 

19151 Pocahontas 216 0 216 

19093 Ida 215 0 215 
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19109 Kossuth 195 0 195 

19131 Mitchell 195 0 195 

19147 Palo Alto 180 0 180 

19161 Sac 176 0 176 

19029 Cass 170 0 170 

19189 Winnebago 159 0 159 

19073 Greene 158 0 158 

19059 Dickinson 146 0 146 

19089 Howard 145 0 145 

19169 Story 141 3 138 

19009 Audubon 132 0 132 

19027 Carroll 132 0 132 

19079 Hamilton 132 0 132 

19003 Adams 112 0 112 

19035 Cherokee 110 0 110 

19187 Webster 107 0 107 

19155 Pottawattamie 103 0 103 

19075 Grundy 95 0 95 

19047 Crawford 93 0 93 

19123 Mahaska 84 0 84 

19127 Marshall 81 0 81 

19083 Hardin 79 0 79 

19015 Boone 77 0 77 

19095 Iowa 77 0 77 

19041 Clay 75 0 75 

19149 Plymouth 74 0 74 

19037 Chickasaw 66 0 66 

19143 Osceola 64 0 64 

19077 Guthrie 61 0 61 

19067 Floyd 51 0 51 

19121 Madison 51 0 51 

19197 Wright 49 0 49 

19173 Taylor 44 0 44 

19055 Delaware 40 0 40 

19175 Union 34 0 34 
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19033 Cerro Gordo 79 54 25 

19065 Fayette 16 0 16 

19025 Calhoun 8 0 8 

19171 Tama 8 0 8 

19007 Appanoose 3 0 3 

19017 Bremer 3 0 3 

19049 Dallas 3 0 3 

19153 Polk 3 0 3 

19031 Cedar 2 0 2 

19063 Emmet 2 0 2 

19019 Buchanan 1 0 1 

19087 Henry 1 0 1 

19113 Linn 1 0 1 

19191 Winneshiek 1 0 1 

 Total 6,411 57 6,354 

Appendix B. This table only includes the 58 Iowa counties where some wind turbine 
development has occurred.  
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