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Abstract

In the last five years, (2019-2023) there have been 10,704 accidents

at highway-rail grade crossings (HRGCs) in the United States, resulting

in 3,859 injuries and 1,233 fatalities. This paper seeks to address impact

of quiet zones, where trains are not allowed to blow their horns before

going through a crossing, on HRGC safety in the United States. Using

a two-way fixed effects model, we find evidence of quiet zones increasing

accident incidence and accident severity, in some instances at a level far

higher than believed by the Federal Railroad Administration.

JEL Classification: L92; L98; R41

Keywords: Accident, Railroad, Quiet Zone
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1 Introduction

Railroad shipping has been an engine of American industry since the 1800s when

the first transcontinental railroads were constructed. The need to transport

vast quantities of goods and people great distances only increased with the

expansion of the American economy throughout the following century. With

this steadily increasing demand came an expansion of the railroad system, often

in heavily populated areas with an abundance of highways. The result was the

creation of the approximately 204,000 existing highway-rail grade crossings in

the USA (USDOT, 2024). A highway-rail grade crossing (hereafter referred to

as HRGC) is where rail tracks cross a road at the same level (not a tunnel or

bridge for the road or tracks). Over the last 5 years (2019-2023), there have

been 10,704 accidents at these crossings, resulting in 3,859 injuries and 1,233

fatalities (USDOT, 2024). These accidents occurred across the country, with

certain major cities such as LA and Chicago being hot spots 1. The scale of

this issue warrants investigation into factors that could be impacting accident

incidence rates. This paper will look at the impact of quiet zone designation on

accident incidence rates at HRGCs.

Since the start of mandatory reporting requirements by railroads to the Fed-

eral Railroad Administration (FRA) in 1975, accidents and fatalities at crossings

have decreased substantially (see Appendix A figures 1 and 2) due to improved

oversight and safety measures implemented at crossings. The improvements

in safety are due in no small part to an improved ability to predict accident

incidence risk and accident severity risk at HRGCs. One step the FRA has

taken, beyond improving safety measures, is closing as many crossings as possi-

ble, either by making them no longer grade crossings, or by closing the highway

route. However, the number of accidents has leveled out in the last decade or

1The FRA has a visual aide to give an idea of the scale and distribution of accidents
visitable on their safety data website under the Highway-Rail Grade Crossing landing page.
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so indicating that there is still more work to be done in research of accidents at

HRGCs. Fatalities have trended in a similar fashion over the same time period.

Some have partially attributed the plateau and concerns over data showing a

modern increase to the growing number of “long-trains” 2 and the increasing

popularity of precision-schedule railroading (PSR), though the true impact of

“long-trains” and PSR has yet to be fully researched.

HRGCs may be outfitted with several different safety features to reduce the

chance of an accident occurring. These safety features fall under two types of

classifications, active safety measures (ASMs) and passive safety features. Ex-

amples of active safety measures are descending gates that block off the crossings

when a train is approaching, numerous types of lights meant to alert highway

drivers of a train’s approach, and bells that sound when a train is coming.

In contrast, passive safety features include stop signs, crossbucks or pavement

markings. After 2006, the FRA additionally mandated that all approaching

trains should sound their horns at least 15 seconds and no more than 20 sec-

onds before reaching a crossing (USDOT, 2025). In practice, train companies

had been implementing this for some time already, and its impact was already

well observed before the federal mandate was released. However, some localities

find this last safety feature to be quite cumbersome on the surrounding area.

A quiet zone or whistle ban (hereafter referred to as QZ) is a crossing or

group of crossings that is exempted from the mandate requiring trains to sound

their horn upon approach to a crossing. There are three types of QZs: 24hr QZs,

partial QZs, and Chicago Excused QZs3. Partial QZs restrict the sounding of

horns between certain times of day.

2“long trains” refers to trains whose total length is over 7,500 feet, or 1.42 miles. For more
information on the relevant research, refer to the FRA’s publicly available long train report.

3Parts of northeastern Illinois are exempt from the CFR part 222 mandate, see CFR part
222.3c
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Post-20034, QZs became regulated at the federal level. QZs established

before 2003 had the opportunity to be grandfathered into the new regulation

system. Public authorities such as townships or cities are the only entities with

the ability to establish QZs (USDOT, 2024). As of 9/24/2024, there are 5469

crossings with a 24hr, partial or Chicago Excused quiet zone (USDOT GCIS).

The large majority of these crossings are full 24hr QZs.

Since the implementation of a QZ removes a primary safety feature at

HRGCs, liberal implementation of QZs had been observed to heavily increase

accident incidence at crossings. This effect was so large that, in 1991, the

FRA intervened with local QZ administration in Florida with Emergency Or-

der No.15, mandating that trains blow their horns at all crossings. Following

the issue of Emergency Order No.15, the nighttime accident rate at affected

crossings decreased by 68.6%, back to pre-QZ levels (USDOT, 1995). The FRA

published a report in 1995 discussing the impact of QZ status on accident inci-

dence rates. In both the before and after case studies and national risk analysis,

QZ status was shown to significantly increase the accident incidence. Despite

the paper forgoing any discussion of the statistical significance of the findings,

the qualitative size of the difference in accident incidence at comparable cross-

ings, up to a 204.99% increase for QZs of a certain assessed risk level, makes

the findings compelling. Future studies by the FRA using a similar before and

after analytical structure and focused on a limited sample of crossings found no

significant difference in safety between QZ and non-QZ crossings (GAO, 2017).

It is likely due to the original findings that the modern criterion that must

be met to create a QZ is quite stringent. The actual requirements are extremely

long and can be accessed by viewing Appendix A or the USDOT Quiet Zone

4Although Congress passed a law mandating the sounding of horns at public grade crossings
in 1994, quiet zones existed throughout the 90s and early 2000s without FRA approval. The
FRA published the rule requiring trains sound their horns in December 2003, though it was not
implemented for another year to allow for local governments to prepare for its implementation.
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brochure (USDOT, 2013), but the most important requirement is that each pub-

lic highway-rail crossing in a QZ must have active warning devices comprising

of gates and flashing lights to be activated at intervals similar to that required

by train horn mandates.

Despite the strict requirements, over the last five years, there were 938 ac-

cidents at QZ crossings, resulting in 163 fatalities and 297 injuries. Thus, ac-

cidents at QZ crossings account for 8.8% of all accidents, 13.2% of fatalities,

and 8.7% of injuries occurring at accidents at all HRGCs in the last five years.

It is worthwhile then to do an econometric-focused investigation into the true

impact of QZ designation on safety at HRGCs.

In this paper, we will use a fixed effects panel model to test how being part

of QZ impacts the occurrence and severity of accidents at HRGCs. The data we

will use comes from FRA’s public safety data website’s HRGC accident reports

and from the FRA’s Grade Crossing Inventory System (GCIS). In the following

section we will present a brief introduction to the broad literature regarding

accidents and safety at HRGCs. Next, we will provide an introduction on the

data and data sources we use and their potential limitations. Then we will

describe our methodology and reasoning, and finally we will present our results

and conclusions.

2 Literature Review

QZ designation is widely recognized to constitute an increased risk of accident

incidence at HRGC. The foundational report on this area was published by the

FRA in 1995. They used a before and after case study analysis to quantify the

effect of being a QZ on HRGC safety, finding almost unilaterally that crossings

were less safe when they are QZs. However, this report is limited in that its

further analysis was based on a now antiquated model for accident and risk
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prediction at HRGCs, and there is no regression run.

More recently the FRA has done some analysis of the impact of QZ status on

HRGC safety, occurring in 2011 and 2013 (Marquese Lewis, 2013). This 2013

internal report uses paired t-tests to investigate whether accidence incidence

rates varies at QZ crossings before and after implementation of the QZ. In all

but one group of QZs, they find no significant evidence that accident incidence

rates increase after QZ implementation. However, the goal of this analysis was

not to directly investigate whether QZ implementation decreases HRGC safety,

but whether the implementation of QZs, in addition to the required SSMs and

or ASMs, still results in a decrease in safety. Thus, the methodology used does

not allow a distinction between a negative impact on safety due to the QZ and

a positive impact on safety from the addition of additional safety features to the

crossing. This 2013 analysis, and the previous analysis in 2011, were criticized

by a 2017 Government Accountability Office report for several reasons. First,

these analyses included only 203 and 359 crossings respectively, a far smaller

scale of analysis than that which we undergo. In addition, the FRA relied on

a before and after analysis, and as of the 2017 GAO report, did not plan on

changing their methodology. The GAO report criticizes this method for being

unable to control for other factors which may change during the sample period

(GAO, 2017). We implement a panel dataset to allow our model to account for

changes in crossing characteristics over time. This paper will improve upon past

and current FRA research by using modern econometric methodology to study

the same topic, as well as by adding a discussion of the impact of QZ status on

accident severity.

One recurring issue that is a source of increased risk at HRGCs, and on

railways in general, is the issue of trespassing. Ngamdung and daSilva (2020)

investigated how QZ designation impacted the rate of incidents occurring as a
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result of trespassing at HRGCs and along a railroads right of way (ROW). They

use ArcGIS to do a spatial analysis of trepass casualties and determine whether

they occurred within QZs. They found that QZs do not lead to a statistically

significant increase in the amount of trespass casualties. Despite this result, the

researchers noted that the small sample size of available trespass data limited

their findings. This analysis is broader than ours in that it incorporates data

from, and analyses the impact of QZs on, the entire railroad right of way, rather

than just at HRGCs. Our analysis seeks to hone in on HRGCs in and focus on

QZ’s impact on highway users rather than trespassers.

There is some study of the negative effects of train horns on social welfare

through property value decline. Cushing-Daniels and Murray (2005) evidence

that the existing FRA mandate to sound train horns may actually have a higher

social cost than benefit, especially from the point of view of the local residents.

They studied the trade offs between increased safety levels and decreased prop-

erty values due to the sounding of train horns. They came to the conclusion

that the local costs of quiet zones exceeded the locally derived benefits of train

horns being sounded.

In addition to research on train horns, Simons and El Jaouhari (2004) in-

vestigated how proximity to rail shipping lines affected property values or sur-

rounding homes using a hedonic price model. They find mixed results, but some

evidence indicating that proximity to rail shipping lines does have a statistically

significant and negative effect of property values for small homes. Their pro-

posed mechanism is the noise created by trains, primarily but not exclusively

through train horns. We aim to build on this area of research by providing a

more in-depth understanding of how QZs impact accident incidence and sever-

ity. By providing a more accurate understanding of the potentially negative

impacts of QZs, we will inform future studies regarding the economic costs and
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benefits of QZs.

The discussion of QZs is only a small and relatively unexplored part of the

literature surrounding HRGCs. There is a sound body of literature on how

different crossing characteristics, including safety measures and traffic volume,

affect the probability of an accident occurring. McCollister et al. (2007) use

a logistic regression to estimate the impact of different crossing traits on the

probability that an accident occurs. Their regression provided evidence to sup-

port the implementation of higher levels of safety measures at crossings and

the statistical significance of several variables on accident incidence. They also

found that several of the variables used in the FRA prediction model were not

statistically significant in their regression. These variables included highway

paving and number of tracks. They used their findings to build a model that,

at the time, performed better than the one implemented by the FRA. Yan et

al. (2010) used hierarchical tree-based regression to explore whether crossings

exclusively outfitted with passive safety measures benefit from having a stop

sign, finding that stop signs can be an effective measure to bolster safety at

crossbuck only crossings. The FRA has also conducted extensive study on risk

factors at HRGCs to inform their accident prediction model. Their model has

been revised over time, with the most recent report in 2021. This report pro-

vides strong evidence of the importance of several factors toward HRGC safety,

as well as presenting a new model for future projections. These studies provide

insight into the factors which we will choose to control for in our varying spec-

ifications in order to best identify the QZ effect. We will extend this research

by confirming the significance of some of these factors in a two-way fixed effects

model setting.

Several researchers have published papers on the impact of different safety

measures towards accident severity. Eluru et al. (2012) and Hao and Daniel
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(2016), using ordered probit and logit models with FRA data, found that several

important measured factors could be seen to impact accident severity, including

driver’s age, the time of the accident, the presence of snow or rain, the vehi-

cle’s role in the crash, and motorist action. In another publication, Hao and

Daniel (2016) studied the impact of inclement weather on accidents at HRGCs.

They find that higher train and highway speed limits are associated with an in-

creased rate of accidents, and that accidents are more severe at crossings lacking

pavement and lighting. Hao and Kamga (2017) present related evidence that

accidents at rural crossings are more likely to result in more severe injuries.

Ma et al. (2018) show that riskier driving behavior and time of day are also

important predictors of accident severity. We will build on research in this area

by providing insight into how QZ designation affects accident severity.

Also comprehensively researched is how predictive models can be used to

shed light on the most risky crossings in order to prioritize them for safety

upgrades. Many such models have been developed by researchers and state

DOTs (McCollister et al. (2007), Austin and Carson (2002), Saccomanno et al.

(2004), Oh et al. (2006), Lu and Tolliver (2016), Khan et al. (2018), Pasha et

al. (2020)) studied how accurately eleven existing models for accident and haz-

ard prediction were able to predict hazard levels for 589 HRGCs in Florida for

the year of 2017. They proposed a new model, a modified version of the Texas

Priority Index Formula, to be used in Florida in the future. Their findings also

show that the USDOT accident prediction formula at the time performed poorly

against their sample relative to the other selected models. These articles do not

discuss the impact of QZs and how they may best be factored into accident

prediction models. Thus, our work will add to the literature by informing re-

searchers about the size and direction of the effect of QZs on accident incidence

rates.
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Research has also been conducted on the impact of driver behavior on HRGC

accidents. Yeh and Multer (2008) cite a 2004 report by the office of the Inspector

General saying that 94% of accidents and 87% of fatalities were caused by risky

driving behavior or poor judgement. They describe numerous reasons that a

driver may make a poor decision at a HRGC, such as not expecting to encounter

a train at the crossings because of prior experience around the crossing, not

looking for a train, or simply generally dangerous driving behavior. This trend

makes sense, especially at passively controlled crossings. We will be focusing

more on the total impact of QZ designation on accident incidence, but we believe

that the impact of QZ designation on driver behavior is another very worthy

area of research.

Rapoza et al. (1999) on behalf of the USDOT investigate the factors that

impact the effectiveness of train horns as a warning device, finding that factors

such as train speed, highway speed, distance of train from the crossing, distance

of the highway vehicle from the crossing, type of grade crossing warning device,

the type of train horn and more impact effectiveness. Dolan and Rainey (2005)

build on this analysis and their results suggest that the implementation of a

lower-limit to the signal-to-noise ratio would improve the detection of train horns

at HRGCs. Some researchers have gone beyond the existing arsenal of safety

measures to investigate alternative options for increasing safety at crossings.

In his dissertation, Landry (2016) discusses the potential for use of in vehicle

auditory warnings to improve safety of HRGC with only passive protection

measures. The implementation of this type of safety measure would reduce the

need for train horns, while also bypassing geographic factors and background

noise. In addition, in a possible near future where autonomously driving vehicles

are widespread, new approaches to addressing highway safety at HRGCs will

need to be addressed.
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3 Theoretical Framework

It is already generally accepted that QZs have a detrimental impact on HRGC

safety (hence the strict criterion to be met to become a QZ). Though this paper

does not seek to address the mechanisms through which QZs have this impact,

it is important to understand the proposed reasons for which QZs are believed

to decrease HRGC safety. First, at crossings which themselves have no active

safety measures, train horns may be the only active indication of an approaching

train. According to Yeh and Multer (2008), risky driving behavior is the primary

cause of accidents at HRGCs. While no amount of safety measures will ever be

able to fully minimize the probability of risky driving behavior, a lack of active

safety measures would certainly increase the probability of drivers not noticing

an incoming train. At these crossings, the train horn serves as the only direct

indicator for drivers of an incoming train.

In practice, however, public crossings in QZs are required to be equipped

with active safety measures themselves. The mechanism through which a lack

of a train horn being sounded impacts accident rates at these crossings is less

clear, as drivers should be warned by the active safety measures at the crossing.

One possible mechanism goes back to Yeh and Multer’s (2008) conclusions on

risky driving behavior. Drivers who are very familiar with crossings, potentially

even being stopped at crossings equipped with active safety measures for several

minutes waiting for a train to arrive and pass, may ignore the active safety mea-

sures. Examples of this type of behavior include going around gates or driving

through a crossing despite bells and lights being activated. A crossing’s safety

measures do not give a clear indication of how soon a train may be arriving,

and a driver may be tempted to believe that the crossing’s safety measures are

malfunctioning. In contrast, drivers know without a doubt that a train horn is

indicative of an imminently arriving train. Our proposed mechanism through
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which the implementation of QZs causes increased risk at HRGCs is the elimi-

nation of the only safety measure that can be directly associated, in every case,

with an incoming train.

While FRA studies provide evidence that QZs do not increase risk at HRGCs

when taking into account the additional safety measures being implemented,

they seem to tacitly acknowledge that QZs increase risk in some settings, such

as adjusting risk at QZs upwards by 68% in the Quiet Zone Risk Index (QZRI)5.

They seek to ensure that the average level of safety at crossings within a QZ, ad-

justed with the QZRI, is lower than the Nationwide Significant Risk Threshhold

(NSRT). In other words, if, on average, the crossings within a QZ are judged

to be safer than the average HRGC, then a possible increase in risk is consid-

ered to be acceptable. The FRA understands that QZ crossings are safer with

horns sounded, but has judged the benefits of QZs to be worth the increase in

risk (with stringent conditions for QZ adoption). With our new approach, we

seek to add to the literature in such a way as to improve understanding of the

degree of accident risk increase and accident severity increase to better inform

policymaking in the future.

4 Data

In this paper, we will make use of FRA’s HRGC accident data6 and Grade

Crossing Inventory System (GCIS)7. Both of the data sources are created and

maintained by the Federal Railroad Administration. All data is publicly avail-

able. The HRGC accident data contains information on specific accidents, such

as date, time of day, casualty breakdown, and the crossing ID number. GCIS

contains several hundred fields of information on each crossing. Crossing infor-

5See Appendix A for definition of NSRT and QZRI
6This data is part of mandatory reporting by railroads on form 6180.57
7This data is reported through Form 6180.71.
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mation will be taken from the GCIS and merged with HRGC accident data.

These data are the primary resource used by investigators looking at HRGC

safety in the United States. The HRGC data is robust, going back until 1975.

The current GCIS contains all the information that the FRA has about the

current state of crossings, but due to the large number of crossings and fields

of data on the form, much of the data is incomplete. Farooq et al. (2023)

compared a limited sample of GCIS data with verified crossing conditions in

its use in accident prediction models. They found that there were statistically

significant differences in the results of the accident prediction models and haz-

ard prediction models when using the GCIS data versus the verified data. This

study highlights the weakness of this dataset. The result is that our analysis

will need to find a balance in choosing important control variables for which

data is relatively complete and excluding crossings which do not have data for

the variables we need. We exclude from our analysis a number of different vari-

ables used by other researchers, such as crossing surface type, crossing angle,

the number of tracks, and the highway speed limit. Inclusion of these measures,

even individually, heavily limits our sample availability.

While this dataset has its limitations, there is no other dataset with data

spanning as wide of a region while also being able to satisfy our desire to compile

a panel dataset.

Throughout our analysisn we make the assumption that data missingness

in the GCIS is random, and that excluding observations for data missingness

will not bias our results. If data missingness and inaccuracy is randomly dis-

tributed, it will have no bias on our results. However, in order to minimize the

impact of missing data, we selectively choose our control variables to maximize

explanatory power and minimize data missingness.

The important variables we make use of in our analysis are described in
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Appendix C figure 3. All of these variables are very commonly used in accident

prediction formulae. Average annual daily traffic is a continuous measure of

the amount of highway traffic that passes through a crossing on an average

day. A limitation of this variable is that it is not updated very frequently. In

some states, at 90% of crossings, AADT was most recently reported before 2000.

Despite this, it is still an important indicator and is used in the calculation of an

“exposure factor”8 utilized by many other researchers in their models. As seen

in the summary statistics table, the maximum value and standard deviation of

AADT are quite high. We address this by including specifications that exclude

the top 1% of values for AADT and other control variables. On the other side of

exposure factor is the number of trains that use the track at the crossing. There

is a column in the dataset measuring the number of weekly trains. However, the

majority of crossings are missing data for this variable. Therefore, we choose

to use the Daythru and NghtThru variables which are a continuous measure

of the number of daytime and nighttime through trains. This data is far more

complete and is a statistically significant predictor of accidents in a variety of

specifications. One limitation of these variables is that they do not include trains

that pass through a crossing that are operated by non-FRA regulated entities,

such as regional light rail systems. Maximum speed is a continuous variable

that measures the maximum speed at which a train is allowed to go through

a highway grade crossing at. WdCode is a categorical variable that shows the

highest level of safety device that is present at the crossing, with higher values

indicating higher levels of safety measures. We also include a variable called

Road at crossing code in the GCIS. This variable is a binary variable indicating

whether a crossing lies in a rural or urban area. This variable is never significant

in any models controlling for crossing fixed effects (as this variable very rarely

8Exposure factor is a function of both the number of trains and the number of cars going
through a crossing within a given time period.
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changes for individual crossings) but is always significant in models controlling

for larger scale fixed effects.

We choose to use a fixed effects model to take advantage of our ability to

compile a panel dataset. In order to compile the dataset necessary for this

specification, we first collected accident data from 2014-2023. The yearly acci-

dent data is readily available through the FRA’s public safety data website and

presents data on each accident. In order to create crossing level observations,

datasets are collapsed by CrossingID to make the transition from incident level

to entity level observations, thus allowing it to be merged with entity level con-

trol variables. Prior to collapsing the data, specific identifier variables for fatal

accidents, accidents with injuries, and accidents with casualties are generated,

and these variables are included in the collapse to allow for an indication of acci-

dent severity post collapse. The resulting datasets contain the CrossingID, Ac-

cident, FatalAccident, InjuryAccident, and CasualtyAccident variables. Thus,

there are no actual fatality, injury, or casualty counts from the accidents that

do occur at a given crossing in a given year. These accident data collapsed by

crossing are then saved for each individual year.

We then move to the management of the data on HRGC characteristics, or

the Grade Crossing Inventory System (GCIS). The current GCIS is a dataset

containing the most recently reported data on the crossing characteristics of

every crossing in the US. There is also the historical GCIS, through which every

past entry in the GCIS can be found. However, while the historical GCIS

contains all entries into the GCIS, it is difficult to find the actual state of the

GCIS at any given point in time using that dataset. In contrast, the FRA

maintains internal snapshots of the GCIS at the end of every calendar year in

our sample. We were given direct access to these datasets by Lindsay Peters-

Dawson at the FRA, but these datasets should also be available upon submission
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of a FOIA request.

This version of the GCIS data is slightly different, both in content and form,

than that which is publicly available on the FRA’s public safety data website. In

particular, several variables that we needed to be in integer form for continuous

control variables needed to be destringed for use in the dataset. We also had

to contend with different variable naming from the publicly available dataset.

Following this, we dropped all crossings on private land (which face different

rules) and all crossings closed to highway transport. Finally, we merge our

yearly snapshots of the GCIS with the accident dataset from the same year.

Our method results in a panel dataset spanning ten years with over 1.3 million

individual observations and regressions that test across 130,000 public open

crossings.

We decided to match 2015 accident data, occurring throughout 2015, with

the snapshot of GCIS data from the end of 2015, instead of that from the end

of 2014. This means that, if a crossing becomes a QZ near the end of 2014, but

an accident occurred at the crossing before this update, that the accident would

still be seen as occurring at a crossing with a QZ designation. Alternatively,

we could have matched the previous year’s snapshot with 2015’s accident data,

but this would have resulted in the opposite problem, where midyear changes

in QZ designation would cause attribution of accidents occurring afterwards to

crossings that are QZs but are not yet coded as such. We chose the first method

since we believe accidents occurring in a close period before the adoption of QZ

are likely to stymie or delay efforts to create a QZ, whereas accidents occurring

after QZ designation would have no effect on the initial adoption. Since our

chosen method could potentially attribute accidents that did not occur at active

QZs to active QZs, we also tested the second method, and a third more nuanced

matching method, and present their results in our robustness checks section.

18



Appendix C figure 4 shows the summary statistics for the dataset used in

this specification. Figure 5 shows how the number of HRGCs designated as

quiet zones changes throughout the sample.

5 Methodological Framework

Previous research on QZ safety from the FRA utilized a before and after frame-

work. Researchers compared the number of accidents that occurred at crossings

prior to and after the implementation of a QZ. This method has several short-

comings, namely that it fails to fully isolate the effect of QZ implementation

since QZ implementation is almost always accompanied by the installation of

new safety features or other changes to crossing characteristics. Since the FRA’s

goal was not to isolate the QZ effect, but rather to see the overall impact of QZ

implementation, this was not an issue. However, the FRA’s strategy also fails

to account for changes in overall accident incidence rates over time, and the

sample is conducted across a very narrow sample of crossings. In our analysis,

we wanted to do several things differently. First, we wanted to isolate the effect

of QZ implementation to gain a better idea of the qualitative significance of QZs

on safety at HRGCs. Second, we sought to compile a larger sample, both in

terms of crossings included in the analysis and the period of analysis, to increase

our power to identify the effects of our different variables.

In pursuit of these goals, and due to the availability of year by year crossing

level data, we decided to employ a two-way fixed effects model over our sample

period from 2014-2023. The availability of a panel dataset would have also al-

lowed us to use either a random effects of mixed effects model instead. However,

random effects and mixed effects models would not be suitable in this situation

as we are trying to use entity specific effects to control for unobserved charac-

teristics that are correlated with our other independent variables. As such, we
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settled on a fixed effects model. Regional fixed effects, such as county level fixed

effects, can control for unobserved geographic factors, and our preferred model

controlling for entity specific fixed effects enabled us to control for unobserved

crossing characteristics that do not regularly change for individual crossings.

This model helps control for variables such as crossing angle and number of

tracks as these variables are unlikely to change at individual crossings during

our sample period. We were able to control for different levels of fixed effects, in-

cluding state level fixed effects, county level fixed effects, and individual crossing

fixed effects. Our basic model is as follows:

Yit = β0 + β1Xit + λit + τi + αt + vit

Where:

Yit = Accident incidence rates

β0 = The Y intercept

Xit = Quiet zone designation (binary variable equaling zero if a crossing is

not a quiet zone and one if a crossing is any of the three types of quiet zone)

β1 = The coefficient associated with quiet zone designation

λit = A vector of control variables

τi = Year fixed effects

αt = Entity fixed effects

vit = Error term

This model is adjusted in different specifications. In our basic model, QZ

status is a binary variable, but almost all of the variation in QZ designation over

the sample period results from full QZs. Thus, we tried a variety of different

methods to isolate these crossings, including treating QZ designation as a cate-

gorical variable with values ranging from 0-3, thus allowing different coefficients

to be attached to different types of QZ. We make further adjustments to the
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QZ variable that are explained throughout the results and robustness checks

sections.

The primary advantage of this model as opposed to those employed by the

FRA in the past is that we are able distinguish between the effect of QZ imple-

mentation and the effects on safety due to changes in other crossing character-

istics, namely improved safety measures. This capability allowed us to quantify

the effect of QZ implementation on safety, all else held equal. We were also able

to directly compare the effect of QZ implementation to the effects of improved

safety measures. A second advantage of this model is that it is easily extended

to look at the impacts of other types of crossing characteristics on safety at

HRGCs. The biggest weakness of our approach is its reliance on FRA GCIS

data which is often incomplete. We were forced to omit several potential control

variables from our regressions due to high levels of data missingness. If, in the

future, this dataset becomes more complete, it would allow for further analysis

of the effects of more HRGC characteristics on HRGC safety.

6 Results

Appendix D figure 7 displays our main results from the fixed effects model. One

asterisk represents significance at p = 0.05, two asterisks represents significance

at p = 0.01, and three asterisks represents significance at p = 0.001. Each of

our different measures for QZ designation are highly statistically significant in

the base model using year and crossing fixed effects. In addition, the coefficient

on QZ designation, ranges from 0.0152 to 0.0157 in columns 1-3. The mean

for the accident variable is 0.012, meaning that the coefficient on QZ desig-

nation represents between 126-128% increase in accident incidence rates. The

coefficient in column 4, which uses county fixed effects instead of crossing fixed

effects, is smaller, but still accounts for a greater than 100% increase in accident
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incidence rates. 9 The majority of our included controls are also statistically

significant predictors of accident severity, with the exception of NghtThru. This

could be due to the very high correlation between the DayThru and NghtThru

variables (0.8659). This same idea is cited by McCollister et al. (2007), though

in their case the number of night time trains was significant and the number of

day trains was insignificant. In addition, running the same regressions without

DayThru yields a positive and significant coefficient on NghtThru. In addition

to statistical significance, we find that the direction of the relationship between

accident incidence and our chosen controls matches that supposed by accident

prediction formulae used by other researchers (McCollister et all, 2015) (Austin

and Carson, 2002).

Although not in the table, each column in Main Results table additionally

controls for WdCode. These results were not provided in the table as there are

nine different categories which would have resulted in eight additional rows in

the table. The base value in our regression is code 1: No signs or signals. In

our chosen specification of column 4, Codes 3 and 4 (crossbucks and stop signs

respectively) are statistically significant at 1% with a positive sign. Additionally,

in almost every specification, codes 8 and 9 (All other gates and Four Quad

Gates respectively) are statistically significant at 1% with a negative sign. The

size of the negative coefficient associated with code 8 is -0.0152498, a magnitude

very similar to that of the estimated effect of full QZs. These results provide

support for the FRA’s emphasis on barrier gates and active safety measures for

improving HRGC safety, as well as confirming previous research on the impact

of different types of safety measures.

Appendix D figure 8, shows the results of our base severity regressions. In

9The meaning of the five different variables describing QZ designation is as follows:
WhistleBanCodeBinary is 1 if a crossing is in any type of QZ and 0 otherwise, Whistle-
BanOne is 1 if a crossing is in full 24 hour QZ and 0 otherwise, WhistleBanCode is 1 if a
crossing is in a full 24 hour QZ, 2 if a crossing is in a partial QZ, and 3 if a crossing is in a
Chicago Excused QZ
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these regressions, we substitute the Accident variable for the FatalAccident

variable, a measure of the number of accidents in which at least one fatality

occurred. We can see that the coefficients on the various different measures of

QZ designation range from 0.00536 to 0.00549 for columns 1-3. The mean of

the FatalAccident variable is 0.0012, meaning that these results imply that QZ

designation is increasing fatal accident incidence rates by close to 500% of the

mean. In contrast to our overall accident regressions, we see a lower level of

overall statistical significance among our control variables in our models con-

trolling for crossing fixed effects. However, NghtThru is statistically significant

in columns 1-3 before the addition of clustered errors. This trend may have

arisen due to a higher likelihood of more severe accidents at night time when

visibility is decreased. This would support Hao and Daniels’ (2016) conclusions

on certain factors that affect accident severity at HRGCs.

A large portion of this increase could be attributed to a general increase

in the accident incidence rate. We ran the same regressions but while also

controlling for the overall accident rate. Appendix D figure 9 shows the output of

these regressions. The three regressions which use crossing specific fixed effects

have coefficients on their various QZ variables ranging from 0.00371 to 0.00385.

Thus, even when controlling for accident incidence rates, QZ designation would

lead to an over 300% increase in the probability that a crossing experiences

a fatal accident. This result implies that QZs heavily increase the severity of

accidents that occur at crossings within them.

In both the tables concerning accident severity, WdCode code 8 remains

statistically significant with a negative sign in almost every regression, at a

level between 30-40% of the magnitude of the positive effect on QZ designation.

In comparison to the ratio of coefficients on QZ and WdCode 8 in the regression

on accidents as a whole, this means that while higher levels of safety measures
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may be thought to offset the increase in accident incidence rates due to QZ

implementation, they do not offset the increase in accident severity.

Finally, we test how weighting our regressions by AADT impacts our esti-

mates. Since our preferred regression controls for crossing level fixed effects,

we cannot use population weighting. As a substitute, we choose AADT as it is

directly representative of a crossings usage rate by the surrounding population.

The biggest issue with this method is with the AADT variable itself, as the age

of the AADT estimate is over 10 years for many crossings. AADT weighting

reduces both the estimated effect of QZ designation on accident rates and the

estimated effect of QZ designation on fatal accident rates (controlling for acci-

dent rates) by about 50%, suggesting large results are partially driven by high

traffic crossings.
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7 Robustness Checks

This section will cover alternative specifications we used to check the robust-

ness of the results from our main model. The most important check we do is

compile an alternative dataset based on the second merging method mentioned

in the data section. Our primary dataset merges 2015 accident data, occurring

throughout 2015, with a snapshot of the GCIS at the end of 2015. This GCIS

snapshot contains the most recent entry into the GCIS for each crossing as of

the 2015. This method has one large problem. If a crossing becomes a QZ in

2015, but an accident occurred in the same year before the crossing became a

QZ, the accident will be mistakenly attributed to a QZ crossing. Given that

more crossings are becoming QZs than stop being QZs throughout or sample

period, this will bias our estimates up.

In order to address this issue, we use an alternative method to compile our

sample. Instead of matching 2015 accident data with the GCIS snapshot from

the end of 2015, we match 2015 accident data with the GCIS snapshot from

the end of 2014. Using this method results in the opposite problem as the first

method. If a crossing becomes a QZ in the middle of the year, any accident

occurring after a crossing becomes a QZ will be mistakenly coded as having

occurred at a non-QZ crossing. Given that more crossings are becoming QZs

than stop being QZs throughout or sample period, estimates from this method

will be biased down. It is also notable that, since 2024 accident data is not yet

fully completed as of the writing of this paper, this dataset only contains 9 years

of data (2015-2023 accidents matched with 2014-2022 GCIS).

We use the same two-way fixed effects methodology as in our main method-

ology. The results are presented in Appendix E figure 10. The substantive and

statistical significance of the coefficients on QZ designation are both diminished

from the main regressions. Coefficients ranging from 0.00612-0.00653 represent
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effects around 40% of the estimated effects from the primary dataset. These

effects are still statistically significant in columns 1-3, but become insignificant

after the inclusion of clustered standard errors. While these estimates are signif-

icantly less than those from our primary dataset, the fact that these estimates

are likely smaller than the true effect gives us a high level confidence of a posi-

tive true effect of QZ designation on accident incidence rates, the true level of

which likely lies somewhere between the estimates of the two models.

We also tested our severity regressions on this alternative dataset. The re-

sults of these regressions are seen in Appendix E figure 11. While the effect size

in the main regressions shrunk by around 60% and retained statistical signifi-

cance, the estimates in the severity regressions shrunk in magnitude by as much

to 98% and flipped signs. The only specification which for which the estimates

remained positive and statistically significant was the specification controlling

for county specific fixed effects rather than crossing specific fixed effects. The

specifications controlling for Accident, seen in Appendix E figure 12 provide

similar results.

These results decrease our overall level of confidence in our findings regarding

the impact of QZ designation on accident severity. However, the fact that we

still find significant effects of QZ implementation on accident rates in this model,

despite its structure, support the idea that QZs increase accident rates.

We also used a third matching method to test our results (Alternative Sample

2). In this method, we match accidents occurring from July 1st of 2014 to June

30th of 2015 to the GCIS snapshot from the end of 2014. In contrast to both

previous matching methods, in this method the date issue is creating bias in

both directions. In addition, this method ensures that the farthest accident

observation from the date of the GCIS entry is 6 months, as opposed to a

whole year in the first two methods. Similar to the first alternative dataset, this
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sample has only 9 whole years of data (omitting the first and final 6 months of

the main dataset). The results from this method are very similar, in statistical

significance and substantive magnitude, to those from our base regression (see

Appendix E Figure 13). Notably, column 4 of figure 14, the regression model

equivalent to that in Figure 12, gives a coefficient on 24 hour QZs of 0.485 ( 4X

the mean number of fatal accidents) with a t-value of 2.42. However, unlike our

base regression, where the coefficient on WdCode = 8 represented an around

30% offset relative to the coefficient on 24 hour QZs, the coefficient on WdCode

= 8 in this regression in not statistically significant. This result bolsters our

confidence that QZ implementation is associated with an increase in accident

severity rates. It also provides further support for the conclusion that ASMs

and SSMs installed as a precondition for QZ implementation are less effective

at mitigating increases in accident severity than they are at mitigating overall

accident incidence rates.

Between the three data set merging methods we used, our chosen method

which is expected to bias result slightly up and the method we expect to be the

most neutral in terms of bias, are very similar. Both of these datasets lead to

similar conclusions with respect to the impact of QZ implementation on accident

incidence and accident severity rates.

Next, we decided to run an event study (Appendix E figure 15) to test the

parallel trends assumption. We find no significant pre-trend from 5-2 years

before QZ implementation. However, there is a significant jump in accident

rates from 2-1 years before QZ implementation, a fact which is difficult to explain

given the structure of our study. It is unlikely that drivers change their behavior

simply due to the knowledge that a crossing will be a QZ in the future. The

dataset used to compile this event study graph was the same utilized in a results

section, that being that if a crossing becomes a QZ anytime during the year,
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it is represented as a QZ for the entire year. Thus, it is not possible that this

rise is due to some crossings actually having QZs implemented in year before

the dataset has recorded. The event study looks very similar when using the

2nd alternative dataset. Despite this inexplicable trend, the absence of any

sustained pre-trend lends some evidence to the parallel trends assumption.

For further robustness checks, we also decided to check how narrowing our

experimental group would effect the output of the regressions. Since estimated

effects of partial QZs (WhistleBanCode = 2) are not significantly different from

for our base regressions, we wanted to test how including partial QZs within

the control group would effect the model. In this specification, the independent

variable in question is a binary variable equal to 1 if a crossing is within either

a full QZ or Chicago excused QZ and 0 otherwise. As expected, given the

small number of partial QZs relative to full QZs, the results of this test provide

estimates very similar in substantive size and statistical significance as our main

regressions on both accident and fatal accident incidence rates.

Next, we narrowed our sample by restricting the WdCode to only that

greater than or equal to 5. This method eliminates all crossings with only pas-

sive safety measures from the control group. Despite the sample size shrinking

to just over 700,000 (around 77,000 crossings), estimates on QZ implementa-

tion remain substantively similar and statistically significant at 1%. However,

the magnitude of the coefficients on higher levels of safety measures increase

significantly (by around 100% for WdCodes 8 and 9). Even when further re-

stricting the sample to those crossings with WdCode greater than or equal to 8

(effectively restricting the sample to exclude any crossings without descending

gates), the estimates remain virtually unchanged and statistically significant at

1% (N=510000).

Finally, we remove from our sample all crossings that are designated as being
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in a QZ through the entire 10 year sample. We do this to address the concern

that including these observations will contaminate our control and experimental

groups. To accomplish this, we generated an alternative experimental variable.

Where the full dataset contains crossings coded as QZs that are QZs through

the entire sample, the new variable equals 1 for any crossing that becomes a

full QZ during the sample, and 0 otherwise. We then use this variable in our

base regression. The resulting estimate is statistically significant at 1% and 20%

larger (0.0181) in magnitude than the estimate from column 1 of figure 7. This

strategy also increases the magnitude of the estimates in the regressions on fatal

accidents. This same trend is present in the third matching method dataset and

across nearly every specification.

8 Discussion

Our results provide several avenues for discussion with previous research under-

taken by the FRA and academics on factors influencing accident incidence and

severity at HRGCs.

First, our results generally affirm several relationships observed in previous

research on HRGC accidents. Previous literature relies heavily on exposure

factor, a function of the number of cars going through a crossing (in our dataset

as AADT) and the number of trains going through a crossing (NghtThru and

DayThru). Higher values of exposure factor are taken to indicate higher accident

incidence risk. Both AADT and the number of trains going through a crossings

are seen to be statistically significant, or approaching statistical significance,

with positive coefficients in most specifications. Although certain specifications

depart from the norm, every model that utilizes county-fixed effects affirms

this relationship. We also find evidence supporting Hao and Daniel’s (2016)

conclusion that higher speed limits for trains increase accident incidence rates.
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Second, we find strong evidence supporting the emphasis of the FRA on

gate installation to reduce the risk of injury incidence in HRGCs. Codes 8 and

9 (All Other gates and Four quad barrier gates respectively) are consistently

statistically significant with negative coefficients. In some cases, the negative

coefficient associated with either gate code is of similar magnitude to that of

the positive coefficient on QZ designation. If the FRA maintains the goal of

ensuring that QZ crossings are no more unsafe than the average HRGC (using

the NSRT), then these findings support the idea that installation of higher-

level active safety measures can offset the increased risk of accidents resulting

from being in a QZ. Furthermore, this finding makes sense given that the FRAs

own reports find that QZ implementation, after accounting for additional safety

features, does not increase accident incidence rates (Marquese Lewis, 2013).

Finally, our panel model produces convincing evidence that the FRA’s de-

cision to focus on a before-and-after analytical model using a limited number

of crossing may be concealing the true impact of QZs on HRGC safety. Our

fixed effects model provides strong evidence that QZs increase accident inci-

dence rates of crossings as well as some evidence that QZs increase accident

severity at affected crossings. The coefficients on our different measures of QZ

designation are not only highly statistically significant but are extremely sub-

stantively significant. Our panel model suggests that QZ designation may be

increasing accident incidence rates for affected crossings by 120% of mean acci-

dent rates. This value is close to double the rate at which the FRA adjusts risk

within the QZRI. Furthermore, these results are robust to our various different

specifications. We also find evidence that QZs may contribute to an increased

incidence of severe accidents. This increase in the number severe accidents is

not simply because of a general increase in accident rates, but because of an

increased probability that a given accident will be severe in an accident at a
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QZ crossing. Despite our findings that improved safety features may be able to

offset the increase in accident incidence rates after QZ implementation, we find

that they are insufficient to mitigate higher accident severity rates.

Ultimately though, any serious discussion focusing on QZ policy must weigh

both the costs and benefits of quiet zones. While our research provides strong

evidence that previous studies have underestimated the safety risks associated

with QZs, the economic benefits—such as property value preservation and noise

reduction—may still justify their implementation in certain cases. Future re-

search should focus on quantifying these trade-offs more precisely, particularly

through cost-benefit analyses that compare the financial savings of QZs to the

potential social costs of increased accident rates. Our findings suggest that poli-

cymakers should carefully consider whether current safety requirements for QZs

are sufficient or whether additional risk mitigation strategies, such as enhanced

active warning systems or taking away QZ status from certain crossings, should

be mandated. By providing a more accurate assessment of QZ risks, we hope

to contribute to a more informed policy discussion on costs of QZs.
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10 Appendix A

Figure 1: Total Highway-Rail Crossing Accidents. Data from FRA form 57

Figure 2: Total Highway-Rail Crossing Fatalities. Data from FRA form 57
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11 Appendix B

Requirements for Quiet Zone creation:

- Each public highway-rail crossing in a QZ must have active warning devices

comprising of gates and flashing lights to be activated at intervals similar to that

required by train horn mandates.

- All crossings must be equipped with an advance warning sign that warns

drivers that crossing is in a QZ. There are no signage requirements for non-QZ

crossings.

- All pedestrian crossings must be equipped with a bell . In addition to these

basic requirements, public authorities must also show one of the following:

- The Quiet Zone Risk Index (QZRI) is less than or equal to the Nationwide

Significant Risk Threshold10 (NSRT)11 before or after implementation of sup-

plementary safety measures (SSMs) or alternative safety measures (ASMs).The

current NSRT is 15,488 (Federal Register).

- The Quiet Zone Risk Index (QZRI) is less than or equal to the Risk Index

With Horns (RIWH)12 with additional safety measures such as SSMs or ASMs.

The QZRI uses the same risk formula, but multiplies risk by 1.668 to account

for increased risk without horns being sounded.

- Install SSMs13 at every public highway-rail crossing It is notable that the

accident prediction formula currently implemented in calculation of risk indices

uses the accident history of a crossing for the last five years (US Government

Publishing Office, 2025).

10Risk Index is the predicted cost to society of the casualties expected to occur at the
predicted accidents at a crossing. Please see Appendix D to CFR part 222 (US Government
Publishing Office, 2025) for more information on FRA risk indices.

11These are two models for risk maintained by the USDOT. The NSRT is the average risk
index for all crossings equipped with flashing lights and gates where horns are sounded.

12The RIWH is a measure of the average risk index of crossings in the proposed QZ if horns
are still sounded

13An example of an SSM is a wayside horn. Wayside horns are installed at the HRGC and
are sounded instead of train horns in quiet zones. Wayside horns are viewed by the FRA as
a 1-1 replacement of train horns.

37



12 Appendix C

Figure 3: This table presents variable descriptions. WdCode has nine different categories

defined as such:

9 - Four Quad (full barrier) Gates

8 - All other Gates

7 - Flashing lights

6 - Highway signals, wigwags, bells, other activated

5 - Special Active Warning Devices

4 - Stop signs

3 - Crossbucks

2 - Other signs or signals

1 - No signs or signals
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Figure 4: Summary Statistics

Figure 5: Shows the number of crossings within quiet zones in our sample over the sample

years (2014-2023)
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Figure 6: Correlation Matrix (excluding WdCode)

13 Appendix D

Figure 7: Main Results
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Figure 8: Severity Regression Results
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Figure 9: Fatal Accident Controlling for Accident Rates
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14 Appendix E

Figure 10: Alternative Sample Main Regressions
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Figure 11: Alternative Sample Severity Regressions
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Figure 12: Alternative Sample Severity Regressions Controlling for Accident
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Figure 13: Alternative Sample 2 Main Regressions
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Figure 14: Alternative Sample 3 Fatality Accident Controlled Regressions
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Figure 15: Event Study

48


