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Abstract

This study uses Texas Hold’em poker to investigate decision-making under

uncertainty and the concept of probability weighting, where individuals may

overvalue or undervalue uncertain outcomes. I conduct an experiment to assess

Cumulative Prospect Theory’s relevance to subjective probabilities in poker by

simplifying the game to compare complex and simple gamble evaluations. The

research aims to understand how risk preferences and probability estimation

without complete information are influenced by individuals’ poker experience

and framing effects. We find that deviations from what theory predicts in the

subjective-probability Poker frame can be explained well by the framing effects

made in the decision maker’s editing phase. By examining the difference in the

predictive power of decision making models in explicit vs subjective probability

gambles, the study seeks to improve comprehension of cognitive processes in

navigating uncertainty.

Keywords: probability weighting, common ratio effect, prospect theory, experimen-

tal economics, decision-making under uncertainty
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1 Introduction

We make small decisions all the time. In many of these decisions, outcomes are

uncertain, payoffs are marginal, preferences are near indifference, and losses are psy-

chologically not internalized. Decision-making under these conditions thus represent

a critical area of inquiry within cognitive science and behavioral economics. The

complex interplay between risk assessment and strategic decision-making underpins

a wide range of human activities, from financial investments to everyday choices. This

paper utilizes the structured yet uncertain environment of Texas Hold’em poker as

a novel experimental setting to examine these phenomena. Texas Hold’em, a game

characterized by incomplete information and strategic interaction among players,

provides an apt metaphor for the uncertainty inherent in real-world decision-making

scenarios.

The primary objective of this research is two fold. The first objective is to test

whether there is more probability weighting when gambles are difficult to evaluate

compared to when they are easier to evaluate. The second is to assess how poker

provides reasonably good control (via experience) for how difficult the difficult gam-

bles are. By abstracting away the game’s traditional mechanics to focus solely on

the decision-making process between taking a known reward versus engaging in a

gamble, we aim to isolate and analyze participants’ ability to estimate probabilities

when they are not explicit, and then observe how preferences change as we fix the

payoffs and scale the probabilities down proportionally. This methodological simpli-

fication allows for a controlled examination of how individuals make judgments in

the absence of complete data, reflecting broader psychological and economic theories
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of decision-making under uncertainty.

This study utilizes a quantitative approach to understanding the minimum payoffs

that individuals are willing to accept to forego potential uncertain higher rewards.

Through this lens, the experiment seeks to contribute to the ongoing discourse on

cumulative prospect theory (CPT), expected utility theory (EUT), and the psycho-

logical biases that influence decision-making in uncertain contexts. The incorporation

of random elements via card draws from a deck further enriches the experimental

design, introducing a stochastic component that mirrors the unpredictable nature of

real-world scenarios.

Situating the experiment within the setting of Texas Hold’em provides conditions

ripe for testing the properties probability weighting functions, a concept central to

CPT. Developed by Daniel Kahneman and Amos Tversky as an extension of Prospect

Theory, CPT offers a refined lens through which to view the non-linear ways peo-

ple distort probabilities when faced with risky choices. Unlike the Expected Utility

Theory (EUT), which assumes a linear relationship between actual probabilities and

their perceived weight, CPT reveals that individuals often overestimate low probabil-

ities and underestimate high ones, leading to decision-making patterns that diverge

from what classical models like EUT would predict. CPT and other prominent non-

expected utility theories formalize the probability weighting function π, having four

fundamental properties
1
. These properties, together, serve as descriptive explana-

tions for human tendency to arrive at suboptimal outcomes despite the existence of

1
1. Subadditivity of small p: π(rp) > rπ(p) ∀r ∈ (0, 1), 2. Overweighting of small p: π(p) > p

for sufficiently small p, 3. Sub Certainty: π(p) + π(1 − p) < 1 ∀p ∈ (0, 1), 4. Sub Proportionality:
π(pq)
π(p) ≤

π(pqr)
π(pr) ∀p, q, r ∈ (0, 1)
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enough information to suggest otherwise. Kahneman and Tversky (1979) also intro-

duce a value function in their works which is inherently skewed from expected utility

as it no longer weights outcomes linearly. In poker, each hand presents a prospect,

defined as a set of i disjoint probabilities P ≔ {pi ∶ 0 < pi < 1,∑i pi = 1} and

a corresponding set of i possible outcomes X, where xi ∈ X denotes the payoff in

outcome i. Prospect theory then assigns a value V to the prospect:

V (X,P ) = ∑
xi∈X

π(pi)v(xi)

While V is defined on prospects, v is defined on actual outcomes. In poker, each

round presents a large but finite amount of outcomes. Without loss of generality to

prospect theory, I simplify the experiment by limiting the number of players to 2 and

reducing the player’s choice set to a binary choice of their preference between two

simple prospects. Due to gambling laws in North Carolina, I cannot take money from

subjects in the experiment. The setX must then be restricted to the domain of gains,

where xi ≥ 0. There are many assumptions about what the behavior v(x) exhibits,

but one important assumption CPT makes is that v(0) = 0. To further reduce

complexity for easier analysis of sub-proportionality, I set X = {x1, x2}, P = {p1, p2}

and x2 = 0 such that π(p2)v(x2) = 0, and V becomes V (X,P ) = π(p1)v(x1). That

is, in each prospect, there is a probability p1 of winning x1 dollars, and a probability

1 − p1 of winning nothing.

This paper sets out to scrutinize the sub-proportionality property assumed in

probability weighting functions mentioned above. Sub-proportionality—a condition
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where the subjective weighting given to probabilities does not align proportionally

with their objective magnitude—underscores a fundamental deviation from rational

choice models. This paper aims to experimentally test whether sub-proportionality

holds in a more realistic context; when gamble probabilities are not explicit and

the decision maker has to make an informed estimation of what the probability of

success in a gamble truly is. By comparing the decisions made in this setting with

equivalent “simple” gambles where probabilities are instead given, I establish the

baseline preferences of the subjects upon which I can test the change in descriptive

power of CPT.

The contributions of this paper are manifold. By delving into the nuances of

sub-proportionality, I endeavor to enhance the present understanding of how indi-

viduals deal with incomplete information and make decisions in uncertain environ-

ments. Ultimately, by weaving together insights from CPT and a unique experi-

ment, this paper strives to foster a more holistic understanding of human behavior

in the face of uncertainty within a familiar context. The investigation into the sub-

proportionality of probability weighting functions not only illuminates the intricacies

of human decision-making but also contributes to a broader comprehension of be-

havioral biases in preference formulations between two prospects.

By examining certainty equivalents
2
and an extension of the Allais Paradox

3
to

2
A certainty equivalent (CE) is a sure-thing return that somebody facing a gamble would accept

to avoid the gamble. The smaller (larger) the CE is, the more risk-averse (risk-seeking) the person
is.

3
The Allais Paradox, sometimes also called the common ratio effect, demonstrates that people’s

choices in risk scenarios can contradict expected utility theory by showing that gambles preferences
can shift illogically when payoffs remain fixed and probabilities scale down proportionally.
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Texas Hold’em
4
, I aim to shed light on whether the assertions made by Allais, Kah-

neman and Tversky extend to such domains. Furthermore, this study endeavors

to contribute to the evolving discourse on behavioral economics, and decision sci-

ences, offering valuable insights into how individuals perceive risk, make choices, and

navigate complex decision environments in poker.

2 Literature Review

Recent research has made significant strides in the field of decision theory under

uncertainty, particularly in the context of human decision behavior (Etner, 2009;

Etner, 2023). This work has expanded the theoretical framework, incorporating

psychological approaches and judgmental heuristics (Kahneman & Tversky, 1994).

Economic theories have also been applied to this area, with implications for pol-

icy analysis (Viscusi, 1991). Decision-theoretic principles have been developed for

reasonable care under uncertainty, including the use of maximin and minimax-regret

criteria when deliberation is costly (Manski, 2019). The application of decision theory

to optimize the value of computation under resource constraints has been explored

(Horvitz, 1988), as well as the allocation of benefits under income uncertainty (Naga,

1995).

The principal decision theory model which this paper aims to apply and extend

4
Texas Hold’em is a poker game in which each player gets two pocket cards (known only to

them), while five community cards are dealt face up on the table. Players win if they can make the
best 5 cards using their pocket cards and the community cards. Texas Hold’em is by far the most
played format of Poker, and the game of chance which I myself am most familiar with. These two
factors are the two primary reasons why I selected it as the mode for my experiment, as opposed
to any other context where probabilities are unknown yet verifiable
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is Advances in prospect theory: Cumulative representation of uncertainty (Kah-

neman & Tversky 1992). This paper builds upon their earlier work on Prospect

Theory, introducing significant refinements to better account for how people make

decisions under risk. The theory addresses the limitations of expected utility theory

by incorporating psychological insights into the decision-making process, highlighting

how individuals evaluate potential losses and gains differently. Key to Cumulative

Prospect Theory is the idea that people tend to overvalue small probabilities and

undervalue large probabilities, leading to risk-averse behavior in choices involving

gains and risk-seeking behavior in choices involving losses, a theory which has come

to be known as myopic loss aversion. The cumulative aspect of the theory comes

from how people integrate the probability of outcomes, suggesting a more complex

weighting function than previously considered. This groundbreaking work has pro-

foundly influenced the fields of economics, psychology, and finance by providing a

more accurate description of how people assess risk and make choices, challenging

traditional economic models that assume rational behavior. Additionally, the paper

elucidates the diminishing sensitivity to changes in magnitude and the reflection ef-

fect, whereby risk preferences are influenced by the framing of choices as gains or

losses.

The history of Prospect Theory is as studied as it is contentious. The paper

Prospect Theory, a Literature Review (Edwards 1996) examines how prospect the-

ory has evolved and been criticized over the years. It compares the theory against the

Neumann-Morgenstern theory of utility (1944) and maps them out in a conceptual

framework for the decision-framing process, segmenting both models into an editing
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phase, where framing effects impact the way a decision is perceived, and an evalua-

tion phase, where considerations such as the endowment effect, loss aversion, and the

information available to the decision maker are taken into account. In the context

of poker, this implies that prospect theory predicts that other factors beyond pure

expected value, pot odds and equity will alter the way agents perceive the decision

in front of them. Edwards also illuminates the compartmentalization of the decision

making process, so that efforts can be focused on studying an individual segment

of the decision making process without conflating several segments at once. I incor-

porate this theory into the experimental design by testing one group which has no

segmentation of phases, and another in which I ask the subjects for their estimation

of the perceived probabilities of success before they make their decision, to make the

intermediate decision that gets made subconsciously in the first phase more salient.

The Allais Paradox (Allais 1953) challenges the expected utility theory by demon-

strating that people’s choices can violate the independence axiom, which suggests

that if an option is preferred to another, it should remain preferred when both are

altered by a common consequence
5
. It involves a set of choices between lotteries

where individuals consistently make decisions that are inconsistent with expected

utility maximization, revealing a preference for certainty over probabilistic gains,

even when the expected value suggests a different choice. This paradox highlights

the complexities of human decision-making, showing that real-life choices often de-

viate from what would be predicted by purely rational economic models. Borch,

5
The common consequence effect is a family of phenomena under which preferences shift af-

ter a common consequence is applied. the common ratio effect is one instance of this family of
phenomena, where the common consequence is a proportional decrease in probability
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1968 suggests that the paradox may be due to the way the questions are posed, and

Blavatskyy, 2022 has highlighted the experimental fragility of the Allais Paradox.

Kopylov, 2007 and Fan, 2002 have further investigated the paradox, with Kopy-

lov formulating representation results for subjective probabilities and Fan finding

that the paradox experimentally vanishes for small-payoff variants in both real and

hypothetically incentives. These studies are pertinant to my paper because I am

financially constrained to offer only modest payoffs to participants, and Kopylov and

Fan both agree that such payoff domains hinder the predictive power of the para-

dox. I will set out to see whether their conjecture holds within the context of poker.

Birnbaum, 1999 and Karmarkar, 1979 propose alternative models that can account

for the paradox, while Brady, 1993 and Harman and Gonzalez, 2015 explore the

role of information and experience in decision-making, with the latter finding that

an overweighting or underweighting of small probabilities depending on experience.

Despite these efforts, the paradox remains a complex and multifaceted phenomenon,

as evidenced by Munier, 1991 and the discussion of Allais’ broader contributions to

economic theory therein.

Research on probability weighting functions has revealed a number of key find-

ings. Tversky and Wakker, 1995 formalize axioms
6
which are assumed to hold on

all preference structures without restiction. Li and Winter, 2012 and Hantoute et

al., 2017 both discuss the subadditivity property of these functions, with Hantoute

specifically focusing on Gaussian distributions. Bleichrodt and Pinto, 2000 and G.

6
These axioms are sixfold. For the curious reader, the definitions can be found in Tversky and

Wakker, 1995 Appendix 1: Representation Assumptions. The six axioms are: Weak ordering, strict
stochastic dominance, certainty equivalent condition, continuity in probabilities, simply continuity,
and tradeoff consistency.
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Wu, 1999 provide empirical evidence of subadditivity in probability judgments, with

Bleichrodt noting both lower and upper subadditivity. F. Wu et al., 1996 and Al-

Nowaihi and Dhami, 2011 further explore the non-linear nature of these functions,

with Wu proposing a concave-convex model and Al-Nowaihi emphasizing the impor-

tance of probability weighting functions in addressing certain stylized facts. Prelec,

1998 and Hantoute et al., 2017 both provide subdifferential characterizations of con-

tinuous probability functions.

There are many studies which have explored the factors influencing decision-

making in poker. Laakasuo et al., 2015 found that emotional and social factors,

such as anger and being watched, can reduce mathematical accuracy. St. Germain

and Tenenbaum, 2011 identified differences in decision-making and thought pro-

cesses between expert, intermediate, and novice players, with experts outperforming

the others outperforming the others when given sufficient time to evaluate, but not

otherwise. Rubin and Bellamy, 2012and Ponsen et al., 2009 both focused on the

strategies used in poker, with Rubin developing case-based strategies and Ponsen

analyzing the evolutionary dynamics of these strategies. Nicholson et al., 2006 and

Oliehoek, 2005 both explored the use of AI in poker, with Nicholson developing a

Bayesian decision network and Oliehoek proposing a unified approach using game

theory. Lastly, Findler and van Leeuwen, 1979 and Palomäki et al., 2013 both consid-

ered the role of experience in decision-making, with Findler using poker as a vehicle

for studying human decision-making and Palomäki finding that experienced players

engage in less self-rumination and more self-reflection. Unlike these studies, my paper

seeks to abstract away from the nuances of Texas Hold’em (bluffing, implied odds,
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position at the table, opponent’s range) that can overcomplicate the fundamental

decision question of how much a player believes their cards are worth.

A range of studies have explored various aspects of poker through experimental

methods. Notkin et al., 1988 and Billings et al., 1998 both discuss the use of poker

in parallel programming, with Notkin focusing on the Poker Parallel Programming

Environment and Billings et al. on decision-making under uncertainty. Félix and

Reis, 2008 and Van Essen and Wooders, 2015 both investigate the role of experience

in poker, with Félix developing algorithms for online opponent modeling and Van

Essen comparing the behavior of experts and novices. Ponsen et al., 2009 and Seale

and Phelan, 2010 both use game theory to analyze poker strategies, with Ponsen

focusing on the evolutionary dynamics of strategic behavior and Seale proposing a

simplified poker game and observing player behavior. Meyer et al., 2013 challenges

the notion of poker as a game of skill, finding that card distribution is a more

decisive factor. Utilizing my survey and the differences in simple vs complex gamble

evaluations, I seek to determine whose conjecture around the importance of poker

experience is correct.

Another means by which I could assess prospect theory as a descriptive model is

on the aggregate, using data compiled by observer bots over millions of hands. Such

was the methodology employed in Social and Psychological Challenges of Poker (Siler

2010), which sought to observe the strategic payoff structures and demographics

across different stake levels. While insightful, this paper and others that use large

online poker databases have several limitations. There are several factors which

these papers cannot not control when evaluating the decisions of players, such as
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known advantages and other important factors in poker such as stack size, position

at table, the mucked cards held by the opponents, and experience level of players.

With my experiment, I aim to control for all of these factors to isolate the variables

of interest in the decision making process. These principal variables of interest, in

the context of sub-proportionality within a probability weighting function, include

only a player’s preference between different gambles and their certainty equivalent.

From these variables, I can tease out what their probability weighting may look like.

3 Theoretical Framework

The exploration of decision-making under uncertainty is deeply rooted in the sem-

inal works of Daniel Kahneman and Amos Tversky, whose introduction of Prospect

Theory in 1979 and its later extension, Cumulative Prospect Theory, have revolu-

tionized our understanding of how individuals evaluate risk and make decisions in

uncertain environments. These theories offer a compelling departure from the classi-

cal Expected Utility Theory, which had long dominated economic thought regarding

decision-making under risk.

Expected Utility Theory (von Neumann, Morgenstern 1944) posits that individu-

als make decisions by evaluating the expected outcomes of their choices, weighted by

their probabilities, and selecting the option that maximizes their utility. This theory

assumes rational actors with consistent preferences and a linear perception of risk

and reward. However, Kahneman and Tversky’s Prospect Theory challenges these

assumptions, suggesting that individuals are not perfectly rational utility maximizers
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but are influenced by biases and heuristics. Prospect Theory (Kahneman, Tversky

1979) introduces the concept of value functions, which are defined over gains and

losses rather than final wealth states, and are characterized by diminishing sensitiv-

ity and loss aversion. This implies that the pain of losing a certain amount is greater

than the pleasure of gaining the same amount, leading to risk-averse behavior in

choices involving gains and risk-seeking behavior in choices involving losses. Fur-

thermore, the theory highlights the impact of reference points, where outcomes are

perceived as gains or losses relative to this reference rather than absolute outcomes.

Cumulative Prospect Theory (Kahneman, Tversky 1992) extends these insights

by incorporating a probability weighting function, which captures the tendency of

individuals to overweight small probabilities and underweight large probabilities,

deviating from the linear probability weighting assumed in Expected Utility Theory.

This refinement allows for a more accurate description of decision-making under

risk, accommodating a wider range of observed behaviors, including those involving

unlikely but impactful events. In his subsequent work, Prelec (1989) formalizes

conditions of diagonal concavity
7
(better known as strict monotonicity), compound

invariance
8
, and subproportionality

9
that must hold to invoke his formulated (one

7
From Prelec, 1998, A preference structure is diagonal concave if ”there is no nondegenerate

interval [s, t] such that ≿ is quasiconvex and strictly CE-quasiconcave on” intervals sufficiently
near to [s, t]

8
From Prelec, 1998, ”≥ exhibits compound invariance if for any outcomes x, y, x

′
, y

′
∈ X, proba-

bilities q, p, r, s ∈ [0, 1], and compounding integer N ≥ 1: If (x, p) ∼ (y, q) and (x, r) ∼ (y, s), then
(x′

, p
N) ∼ (y′, qN) ⟹ (x′

, r
N) ∼ (y′, sN).”

9
A definition of strict subproportionality says that a function π(p) is subproportional if and only

if log π is convex in log p
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parameter) weighting function:

π
+(p) = π

−(p) = e
−(− ln p)α)

Where 0 < p, α < 1. For the purposes of this paper, I will be assuming the con-

ditions of compound invariance and strict monotonicity in the preference structure

of participants, although further work can be done to construct similar experiments

which formally test these conditions in poker scenarios. I will be testing the com-

mon ratio effect (CRE) (Allais 1953) to assess the validity of sub-proportionality.

If subproportionality holds, I will apply the Prelec weighting function above to the

gamble preferences observed and determine a range of plausible values of α. I can

alternatively relax the sub-proportionality assumption if it does not hold, and need

only assume compound invariance to apply the functional form
10

of the probability

weighting function proposed by Tversky and Kahneman, 1992 in their work on CPT:

π
+(p) = p

γ

(pγ + (1 − p)γ)
1
γ

Their experiment finds a median γ value of 0.61. In this study, I will assume prefer-

ence homogeneity (representative preferences) and use the median certainty equiva-

lent observed in the experiment to construct a solution set of possible α and γ values,

where α is the parameter of the generally accepted power function representation of

the value function in the domain of gains: v
+(x) = x

α
. A comparison of the shapes of

10
This functional form is quite useful because it does not assume strictly monotonic preferences,

it only has one parameter that needs to be estimated, and it doesn’t assert that π(0.5) = 0.5
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these two weighting functions is included below in figures 1 and 2. Another interest-

ing distinction between the two highlighted in the figure is that the Prelec assumes

a constant fixed point (where π(p) = p, and Kahneman and Tversky allow the fixed

point to vary. Further work can be done to assess where these fixed points occur in

the content of Texas Hold’em.
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Figure 1: Kahneman & Tversky probability
weighting
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Figure 2: Prelec’s probability weighting func-
tion

In the setting of Texas Hold’em, these theories are particularly pertinent. The

game’s structure, with its combination of skill, chance, and strategic interaction

among players, mirrors the conditions under which Prospect Theory and Cumulative

Prospect Theory provide explanatory power. The decisions made by players, from

risk-taking in bets to strategic folds, can be analyzed through the lens of these

theories, offering insights into the cognitive processes and biases at play.

In Poker, as well as financial markets, investment decisions, financing decisions,

and smaller scale decisions economic agents make on a daily basis, the true probabil-

ity of outcomes is not given. As such, I want to examine how probability weighting

can be adapted for such “difficult” decisions, using probability weighting for “easy”
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decisions where probabilities are known as a baseline. I control risk preferences and

poker experience within subjects to get a better idea both of underlying preferences

and how difficult the difficult choices are for the decision maker, and utilize a within-

subject framework in order to get more explanatory power out of less sample size.

The experimental design detailed in Section IV was carefully constructed to ex-

tend the Allais Paradox to Texas Hold’em. Using a Texas Hold’em solver, I establish

Texas Hold’em gambles in which the raw probabilities to win are as near to 100%

vs. 98% in decision 1, 10% vs. 9.8% in decision 2, and 1% vs. 0.98% in decision

3 as I can make them. In actuality, the finite nature of the number of outcomes

in a Texas Hold’em gamble make it such that it impossible to find gambles with

precisely those probabilities, but I got as close as possible, using a Texas Hold’em

solver which the curious reader can try out at https://b-inary.github.io/poker/. The

true raw probabilities in the Texas Hold’em gambles (derivations in Appendix C) are

P (D1) ∈ {0.9808, 1}, P (D2) ∈ {0.0985, 0.101} and P (D3) ∈ {0.009796, 0.0106}. In

each decision, the lower probability corresponds to a payoff of $3. Thus, the pay-

off in the 98% gamble is set to $3. The first decision then asks the participant to

come up with a fair certainty equivalent (CE). The certainty equivalent is defined as

the minimum certain payoff necessary for the decision maker to prefer receiving the

certain payoff to participating in the gamble.

Before making the decision, the participant learns that there is a market dynamics-

inspired mechanism in place to promote honesty. A random decimal number between

0 and 3 will be generated to simulate the amount that an imaginary buyer is willing

to pay the participant to take their place in the gamble. If that amount is less than
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the participant’s selected certainty equivalent, then there does not exist an imagi-

nary buyer that is willing to pay the participant their certainty equivalent, and so

the participant must face the gamble. If the randomly selected number is larger than

the certainty equivalent, then there does exist an imaginary buyer willing to pay the

certainty equivalent to receive the gamble, and thus the participant receives their

certainty equivalent. Although a buyer’s willingness to pay is random, the mecha-

nism imposes market discipline on the subject to the point where they should set

the price of the gamble closer than they otherwise would to the level where they are

indifferent between receiving the price and not.

By definition of certainty equivalent, a decision maker is indifferent between their

certainty equivalent and the gamble in question. Thus, for all utility functions U(.),

0.98 × U($3) ∼ U($CE). In the experiment, I then add a small premium ϵ to the

certainty equivalent, such that if a participant was indifferent before, it follows that

0.98×U($3) ≺ U($CE + ϵ). Expected Utility Theory asserts that if that preference

holds, then it still holds for proportionally scaled down probabilities: 0.98

10
×U($3) ≺

1.00

10
×U($CE+ϵ) and 0.98

100
×U($3) ≺ 1.00

100
×U($CE+ϵ). CPT and Allais make different

predictions. They argue that “for a fixed ratio of probabilities, the ratio of the

corresponding decision weights is closer to unity when the probabilities are low than

when they are high. This property, called sub-proportionality, imposes considerable

constraints on the shape of (the probability weighting function): it holds if and only

if (the logarithm of the probability weighting function) is a [strictly] convex function

of (the logarithm of the raw probability)” (Kahneman and Tversky 1979, p. 282).

Formally, CPT and Allais argues that for a probability weighting function π(p), the
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following behavior should be observed:

π(0.98)
π(1) <

π(0.098)
π(0.1) <

π(0.0098)
π(0.01) < ⋅ ⋅ ⋅ < 1

How does this proposition hold up in poker settings, where probabilities are not

explicit? Can these results be generalized to decisions in which probabilities must

be inferred? How does the degree of true probability hiddenness, as proxied by a

one’s experience and familiarity with making these decisions impact the weighting

distortions? Can experience even serve as such a proxy? These are the questions I

wish to investigate in the following experiment.

4 Experimental Design

4.1 The Survey

Prior to participating in the experiment, the player will complete a Qualtrics survey

to illuminate some qualitative behavioral factors. The survey will consist of the fol-

lowing multiple choice questions. Each response is rated based on how much I believe

the answer implicates a player’s degree of experience or risk tolerance within the con-

text of Texas Hold’em. The contents of the parenthesis after the response indicates

how that answer would be weighted when calculating their Poker Experience Scale

(PES) and Risk Tolerance Scale (RTS). These weightings, while arbitrary to some

degree, allow for a pseudo-ranking of participants based on experience and risk tol-

erance. Both of these scales become less ambiguous at their endpoints. For example,
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a PES of 0 implies that the subject has never played poker before, and a maximum

PES implies that the subject has played for over 3 years and plays everyday. In the

formulation of PES and RTS, the raw scores obtained by the survey responses are

normalized to a scale from 0 to 10, with a higher number loosely indicating more

poker experience and risk tolerance, respectively.

The first three questions are meant to get an idea of a player’s experience playing

poker. The last three questions are used to elucidate a player’s risk profile as it

pertains to poker. After taking the survey, participants will be selected to partake

in the Poker experiment, which will enable me to diversify across subjects such that

there is representation of all experience levels, as well as risk profiles.

Survey Questions:

1. How long have you been playing Texas Hold’em?

• I’ve never played (PES+0)

• Less than 6 months (PES+2)

• 6-12 months (PES+4)

• 1-3 years (PES+7)

• More than 3 years (PES+10)

2. On average, how often do you play Texas Hold’em?

• Daily (PES+20)

• 2-3 times per week (PES+10)
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• Weekly (PES+7)

• Monthly (PES+5)

• Less than Monthly (PES+2)

• Never (PES+0)

3. Approximately how many hands of Texas Hold’em have you played?

• Less than 1,000 hands (PES+1)

• 1,000-5,000 hands (PES+5)

• 5,001-10,000 hands (PES+10)

• More than 10,000 hands (PES+20)

4. When you believe you have a strong hand, which best describes how

do you typically proceed?

• I bet aggressively to maximize the pot (RTS+2)

• I bet cautiously to keep other players in the game (RTS+0)

• I vary my strategy to keep opponents guessing (RTS+1)

5. How do you typically react after experiencing a significant loss?

• I take a break and analyze my gameplay. (RTS+0)

• I immediately play another game to try and win back my losses. (RTS+4)

• I reduce my bet sizes but continue playing as usual. (RTS+1)

• I do not alter my strategy at all (RTS+2)
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6. How often do you use bluffing as part of your Texas Hold’em strat-

egy?

• Frequently, I consider bluffing an essential part of the game. (RTS+4)

• Occasionally, when the situation seems right. (RTS+2)

• Rarely or never, I prefer to play based on the strength of my hand.

(RTS+0)

Experiment Procedure

Introduction script:“Thank you for your time in participating in my experiment.

The purpose of this experiment is to ascertain how we make decisions and weigh

choices without having full information available. The medium for this analysis

is Texas Hold’em, with a few simplifying modifications. The procedure will be as

follows:

You will be presented with a series of 2 scenarios, which you must choose between.

There is no calling, no folding, no re-raising or going all in. Rather, your opponent

(me) will offer you $X if you can beat me in the scenario. If we tie, there will be

no splitting the money; you must make a strictly better hand than me to gain the

reward. Every card with a question mark in the scenario is a card that we will

randomly draw from the set of all unrevealed cards.

The decisions 1 and 4 will be presented will be slightly different. You will be

faced with a gamble, and a sure-thing. For these decisions, consider that you are

in possession of the gamble, and there exists a buyer that wants to purchase the
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gamble from you. The decision asks you to determine the minimum amount you

would accept to give up the gamble. This experiment is constructed for you to be as

honest in your answer as possible. After you have made all of your choices, we will

play the chosen scenarios and you will walk away with whatever money you have

won. For clarity, we will begin with an example.”

The sample decision below is an example, included to provide clarity and an

opportunity for the subject to ask questions before making a series of six decisions

that will be recorded.
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Example Decision:

Scenario 0A: (Figure 3) The opponent offers $3 if you can beat them.

Scenario 0B: (Figure 4) You face a guaranteed win scenario but must decide

the minimum amount you would accept instead of taking the gamble.

Figure 3: Scenario 0A

Figure 4: Scenario 0B
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Decision 1: Certainty equivalent evaluation

Scenario 1A: (Figure 5) The opponent offers $3 if you can beat them.

Scenario 1B: (Figure 6) You face a guaranteed win scenario but must decide

the minimum amount you would accept instead of taking the gamble.

Figure 5: Scenario 1A

Figure 6: Scenario 1B
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Decision 2: Preference between two gambles

Scenario 2A: (Figure 9) The opponent offers $3 if you can beat them.

Scenario 2B: (Figure 10) The opponent offers you a payoff slightly higher

than your certainty equivalent, P1, if you can beat them.

Figure 7: Scenario 2A

Figure 8: Scenario 2B
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Decision 3: Preference between two gambles

Scenario 3A: (Figure 9) The opponent offers $3 if you can make a full house

(see hand rank reference sheet) after the first three community cards are

revealed.

Scenario 3B: (Figure 10) The opponent offers you a payoff slightly higher

than your certainty equivalent, P1, if you can beat them.

Figure 9: Scenario 3A

Figure 10: Scenario 3B
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1. Decision 4: Certainty equivalent evaluation

Scenario 4A: Win $3 with a probability of 98%.

Scenario 4B: Win a certain amount (C) less than $3 with a probability of

100%. Participants are asked to specify the smallest amount C they would

accept to choose Scenario B over Scenario A.

After specifying an amount, a random decimal number between 0 and 3 is

generated to determine whether a random buyer is willing to pay the subject

their certainty equivalent for the $3 gamble.

2. Decision 5: Preference between two gambles

Scenario 5A: Win $3 with a probability of 9.8%.

Scenario 5B: Win a payoff slightly higher than your certainty equivalent, P2,

with probability 10%.

3. Decision 6: Preference between two gambles

Scenario 6A: Win $3 with a probability of 0.98%.

Scenario 6B: Win a payoff slightly higher than your certainty equivalent, P2,

with probability 1%.

Participants are asked to make their choices based on the given scenarios. Only

the poker scenarios are played for money. In the preference between two gambles

decisions, the premium is calculated as Pi = $(CE + ϵ), where ϵ = 3−CE

10
.
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5 Empirical Data

Table 1: Summary of Survey Variables used in analysis

Label Type Description Interpretation

Respondent ID Numeric (Integer) A unique key for
the subject

The first
respondent will
have ID = 1, the
second will have
ID = 2, and so on.

PES Numeric (Integer) Calculated as the
normalized sum of
their response
scores in questions
1-3.

A score of 0
indicates low
experience belief,
a score of 10
indicates high
experience belief.

RTS Numeric (Integer) Calculated as the
normalized sum of
their response
scores in questions
1-3.

A score of 0
indicates low risk
tolerance belief, a
score of 10
indicates a high
risk tolerance
belief
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Table 2: Summary of Experimental Data Labels

Label Type Description Interpretation

Difficult

CE

Numeric

(Floating

point)

The certainty equivalent

chosen by participant in

Decision 1 (difficult frame)

quantitatively

determines a subject’s

risk aversion in Texas

Hold’em

Easy CE Numeric

(Floating

point)

The certainty equivalent

chosen by participant in

Decision 4 (easy frame)

Closer to EV implies

closer to risk neutral

preferences in general.

CE

difference

Numeric

(Integer or

Floating

Point)

Difference between easy and

difficult CE

Captures the effect of

hidden probabilities.

Larger difference

implies more

probability distortion.

Decision 2 Categorical

(Binary)

A choice variable, 0 (1) if

subject chose scenario A (B)

Captures the

participant’s choice in

Decision 2.

Decision 3 Categorical

(Binary)

A choice variable, 0 (1) if

subject chose scenario A (B)

Captures the

participant’s choice in

Decision 3.

Continued on next page
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Table 2 – continued from previous page

Label Type Description Interpretation

Decision 5 Categorical

(Binary)

A choice variable, 0 (1) if

subject chose scenario A (B)

Captures the

participant’s choice in

Decision 5.

Decision 6 Categorical

(Binary)

A choice variable, 0 (1) if

subject chose scenario A (B)

Captures the

participant’s choice in

Decision 6.

D2equalsD3?Categorical

(Binary)

A binary variable, with 1

indicating that the participant

either the riskier gambles

twice or the safer gamble

twice.

If 1, then

proportionality holds

in the difficult frame.

D5equalsD6?Categorical

(Binary)

A binary variable, with 1

indicating that the participant

either the riskier gambles

twice or the safer gamble

twice.

If 1, then

proportionality holds

in the easy frame.

I initially wished to analyze differences in these variables for subjects with dif-

ferent PES and RTS, as well as the potential mixed effects of PES and RTS. I

hypothesized that PES and RTS are correlated to some extent. This is due to the
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fact that Poker is a game of gambles. Thus, one may expect that there is a certain

degree of risk seeking associated with developing poker experience. I later deter-

mined that either my RTS was too crude, or that risk preference in general aren’t

explanatory enough at such low stakes. With respect to the other variables being

collected in the experiment, I include a brief overview of my initial hypotheses of

how these variables may differ between more and less experienced players prior to

running the experiment:

Difficult CE: Experienced players are more likely to deduce a more accurate

weighted probability, so I expect Difficult CE to be nearer to Easy CE for more

experienced players.

Easy CE: Easy CE is more dependent on the risk preferences of a participant.

If a participant is more risk seeking, then their certainty equivalent will be relatively

lower to account for the marginal utility that the gamble itself provides.

CE difference: As mentioned above, since I expect more experienced players

to be more accurate at determining the probability in the difficult frame, I expect a

CE difference nearer to 0 for more experienced players.

Decision 2,3,5,6: I expect these binary variables to be independent of experience

level. I would expect a more risk averse participant to have a higher frequency of 1’s

across these decisions as a value of 1 represents a preference towards the less risky

prospect. Similarly, I would expect a more risk loving participant to have a higher

frequency of 0’s.

D2equalsD3?: This is a principle variable of interest, as CPT and EUT do not

yet explain whether Allais paradox holds or not for hidden probabilities. If it does
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largely hold, then a higher proportion 0’s will be observed, specifically 0’s which

come about from a movement from 1 to 0. If EUT is a better descriptive model,

then I expect to see a higher frequency of 1’s.

D5equalsD6?: CPT and EUT make different assertions about what the value

of this binary variable should be. CPT expects a higher frequency of 0’s, while EUT

asserts that the value should always be 1 for a rational decision maker.

The key variables of interest are CE difference, the frequencies of 0’s and 1’s in D2

and D3, and the degree of concordant and discordant with-in subject pairs (D2,D3)

and (D5,D6) in order to analyze trends preference consistency as probabilities scale

down proportionally. It will be further useful to decompose the group of discordant

pairs into positive and negative discordant subgroups. Sub-proportionality and the

CRE both suggest that as probabilities scale down, preferences tend to shift in favor

of the riskier, higher-payoff gamble. Thus, theory predicts the frequency of negative

discordant pairs (subjects that transition from L (1) in D2 and D5 to H (1) in

D3 and D6). For similar reasons, the difference between the frequencies of 0’s and

1’s in D2 and D3 will determine whether or not the CRE holds for decisions when

probabilities are non-explicit. Allais predicts a shift in preferences towards the riskier

gamble when probabilities scale proportionally down, which translates to a higher

proportion of 1’s in D2 than in D3. CE difference will also serve as a heuristic for the

the effect of decision difficulty on probability weighting when probabilities are near

certainty. I can then observe the extent to which the heuristic for subject experience,

PES, explains the differences between the two certainty equivalents and, by the same

token, how well experience can serve as a proxy for gamble difficulty and probability
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subjectivity.

6 Results

6.1 Experiment Iteration 1

Let’s first begin with an overview of the observed survey responses (see Table 3).

The survey responses collectively indicate a broad profile of participants, revealing a

wide spectrum of engagement with the game, from novices to seasoned veterans. The

mode of 10 in Exp Q1 reveals that a significant proportion (16 of 46) of respondents

have been playing for more than 3 years, suggesting a dedicated core of players

who likely possess a deeper strategic understanding of the game. This is further

corroborated by a subset of players reporting frequent play and a considerable number

of hands played, pointing to a high level of commitment and ongoing interaction

with the game. Despite this, the overall frequency of play skews towards less regular

engagement, with many participants playing monthly or less. This diversity in play

frequency indicates that the study attracted both casual players and those who play

often. The broad range of engagement levels suggests varied motivations for playing,

from casual entertainment to more skill-based interests.

When examining risk preferences and reactions to game situations, the data re-

veal a general preference for a conservative approach to poker decision making. Par-

ticipants reflect that they tend to proceed cautiously with strong hands, perhaps

indicating general preferences skewed toward risk aversion. This cautiousness ex-

tends to reactions following significant losses, where a predominant strategy involves
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Table 3: Descriptive statistics

Survey Data: Poker Context
Survey Response Weights (Interpretation)

Survey Questions Median Mode Max Min SD

Exp Q1: Years of Poker Experience 7(1-3yr) 10(>3yr) 10(>3yr) 0(none) 3.47

Exp Q2: Frequency of poker play 5(mth.) 2(<mth.) 20(daily) 0(never) 3.91

Exp Q3: Number of hands played 5(1-5k) 1(<1k) 20(>10k) 1(<1k) 7.32

Risk Q1: Behavior when strong 1(varies) 1(varies) 2(aggr.) 0(cautious) 0.76

Risk Q2: Behavior after big loss 1(bet small) 1(bet small) 4(chase loss) 0(take break) 1.67

Risk Q3: Bluffing tendency 2(occ.) 2(occ.) 4(freq.) 0 (rarely) 1.51

Poker Experience Scale (PES) 3.6 1 10 0.2 2.88

Risk Tolerance Scale (RTS) 4 4 10 0 2.57

Experiment Data: Certainty Equivalents
Certainty Equivalent Choices (USD)

Certainty Equivalents Mean Median Max Min SD

Easy Frame CE 2.90 2.94 3 1.60 0.20
Poker Frame CE 2.65 2.77 2.97 1.8 0.31
Within subjects CE Difference -0.2519 -0.15 0.4 -1.14 0.317

Experiment Data: Binary Choice Variables
(H = 3, L = CE + ϵ) Frequency Statistics (N=46)

Poker Gamble Choices Preferred H Preferred L

D2: $H with 9.8% vs. $L with 10% 26(56.52%) 20(43.48%)
D3: $H with 0.98% vs. $L with 1% 13(28.26%) 33(71.74%)

Simple Gamble Choices Preferred H Preferred L

D5: $H with 9.8% vs. $L with 10% 15 (30.43%) 32 (69.57%)
D6: $H with 0.98% vs. $L with 1% 36 (78.26%) 10 (21.74%)

Experiment Data: Concordance
Discordant (Not EUT) Concordant (EUT)

Variables H to L L to H H to H L to L

Poker Consistency from D2 to D3 20(43.48%) 7(15.22%) 13(28.26%) 6(13.04%)
Simple Consistency from D5 to D6 0(0.00%) 22(47.83%) 10(21.74%) 14(30.42%)
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taking a break to analyze game-play or reducing bet sizes, strengthening the case for

a skew towards risk aversion, though testing such risk aversion ended up not being

explicitly part of the analysis, in part due to the inconsequential payoffs at stake that

would necessitate a subject’s utility function to exhibit exceedingly strict convexity

on all non-degenerate intervals, implying unrealistic risk preferences as payoffs scale

larger (Fullenkamp et al. 2003).

The summary of the concordance table suggests that CPT and the Common

Ratio Effect serve as better descriptive model for the simple scenarios than the

poker gambles. Interestingly, the exerpiment did not observe a single participant

switch their preferences from the riskier to safer gamble as probabilities scaled down

in the safer frame, but the vast majority (74.07%) of subjects did so in the poker

frame. To test the significance of this result, considering the paired nature of our

data, I construct a 2x2 contingency table using the discordant and concordant values

from the table and conduct McNemar’s test, which yields a p-value of 0.021 for pairs

(D2,D3) and a p-value of 7.562 × 10
−6
. These p-value indicates the probability

of observing the test results under the null hypothesis, which, in the context of

McNemar’s test, is that there is no difference in the discordant proportions (i.e.,

the changes from one condition to the other are symmetric). As such, there is a

statistically significant movement in the proportions of preferences towards risky vs.

safe gambles in both the poker and simple frame. The unexpected result that I

subsequently set off to explore, unable to be captured by McNemar’s non-directional

test, yet evident in Table 3 is that the shift in preferences between the two frames

moves opposite directions.
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The statistical summary of certainty equivalents (CE) from the experiment re-

veals insightful variations in decision-making under risk across the two framing con-

ditions. The average CE for the Easy Frame condition is significantly higher than for

the Poker Frame, with means of $2.90 and $2.65, respectively, suggesting that par-

ticipants generally demanded less premium to forgo a gamble in the former setting.

This disparity in CE valuations is further highlighted by a negative mean difference

(-0.2519) when comparing CE across frames within subjects, indicating a system-

atic reduction in the CE under the Poker Frame. Given the data entries are within

subject, and thus dependent, I test the comparison of Easy CE and difficult CE

distributions using the Wilcoxon Signed-Rank Test and found a P-value of 1.2∗10
−6

and a test statistic of 875.50, which is to say that there is an overwhelming amount

of evidence to reject the null hypothesis that the difference between two observations

has a mean signed rank of 0.

Interestingly enough, I measured the correlation between the Easy Frame CE and

Difficult Frame CE and found a correlation coefficient of 0.2815, I tested this coef-

ficient using Pearson’s product-moment correlation and obtained a 95% confidence

interval for the true correlation to be between -0.009 and 0.528 with a p value of

0.058, which suggests a 5.8% of observing the data under the null hypothesis that

the two certainty equivalents are uncorrelated. There isn’t enough data however to

suggest that there is a statistically significant relationship between the two. The to-

tal distributions of observed certainty equivalents is visualized in Figure 11. The first

immediate takeaway is that the distribution of Easy CE is much tighter than that

of difficult CE. While I had initially hoped that Easy CE would be a better control
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for risk aversion, it was evident very quickly into my experiment that at such low

stakes, participants were very risk neutral, and would easily calculate the expected

value of a 98% chance of $3. The wider distribution, skewed well below the expected

value, of difficult CE may underscore the influence of framing on risk perception

and decision-making, where the Poker Frame possibly evokes stronger feelings of risk

or uncertainty, leading to more conservative valuations. This behavior aligns with

the concept of ambiguity aversion (Ellsberg 1961), where individuals exhibit a pref-

erence for known risks over unknowns, potentially explaining subjects consistently

selecting a smaller CE in the poker frame than in the simple frame. The variations

in standard deviations between the two frames (0.20 for Easy Frame and 0.31 for

Poker Frame) also suggest greater variability in participants’ risk assessments and

decision-making processes under the Poker Frame, further indicating the impact of

framing on ambiguity aversion tendencies.

Perhaps the most surprising result is found in the frequency statistics of the binary

choice variables in Table 3. I have highlighted in the table an apparent violation of the

common ratio effect (Allais 1953), evident in the contrasting preferences between D2

and D3. While the decision outcomes for Poker Decision 2 showed a slight majority

(56.52%) favoring the riskier option, when true probabilities scale down by a factor

of 10 in Poker Decision 3, I observe a pronounced preference shift in favor of the

safer prospects (71.74%). The common ratio effect posits that preferences should

shift in the other direction; that a greater proportion of the subjects should prefer

the riskier option as probabilities scale proportionally down nearer to zero. Indeed,

when true probabilities are known, as in Simple Decision 5 and 6, the common ratio
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effect prevails significantly, with preferences initially favoring the safer gamble by a

large majority in D5 (69.57%) when prisky ≈ 0.098 and psafer ≈ 0.1, but a larger

majority (78.26%) favoring the riskier, higher-payout in D6 when prisky ≈ 0.0098 and

psafer ≈ 0.01.

6.2 Framing Effects and Perceived Probabilities

So why then does the opposite effect take place in the poker frame? There are

several possible judgement heuristics explained by framing effects. The first I will

discuss is representativeness (Kahneman & Tversky 1974), which can bias a decision

maker to be more pessimistic about sample outcomes that are less representative of
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the population. Success in the full house scenario (Figure 7) implies a precondition

of outcome homogeneity. In the classic ”gambler’s fallacy”, the representativeness

heuristic biases the decision maker into believing that in light of the last 8 roulette

spins resulting in outcome black, it is likelier than usual that the next outcome

will be black, the rationale being that the latter outcome would make the total

observed sample more representative of the general population. Poker is a little bit

different, because with respect to rank there are only 4 of each type in the set of all

outcomes. So now, the occurrence of an outcome type directly reduces the likelihood

of simultaneously observing another instance of that type, potentially making the

decision maker even more pessimistic. Subjects may view a community card outcome

which results in a full house in scenario 3A (Figure 7), such as (7♣, 7♦, 7♠), to be

less likely than outcomes that do not result in a full house, because the former is less

representative of the population of all unrevealed cards. This of course is a fallacy, as

all community card outcomes are equally likely, but it does provide an explanation for

why such a violation may occur. By contrast, they may view a winning outcome in

scenario B, for example opponent holding (8♣, 4♠) and a revealed community card

(2♣) to be more more representative of the underlying population of all unrevealed

cards.

Another judgement heuristic potentially at play is availability (Kahneman &

Tversky 1974). When subjects have a certain degree of familiarity with a prospect,

they reason about how available a memory of a recent success is as a heuristic for how

prospect success frequency. As such, it is possible that the memory of flopping
11
a full

11
The flop refers to the first three community cards in Texas Hold’em. It is common terminology

in Texas Hold’em that ”flopping” a certain holding means to become endowed with 5 cards that
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house, as in 3A, may be less available than the other poker scenarios, as flopping a full

house is not captured in the objective function of poker. This may lead to the event’s

occurrence being relatively less salient than prospects like 3B, where success is framed

as having a better hand than your opponent at showdown, more conducive with what

success entails in a real poker environment. Thus, an experienced subject would have

been conditioned with payoffs each time they experienced a success comparable to

success 3B, making them more acutely aware of and better poised to estimate the

true frequency of the success they’ve observed.

The final kind of judgement heuristic mentioned outlined by Kahneman & Tver-

sky (1974) is adjustment and anchoring
12
, but this heuristic tells the least compelling

story about why 3A is more prone to bias of this type than the other scenarios are.

I realized at this point in my analysis that if I wanted to better understand the

framing effect in my data, I would need to alter my experiment to better parse the

2 phases of the subject’s decision making and isolate the phase in which framing is

believed to take place.

6.3 Experiment Iteration 2

Prospect Theory (Kahneman & Tversky 1979) asserts that when we make deci-

sions, we split the decision into 2 phases: an editing phase and an evaluation phase.

Framing effects take hold on the decision maker in the editing phase, when decision

makers organize the available information into well packaged ”frames” that are easier

jointly form the holding after the first 3 and only first 3 community cards have been revealed.
12
adjustment and anchoring is a bias by which decision makers will anchor on an initial infor-

mation endowment, and then adjustment around the anchor until a plausible probability comes to
mind
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for them to evaluate in the evaluation phase. To separate these phases and better

isolate the framing effect, I altered my experiment for a second iteration, this time

asking subjects what their perceived probabilities of success were in each scenario

of the poker frame before they make their decision. I conducted this updated ex-

periment on 30 subjects, and a summary of the observed perceived probabilities are

reported in Table 4.

Table 4: Summary Statistics of Perceived Probabilities in Poker Scenarios

Scenario Mean Median Max Min SD

2A 0.0503 0.045 0.12 0.01 0.0299
2B 0.062 0.055 0.15 0.01 0.0349
3A 0.004 0.005 0.01 5e-05 0.0035
3B 0.012 0.01 0.03 2e-04 0.0078

It is important to note that in the second iteration of the experiment, I did not

observe any significant trend shifts in the proportions of the binary variables from the

first iteration of the experiment. As evidenced in the table, the average participant

believed their probability of success in scenario 3B (0.012) to be three times likelier

than their probability of success in scenario 3A (0.004), despite the true probabilities

of success in those two scenarios differing by only 0.002. It is also interesting to note

that there were subjects who underestimated the probability of success in 3A by

a factor of 100. After conducting a power analysis for a one-sample t-test of the

observed sample mean against a hypothesized population mean µ, a power level of

0.8 to reject the null with 95% confidence is attained after setting µ = 0.006, and

a power level of 1 to reject the null with 95% confidence is attained after setting

µ = 0.0081, well below the true probability of 0.0098. That is to say that there
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is sufficient sample size to suggest that the true average perceived probability in

scenario 3A is well below the true probability of 0.0098.

One important consideration to touch on here is that the maxmin expected util-

ity with non-unique priors model
13

(Gilboa & Schmeidler, 1989) posits there exists a

set of probabilities which individuals consider possible, but when asked to evaluate a

gamble, they pick the worst possible probability from that set. Thus, subjects con-

sistently underestimating the true probability of a poker gamble may be a manifesta-

tion of this phenomenon, attributable to ambiguity aversion considerations (Ellsberg

1961) as opposed to something inherent only to poker. Since I did not explicitly

ask subjects for a point estimation, which would involve them selecting the mean of

their set of believable probabilities, I cannot know whether the believed probability

represents the mean, the lower bound, or any other point of this set. The only thing

I am able to assume is that their specified probability belief is included in the set.

I test the statistical significance of the difference in percent deviation between

believed and true probability (measured as pb−p
p

) between scenarios using a piece-

wise Friedman test, and find significant p-values between all scenario pairs except

for one. Interestingly enough, this pair is (Scenario 2A, Scenario 3A), with a p-value

of 0.8527. The interpretation is that there is insufficient evidence to suggest that

the percentage difference between believed and true probabilities in scenario 3A and

2A come from different underlying populations. Thus, there is insufficient evidence

to suggest that the salient full house frame presented in scenario 3A, theorized to

13
The maxmin EU with non-unique priors model proposes that the optimal decision under un-

certainty is the one with the least bad worst outcome, in this case meaning the least worst case
probability.
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be responsible for the paradigm shift in preferences in the poker gambles, affected

the subject’s accuracy in estimating a probability belief as a percentage of the true

probability between the proportional risky gambles.

With the added information of what the average perceived probabilities are in

scenarios 2A, 2B, 3A, and 3B, I attempt to control for the framing effect in scenario

3A and determine now how the observed perceived probabilities are weighted by the

functional form of the Kahneman and Tversky (K&T) probability weighting function

π
+(p) =

p
γ

(pγ+(1−p)γ)
1
γ
. Taken together with the generally accepted value function

in the domain of gains, v
+(x) = x

α
(Kahneman & Tversky 1992), and assuming

relative preference homogeneity among poker players, the observed preferences in

the experiment aggregate to a representative preference structure that satisfy both

3
α
∗

0.0503
γ

(0.0503γ + (1 − 0.0503)γ)
1
γ

> (CE + ϵ)α ∗
0.062

γ

(0.062γ + (1 − 0.062)γ)
1
γ

in Decision 2 and

3
α
∗

0.004
γ

(0.004γ + (1 − 0.004)γ)
1
γ

< (CE + ϵ)α ∗
0.012

γ

(0.012γ + (1 − 0.012)γ)
1
γ

in Decision 3. Taking CE + ϵ to be the observed median CE + ϵ = $2.79, I attempt

to obtain a general solution set of feasible parameters as (γ, α) pairs in Figure 12.

It should be noted that the preference homogeneity assumption is perhaps a

heroic one in this case, but it is a cornerstone of general equilibrium theory, and it

allows us to make a general conjecture about at least a subset of possible feasible (γ,

α) pairs. This figure suggests a γ between approximately 0.25 and 0.5, well below
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Figure 12: Solution Set of K&T Weighting and Value Function Parameters

the traditionally assumed value of 0.61 (Tversky Kahneman 1992 p. 312). The

interpretation of this result is that given the underestimation of the true probability

due to the framing of the gambles, participants actually overestimate the likelihood

of their perceived probability occurring.

6.4 Quantifying Noise due to Framing

There is a fair degree of noise in my analysis of the framing effect. In a noble yet

over-simplistic attempt to quantify the noise of the poker gambles, I define a framing

function F (p,N) = pb that takes inputs hidden true probabilities p and a noise

quantifier N , whose magnitude is the extent to which p is hidden due to framing,

and maps them to a probability belief pb. When thinking about how to model this

function, there are a few considerations to keep in mind. Firstly, I would expect

R ∶ {pb∣0 < pb < 1, pb ∈ R}. Secondly, I would expect ∣pb − p∣ to be increasing
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in ∣N∣. To keep it relatively simple while still satisfying the nonlinear nature of

psychological biases and boundedness, I define my Framing function F (.) to be

F (p,N) = pb = logit
−1(logit(p) +N)

Where logit(p) = log p

1−p
and logit

−1(x) = 1

1+e−x
. Taking the logistic transforma-

tion of both sides of this equation and rearranging gives N = logit(pb) − logit(p).

In other words, I propose a simple heuristic for noise to be the difference between

the log odds of the believed probability and the log odds of the true probability. I

Of course, this is certainly a over-simplification of a very complex phenomenon, but

for the purpose of my study, it serves as a useful heuristic for the hiddenness of the

true probability due in part to the framing effect. In truth, perhaps a more accurate

description of what it being captured by this heuristic is the degree of ”wrongness”

in probability belief due to the framing effect.

6.5 Experience as a proxy for gamble difficulty

Now to return to one of the central questions my paper seeks to answer, which is

how Poker Experience implicates the difficulty of a poker gamble? Using the noise

heuristic N defined above, I regress N on PES to check if there is any significant

relationship between the two variables. Starting with poker scenario 2A, observe the

results of the regression in Table 5.

While there is an incredibly low P-value on both the intercept and PES coeffi-

cient, the R-square and adj. R-squared suggest only a moderate amount of noise

variation explained by PES. Be that as it may, the F-statistic of 19.75 on 1 and 28
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Table 5: Linear Regression Results of Noise Heuristic N on PES in Scenario 2A

Statistic Estimate Std. Error t value P-value

Intercept −1.895 40 0.241 95 −7.834 0.001

Coefficient
(PES)

0.199 01 0.044 78 4.444 0.001

Residual standard error: 0.5921 on 28 degrees of freedom

Multiple R-squared: 0.4136, Adjusted R-squared: 0.3926

F-statistic: 19.75 on 1 and 28 DF, p-value: 0.0001266

DF taken together with the significant P-value indicates evidence sufficient to reject

the null hypothesis that the PES coefficient is 0 at the 1% significance level. Thus,

the regression model, oversimplified as it may be, reveals statistically significant re-

lationship between the noise heuristic and PES. Also important to note is the fact

that the noise is negative. This is the case because in scenario 2A, the believed

probability was consistently and significantly below the true probability. To better

visualize what is going on, I have included a plot of the linear regression in Figure

13, where one can verify a significant trend of the magnitude of N approaching 0 as

PES increases from 0 to 10.

I also would like to test how this model behaves in the full house scenario in

decision 3, where I suspect framing to be the culprit behind the subjects’ difficulty

in estimating the true probability of success. I run the same regression but instead

use the N observed within each subject in scenario 3A
14

and report the results in

14
I also run the corresponding regressions for scenarios 2B and 3B, and find a significant p-value

and F-statistic in scenario 2B, but insignificant p-values and F-statistic in 3B
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Figure 13: Linear regression of Noise Heuristic N on Poker Experience Scale

Table 6. A quick observation of the table reveals that PES has lost a great deal of

predictive and explanatory power on the noise heuristic. The smaller estimate of

the coefficient for PES also suggests that an increase in poker experience does not

reduce the magnitude of the noise in scenario 3A by as much as it did in 2A. In

other words, the noise in scenario 3A is ”stickier” with respect to a change poker

experience. To better illustrate what happened, I visualize the scenario 3A regression

results in Figure 14.

What is revealed by Figure 14 is that there seem to be 3 outlier points with

N < −4 that are hindering the goodness of fit of the regression. While it would be

nice to simply remove these outliers, doing so would be premature. The mean N in

scenario 3A is -1.38 and the standard deviation is 1.427. Taken together with the
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Table 6: Regression Analysis Summary for Scenario 3A

Statistic Estimate Std. Error t value P-value

Intercept −1.9896 0.5793 −3.435 0.001 87**

Coefficient
(PES)

0.1263 0.1072 1.178 0.248 68

Residual standard error: 1.418 on 28 DF

Multiple R-squared: 0.04723, Adjusted R-squared: 0.0132

F-statistic: 1.388 on 1 and 28 DF, p-value: 0.2487
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Figure 14: Linear regression of Noise Heuristic N on Poker Experience Scale

noise N observed in the 3 apparent outliers, I obtain 3 z-scores of -2.25, -2.739, -2.253.

There may be an argument to be made for removing these outliers if ∣z∣ > 3, but the

observed z-scores taken together with the information that scenario 3A had sufficient

framing effects to violate Allais’s common ratio effect in the experiment, I would deem

these data-points to be true outliers, which to remove would be irresponsible.
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The final result which I would like to comment on is the relationship between

Poker Experience Scale and the difference between the Easy and Difficult certainty

equivalent (CE Difference). Intuitively, I would expect CE Difference to be decreasing

in PES. The more experience someone has with Poker, the better I would expect them

to be at assessing the true probability of success in D1, and thus, the closer I would

expect their certainty equivalent in the poker frame to be to their certainty equivalent

with complete information. I light of observing a general trend of concavity in the

plot of CE difference vs. PES, I decided to move forward with a logarithmic regression

model. I report the findings of the logarithmic regression in Table 7.

Table 7: Logarithmic Regression Results on the Relationship Between PES and diff CE

VariableEstimateStd. Error t value P value

Intercept -0.4049 0.0683 -5.93 < 0.001 ***
log(PES) 0.1471 0.0517 2.85 0.0069 **

Residual standard error: 0.2918 on 44 DF
Multiple R-squared: 0.1734
Adjusted R-squared: 0.1546
F-statistic: 9.227 on 1 and 44 DF, p-value: 0.004001

Similar to the regressions on PES in Table 6 and Table 5, I observe very significant

p-values for the intercept and coefficient but low R-squared values, indicating a low

amount of the variance of CE difference can be explained by PES. That said, the

F-statistic of 9.227, well above the 1% critical value of 7.248 on 1 and 44 DF, together

with the significant p value, asserts that we can reject the null hypothesis that there

is no relationship between PES and CE difference with 99% confidence. Visualizing

this regression in Figure 15 provides some contextualizing information.
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Figure 15: Logarithmic regression of CE Difference on PES

The logarithmic regression suggests positive and diminishing returns to evalu-

ating poker probabilities. Additionally, the graph shows that the variance between

subject’s CE difference and the CE difference that the logarithmic regression model

predicts decreases as PES increases. This is a rather intuitive result, as one might

expect that a poker players accuracy in assessing the true probability of a poker gam-

ble improves with time. I would further assume that this model converges to a CE

difference of 0 as PES approaches the upper echelons of professional poker players. I

did not have access to such players when conducting my experiment, but interesting

future work would be to incorporate such players into the sample and assess the true

upper bound of CE difference.
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7 Conclusion

This work reports on a number of key contributions. First, I find evidence that

Allais’ Paradox and sub-proportionality hold for small-payoff simple gambles with

comparable expected values in the domain of gains, in a more pronounced manner

than Fan, 2002 finds in his work. Second, I find that when I express those simple

gambles as equivalent poker scenarios, sub-proportionality and the common ratio

effect are violated, due to framing effects that cause participants to systematically

underestimate true probabilities. Discussion of the underlying psychological factors

responsible for this violation remain speculative. They include but are not limited to

ambiguity aversion (Ellsberg 1961), and the maxmin expected utility with multiple-

priors model (Gilboa & Schmeidler 1989). Third, I find that the more difficult the

gamble, proxied by the inexperience of the decision maker, the more ambiguous the

gamble becomes. The rest of my analysis admittedly cannot be classified as contri-

butions in a rigorous sense, but are substantive conjecture regarding the violations

of sub-proportionality observed. I find positive but diminishing returns to true cer-

tainty equivalent assessment from my experience heuristic PES. I construct a simple

heuristic for approximating noise quantitatively, perhaps more accurately described

as the degree of wrongness in assessing true probability, and show that the magni-

tude of this heuristic significantly decreases with experience when poker gambles are

further from 0. I also use average probability beliefs to conjecture about a solution

set of CPT model parameters for the average participant in my experiment.

Despite my attempt at mitigating limitations to these findings, I am not naive to

their existence. In conducting this experiment, I was able only to pay participants
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inconsequential sums of money. There is an existing corpus of work mentioned in the

literature review that finds the Allais Paradox to lose descriptive power as gamble

payoffs decrease. Secondly, the decisions in my experiment were constructed such

that subjects would be near indifference to the gambles. I constructed it this way

because at small gain payoffs, even the most risk averse subjects are not risk averse

enough to prefer the safer gamble if it’s expected value is significantly less than the

the risky gamble, so I would expect EUT to dominate, which isn’t interesting. The

trade off is that near indifference, it can be difficult even for subjects to establish

strict preference relations. Another consequence of using small gains which I found

empirically to be true was that my risk tolerance heuristic (RTS) provided little

explanatory power, simply because subjects are not assessing risk that rigorously at

such small payoff levels. Furthermore, I established heuristics, such as N, PES, RTS

and probability beliefs which may be viewed as dubious. They are my best attempt

at quantifying experimental factors that are qualitative and subjective in nature, but

are not founded by any empirical or theoretical consensus. I still argue that at the

endpoints, PES is suitable for my needs because I defined it such that PES=0 ⟹

never having played poker before and PES=10 ⟹ someone who has played poker

for over 3 years and continues to play daily, but near the middle of the scale is where

ranking participants by experience becomes more difficult.

In light of these limitations, further work on sub-proportionality in the context of

Poker and other games of uncertainty is needed before compelling conclusions can be

drawn. Compound invariance in poker gambles needs to be empirically tested, and

insights into how my findings respond when the probability scaling factor is varied,
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when payoffs are increased, and when different frames are applied to hide the true

probabilities.

To conclude, I’ll re-enforce the motivations of why someone should care about

what may seem at first like an unrealistic and oversimplified abstraction of a popular

Las Vegas table game. The vast majority of the decisions we make every day are very

inconsequential. In most cases, the outcomes of these decisions are only marginally

different, payoffs are small, probabilities of desired outcomes are unknown, prefer-

ences between options are near indifference, and losses such as time and energy are

negligible. My thesis aimed to investigate how well a behavioral economics theory,

worthy of a Nobel prize, models these type of decisions, leveraging the setting of

Texas Hold’em, where probabilities are subjective yet verifiable. While this paper

offers another step in the direction of an improved understanding of decision mak-

ing under uncertainty in the aforementioned conditions, much still remains to be

uncovered.

55



References

Al-Nowaihi, A., & Dhami, S. (2011, February). Probability weighting functions. In

Wiley encyclopedia of operations research and management science. John Wi-

ley & Sons, Inc.

Billings, D., Papp, D., Schaeffer, J., & Szafron, D. (1998). Opponent modeling in

poker. Proceedings of the Fifteenth National/Tenth Conference on Artificial

Intelligence/Innovative Applications of Artificial Intelligence, 493–499.

Birnbaum, M. H. (1999). The paradoxes of allais, stochastic dominance, and decision

weights. In Decision science and technology (pp. 27–52). Springer US.

Blavatskyy, P. R. (2022). Intertemporal choice as a tradeoff between cumulative

payoff and average delay. J. Risk Uncertain., 64 (1), 89–107.

Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability

weighting function in medical decision analysis. Manage. Sci., 46 (11), 1485–

1496.

Borch, K. (1968). The allais paradox: A comment. Syst. Res., 13 (6), 488–489.

Brady, M. E. (1993). J. m. keynes’s theoretical approach to decision-making un-

der conditions of risk and uncertainty. British Journal for the Philosophy of

Science, 44 (2), 357–376. https://doi.org/10.1093/bjps/44.2.357

Fan, C.-P. (2002). Allais paradox in the small. J. Econ. Behav. Organ., 49 (3), 411–

421.

Félix, D., & Reis, L. P. (2008). Opponent modelling in texas hold’em poker as the key

for success. Proceedings of the 2008 Conference on ECAI 2008: 18th European

Conference on Artificial Intelligence, 893–894.

Findler, N. V., & van Leeuwen, J. (1979). On the complexity of decision trees, the

quasi-optimizer, and the power of heuristic rules. Inf. Contr., 40 (1), 1–19.

56

https://doi.org/10.1093/bjps/44.2.357
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Appendix

A IRB Compliance and Information

This experiment was conducted on human subjects, and as such, was subject to

review by the Duke Institutional Review Board (IRB). After months of working

closely with the campus IRB to ensure a procedure with low/no risk to subjects,

I procured approval for my protocol, uniquely identified by IRB Protocol ID 2024-

0317. In compliance with the protocol guidelines, the experiment does not report or

collect any direct or indirect identifiers. In addition, participants are asked in the

survey to acknowledge the participation consent form.
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Figure 16: Participation Consent Form
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B Data Collection

The study was conducted over the course of several weeks at Duke University. Lever-

aging email channels of Duke University Student Unions, particularly Economics and

Computer Science, students were directed to the Bryan Center Plaza, where I was

conducting the experiment on a rolling basis in person. The sample population of

Duke students (largely undergraduates studying Economics and Computer Science)

self selected to participate in the experiment, which may skew the sample towards

those interested in poker and outgoing enough to sit down and engage in an experi-

ment ran by a student they did not know. The BC Plaza is a site on Duke’s campus

that receives large traffic during the day and has presentation tables available to

be rented for 3 hour periods. As such, there were many participants who were just

passing by and had their interest peaked.

C Poker Probability Derivations

Decision 3A: Given that you begin with a pair of 2s, there are two scenarios in

which you can make a full house after the first three community cards. The first way

is if one of the community cards is 2, and other two are of equal rank that is not

2. The second way is if all three community cards are equal rank. Let’s count the

61



number of ways this can happen, taking into account that order does not matter.

There are (2
1
) 2’s left in the deck. For the other 2 community cards, there are (12

1
)

other ranks in the deck, and we there are (4
2
) ways we can have 2 among the 4 cards of

each rank appear in the community cards. This implies that there are (2
1
)∗(12

1
)∗(4

2
)

ways that the first scenario can occur. For the second scenario, there are (12
1
) other

ranks in the deck, and for each there are (4
3
) ways that 3 cards can be selected out

of 4 to appear in the community cards. This implies that there are (12
1
) ∗ (4

3
) ways

the second scenario can occur. The sum of the ways scenario 1 and scenario 2 can

occur is equal to the total number of favorable scenarios. For the total number of

possible scenarios, there are (50
3
) ways we can draw 3 of the 50 remaining cards in

the deck. Since all scenarios are equally likely, the expression for the raw probability

of success in this gamble is:

(2
1
) ∗ (12

1
) ∗ (4

2
) + (12

1
) ∗ (4

3
)

(50
3
)

=
192

19600
= 0.009796

62


	Introduction
	Literature Review
	Theoretical Framework
	Experimental Design
	The Survey

	Empirical Data
	Results
	Experiment Iteration 1
	Framing Effects and Perceived Probabilities
	Experiment Iteration 2
	Quantifying Noise due to Framing
	Experience as a proxy for gamble difficulty

	Conclusion
	IRB Compliance and Information
	Data Collection
	Poker Probability Derivations

