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Abstract 

Delaying a financial transaction can be costly, but the cost of delay is difficult to estimate in traditional 

finance. I exploit the unique data offering and market design of the Ethereum blockchain to estimate the 

cost of delaying financial transactions in decentralized finance (DeFi). I construct a dynamic auction 

model for the Ethereum transaction fee market that relates users' optimal transaction fee bids to their delay 

cost functions and network conditions, and I structurally estimate the delay cost functions for different 

users and transaction types. The average cost of delaying a transaction by one minute is 8.78 US dollars, 

but the distribution of delay costs is highly skewed to the right. Delay costs are higher for complex 

transactions and users who trade more frequently. I estimate that welfare loss due to network delay on 

Ethereum was 14.03 million US dollars per day in July 2021, and I apply the delay cost estimates to 

evaluate the welfare losses under alternative transaction fee mechanisms. 

 

JEL Codes: G10; L17; D44 
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1 Introduction

Time is money. Financial institutions are willing to exhaust a great amount of resources to expe-

dite their transactions. For example, Jump Trading, a high-frequency trading hedge fund, spent

14 million US dollars to acquire land next to the Chicago Mercantile Exchange and build anten-

nas to expedite their transactions by less than a millisecond (Louis (2017)). This is described

as a “high-frequency trading arms race” in Budish et al. (2015). On the other hand, individual

investors who can afford to wait set “limit orders” on financial platforms in seek of a better price

in the future (Handa and Schwartz (1996); Parlour (1998)). These examples illustrate that the

cost of delay in the financial system varies for different agents and different types of transactions.

Intuitively, rational agents will wait for potential chances of obtaining better deals in the

future if their demand is not urgent, i.e., the delay costs are low. However, it is difficult to estimate

the transaction delay costs in traditional finance because a) legacy financial data don’t reveal

the time when agents initiate new transactions, so transaction delays are difficult to measure;

b) financial institutions compete for speed by lump-sum investments in infrastructure, so the

transaction-level variance of delay cost is absent.

The emergence of decentralized finance on public blockchains in the past few years presents

a unique opportunity to estimate the delay costs in a financial system. Blockchain is a type of

distributed ledger technology that consists of a growing list of transaction records securely linked

with cryptography, called blocks (Townsend (2020)). It is a computer network that does not rely

on a single centralized agent (e.g., a firm or a government) as a trustee or notary to intermediate

and settle transactions.

One primary application of blockchains is to execute financial transactions in a decentralized

way, the so-called decentralized finance or “DeFi” (Harvey et al. (2021)). Since the DeFi boom

in 2020, various applications have been built on blockchains to enable a comprehensive set of

operations, including swaps, loans, deposits, token offerings, and derivatives trading. It is the
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unique design of the blockchain transaction market and the transparency and immutability of

blockchain data that makes the identification and estimation in this paper possible.

Launched in 2015, Ethereum is the most widely used blockchain platform in the world as

of January 2023 and home to most major DeFi applications. Due to technological limitations,

Ethereum has a limit on transaction throughput. Ethereum blocks arrive every few seconds, and

each block has an exogenous limit of the total computation resources that can be consumed by

the transactions in the block.1 Almost always, the demand for transactions is higher than the

supply of block spaces, so users must compete for blockchain resources. Ethereum thus uses

a mechanism of transaction fees to efficiently allocate the block spaces to users (Roughgarden

(2021)).

This paper studies the Ethereum transaction fee market in July 2021, when the transaction

fee bidding follows infinitely repeated first-price common-value auctions.2 Users submit their

transaction information and transaction fee bids into the “mempool”or the queue pool. Block

builders (or “miners”) then select transactions from the mempool and include them in blocks as

successful transactions.3 All transaction fees are collected by block builders, so they prioritize

the transactions with higher per-unit transaction fee bids or the so-called “gas price”. The trans-

actions not included by block builders in the current block stay in the mempool for consideration

in future blocks.

Applying a special case of Afèche and Mendelson (2004) in the Ethereum transaction fee

market, I construct a model of dynamic first-price auctions on the demand side of the transaction

fee market. Users have private values of their transactions that decay over time. They submit

their transactions to the mempool given the blockchain and mempool history they observe, from

1Computation resources on Ethereum are counted in units of “gas”. In July 2021 (sample period of this paper), each
block has a hard-coded “gas limit” of 15 million. See Section 2.3 for a detailed description.

2The choice of the study period in July 2021 is driven by data availability. The transaction fee mechanism on
Ethereum didn’t change between April 15, 2021 and August 5, 2021.

3See Easley et al. (2019); Huberman et al. (2021) for detailed analyses of block builders’ behavior and the supply
side of the market.
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which they can fully learn the distribution of delay given any gas price bid. Users then decide

whether to submit their transactions and how much fee they bid by maximizing their expected

utility. The optimal gas price bid is a function of the delay cost of settling their transactions in

later blocks and the network congestion. The optimal gas price bid is strictly lower than the static

first-price auction. The key distinction between my framework and the previous literature is that

I model user learning and waiting in a dynamic setting.

With the model on optimal bidding, I structurally estimate users’ delay costs from their trans-

action fee bids. A higher transaction fee bid implies a higher delay cost. Users’ delay costs are

thus identified from the variance of transaction bids under different network conditions. Us-

ing a random coefficient model, I show that the average delay cost function of any sample of

transactions is identified. The identification relies on two plausible assumptions. First, network

conditions impact users’ bidding exclusively by changing the waiting time distribution condi-

tional on the gas price bid. Second, the waiting time distribution does not react to the bidding of

any infinitesimal user.

Estimation follows a two-stage approach. In the first stage, I fit the waiting time distribution

conditional on the bids and network conditions. In the second stage, I use a least square approach

to estimate the delay cost function as a polynomial of waiting time. To shed light on the distribu-

tion of delay costs, I divide the transaction by delay cost percentiles using the residuals obtained

from the main regression and separately estimate the average delay costs for each percentile. The

same procedure is replicated in different samples of transactions grouped by user and transaction

characteristics. The data are from transaction-level records on the Ethereum blockchain and a

data set from Liu et al. (2022a,b) that documents transaction-level waiting times.

The estimation shows that the average cost of delaying a transaction for one minute is $8.78.

This estimate, however, varies widely across different transactions. The complete functional

form of the average delay costs is graphed in Fig. 1. The average delay cost would be 94.56 USD

for the 10% transactions with the highest delay costs and 1.72 USD for the 10% transactions
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Figure 1: Estimate of the average delay cost function for all Ethereum transactions

with the lowest delay costs. Separately estimating the average delay cost for each percentile of

transactions gives a delay costs distribution that is highly skewed to the right.

Using the same method, I further study the heterogeneity of delay costs for different groups

of users and transactions. I find that on average, delay costs are higher for complex transactions

(i.e., those consuming more computation power) and for users who transact more frequently

(i.e., those who complete multiple transactions in the study period). Average delay costs vary at

different hours. The analysis can be replicated to estimate the average delay cost for any single

user. For example, certain addresses are known to be linked to large centralized exchanges like

Binance and Coinbase. I find that Binance displays a higher delay cost than its counterparts.

I apply the delay cost estimates to evaluate the total welfare losses due to transaction de-

lays under different transaction fee mechanisms. Welfare loss is estimated to be 14.03 million

US dollars per day under the benchmark mechanism Ethereum adopted in July 2021 that orders

transactions by their gas price bids. This, however, performs almost equally well as a counter-

factual “socially optimal” mechanism that orders transactions by their delay costs and is much

8



better than a “naive” mechanism that orders transactions by their time of submission. These

results demonstrate a novel welfare criterion for evaluating market designs on blockchains.

Related Literature

This paper contributes to four strands of literature. First, I contribute to the study on the value

of time. Since the seminal paper of Becker (1965), the trade-off between time and market goods

has been widely studied in the economic literature. Existing literature focus on the value of

time for consumers (Deacon and Sonstelie (1985); Goolsbee and Klenow (2006); Aguiar and

Hurst (2007); Nevo and Wong (2018)), firms (Lewis and Bajari (2011, 2014)), urban commuters

(Buchholz et al. (2020); Goldszmidt et al. (2020)), and self-employed workers (Agness et al.

(2022)). Queuing and waiting are also widely studied as a topic in operation research.4 This

paper extends the focus of literature to financial transactions, where the delay cost also plays a

very important role.

Second, I contribute to a large literature on strategic behavior in dynamic games. For exam-

ple, Hendel and Nevo (2006, 2013) study consumer stockpiling, i.e., bringing forward purchases

when a good is on sale, and the private cost comes from the storage cost. On the other side,

Li et al. (2014) and Papanastasiou and Savva (2017) show that a portion of consumers strategi-

cally delays purchases for potential price decreases or additional information. Li et al. (2014)

attributes the existence of non-strategic consumers to myopia. This paper endogenizes the extent

of strategic delay as a function of users’ delay costs.

Third, I contribute to the studies of financial market design in the high-frequency trading

setting. Since Demsetz (1968), transaction costs and latency arbitrage trading have been widely

studied in the traditional financial markets. To address the problems of front-running, several

studies including Farmer and Skouras (2012); Wah and Wellman (2013); Budish et al. (2015)

4See, for example, Naor (1969); Holt and Sherman (1982); Hassin (1995); Afèche and Mendelson (2004); Kittsteiner
and Moldovanu (2005); Hassin (2016); Che and Tercieux (2020).
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propose a frequent batch auction model where time is treated as a discrete variable and orders

are processed in batch. Though Budish et al. (2015) investigate the theoretical advantages of this

model, it has not been tested in traditional finance. The empirical phenomenon documented in

this paper complements the theoretical discussion, and this paper highlights the potential welfare

losses due to transaction delays under the frequent batch auction model in Budish et al. (2015).

Fourth, I contribute to a growing literature on blockchain transaction fee markets. Several

previous studies including Easley et al. (2019) and Huberman et al. (2021) have studied the Bit-

coin payment system proposed in Nakamoto (2008). Other studies model the blockchain trans-

action fee market as a static auction and study the incentive compatibility under different mech-

anisms,5 but this paper shows that the optimal level of bidding in a dynamic setting, which is the

true setting, can be significantly smaller than the static setting. Moreover, this paper proposes

a novel welfare criterion to evaluate transaction fee mechanisms using counterfactual analysis,

contributing to the discussion on optimal transaction fee mechanism designs as in Roughgarden

(2020, 2021); Liu et al. (2022a)).

Organization

The rest of the paper proceeds as follows. Section 2 introduces the Ethereum transaction fee

market as the setting of this study. Section 3 describes the bidding model in a dynamic first-price

auction scenario. Section 4 introduces the data sources. Section 5 discusses the identification and

estimation methods. Section 6 present the estimation results. Section 7 discusses an application

of the estimates in financial market design. Section 8 concludes.

2 Background: Ethereum Transaction Fee Market

5See, for example, Yao (2018); Lavi et al. (2019); Roughgarden (2020, 2021); Chung and Shi (2022).
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2.1 Blockchains and DeFi

Since the launch of Bitcoin in 2009 (Nakamoto (2008)), blockchain has emerged as a new tech-

nology that is used for a wide range of purposes. Blockchain is a type of distributed ledger

technology that consists of a growing list of transaction records securely linked with cryptog-

raphy. Updates on transaction records are packaged into blocks and are chained together using

cryptographic hash functions to allow an audit of the prior history hence the name (Harvey et al.

(2021)). Instead of relying on a centralized agent to settle transactions, blockchain is a computer

network composed of a group of users usually called “nodes”, and they maintain the operation

of the ledger collectively through a consensus protocol. One of the most popular applications of

blockchain is cryptocurrencies, which are tokens (usually scarce in supply) built on blockchains.

The ownership of the tokens is securely recorded on the blockchain, and users can transfer the

ownership of these tokens through transactions on the blockchain.

There are several important features of blockchain. First, transactions are immutably recorded.

The blocks are linked with each other by cryptography, so any tampering of previous records will

lead to inconsistency and will be detected by other users. Second, the entry is permissionless.

Any person or entity can operate on public blockchains without permission from any parties or

governments. While this improves financial accessibility, it also creates challenges for regula-

tion. Third, users are anonymous, but transactions are fully traceable and transparent. Users

are represented with unique 42-character hexadecimal addresses that effectively hide their real

identities. However, the transactions between all these addresses are immutably documented on

the blockchain, which allows perfect tracking of the relationships between addresses.

DeFi operates on blockchains. Since the DeFi boom in 2020, various decentralized appli-

cations (DApps) have been built on blockchains to enable a comprehensive set of financial op-

erations including swaps, loans, deposits, token offerings, stablecoins, and derivatives trading.

These applications are built as smart contracts on blockchains, which can be thought of as au-

tomated algorithms with open-source code. Compared to traditional finance, DeFi has higher
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efficiency, accessibility, transparency, and interoperability (Harvey et al. (2021)). According to

data from DefiLlama, the total value locked (TVL) in DeFi as of October 2022 is approximately

54 billion USD.

2.2 The Ethereum Blockchain

Ethereum is the most widely used blockchain in the world. Ether, dubbed as “ETH” in cryp-

tocurrency exchanges, is the native token on Ethereum that supports its operation. Ethereum is

a blockchain platform with a built-in Turing-complete programming language, allowing anyone

to write smart contracts and decentralized applications where they can create their own arbitrary

rules for ownership, transaction formats, and state transition functions (Buterin (2014)). It is a

decentralized computation infrastructure that allows free entry and exit of any parties to build

and use various (in theory, any) applications.

According to data from Etherscan (2022), Ethereum hosts about 200 million distinct ad-

dresses (i.e., accounts, though a user can hold multiple addresses), 580 thousand ERC-20 tokens

(i.e., cryptocurrencies built with Ethereum smart contract using a common standard that allows

for interoperability), and 1.1 million daily transactions. It is also home to most major decentral-

ized finance protocols (e.g., MakerDAO, Uniswap, Compound, etc.) and NFT marketplaces (e.g.,

Opensea). Therefore, Ethereum is an important market to study from an industrial organization

and market design perspective.

The transactions on Ethereum are processed in blocks, which are batches of simultaneously

executed transactions. As a proof-of-work blockchain, Ethereum is secured by a subset of users

called “block builders” or “miners”. Block builders keep attempting to find roots of a specific

cryptographic function, which has proved to be computationally intensive. Each time someone

finds a solution, the person can launch a new block and becomes the block builder of that block

and thus capture the block reward and transaction fees. Depending on block builders’ speed of

solving the puzzles, Ethereum blocks arrive following a random process, and each block can
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process a fixed amount of computation in the transactions due to technological limitations on

scalability.6 Therefore, there is a limited supply of Ethereum blockchain resources at any point

in time, which is in most cases smaller than the total transaction demands. It thus requires a

mechanism to efficiently allocate blockchain resources.

2.3 Transaction Fees on Ethereum

Ethereum allocates its blockchain resources through a transaction fee mechanism. While Ethereum

occasionally updates its transaction fee mechanism,7 this paper focuses on the period of our con-

cern in July 2021. In this period, Ethereum largely follows the prototype of the Bitcoin payment

system as studied in Easley et al. (2019) and Huberman et al. (2021), which is also similar to

the frequent batch auction model proposed in Budish et al. (2015). The following presentation

focuses on the Ethereum transaction market in July 2021.

On the supply side, block builders keep attempting to solve the mathematical puzzle that

serves as a proof-of-work. On average every 13 seconds, some block builder finds a solution

to the mathematical puzzle and claims ownership of the next block. This block builder has full

discretion over which pending transactions to include in the block and how they are ordered,

and this block builder aims to maximize their own revenues. Block builders are rewarded two

newly minted Ether by the Ethereum protocol in addition to all the transaction fees paid by users

in their blocks. Therefore, block builders tend to include transactions that generate the highest

transaction fees.

Transactions on Ethereum consume the computation power of blockchain operators or the

6See Zhou et al. (2020); Gudgeon et al. (2020) for survey of computer science literature. Eyal et al. (2016); Kalodner
et al. (2018); Tsabary et al. (2021) discuss potential solutions to the problem.

7The three closest transaction fee mechanisms changes are (i) Ethereum adjusted the gas limit for each block from
12.5 million to 15 million in the Berlin Hardfork in April 2021; (ii) Ethereum implemented EIP-1559 in the London
Hardfork in August 2021, which changed the transaction fee mechanism from a first-price auction to a mechanism
based on a second-price auction; (iii) Ethereum implements the Merge in September 2022 and shifted from a proof-
of-work blockchain to a proof-of-stake blockchain. These updates are well anticipated by the public, but users are
not likely to react to them when bidding transaction fees because these month-level updates are not relevant for the
minute-level transaction waiting time.
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“nodes”, and the amount of computation that can be accomplished by each block has a hard-

coded limit. The computation unit on Ethereum is dubbed “gas”, an analogy to gasoline for cars.

Each operation on Ethereum consumes a pre-designated amount of gas. For example, a transfer

of any amount of Ether, the native token of Ethereum, from one address to another consumes

21,000 units of gas, and a swap of one token with another on Uniswap, a popular decentralized

exchange for token swaps, consumes approximately 150,000 units of gas. A detailed gas sched-

ule of the Ethereum blockchain is shown in Fig. B.1. In July 2021, each block on Ethereum held

a maximum of 15 million gas units, which can for example execute approximately 700 Ether

transfers.

On the demand side, users first submit their transactions to a wait list called “mempool”, a

queue pool that collects all the pending transactions. Together with the content of their transac-

tions, they also submit gas price bids, which is their willingness to pay the block builder for each

unit of gas consumed by their transactions. Block builders monitor the “mempool” and decide

which transactions to include into their blocks following the principle of revenue maximization.

If a transaction is included into a block, the user then pays a transaction fee that equals to the

product of the gas price bid (“pay-as-bid”) and the actual amount of gas used for this transaction.

The transactions not included into the current block remain in the mempool and keep waiting un-

til either included in a future block or cancelled by the user. Therefore, the Ethereum transaction

fee market in the study period forms an infinitely repeated first-price auction.

3 The Bidding Model

The cost of delay comes from a variety of factors on Ethereum. First, other users might com-

pete for the same arbitrage opportunities, and a delay in transaction settlement implies a loss of

opportunities. Second, delayed transactions risk being frontrun by malicious parties. The pend-

ing transaction might reveal private information on future price movements, so malicious parties
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may take advantage the time gap to insert their transactions, which are in many cases illegal.

This problem is especially severe in decentralized finance because transactions in the mempool

are public and regulation is absent (Daian et al. (2020)). Third, delay might also lead to failure of

transaction settlement. For example, Uniswap, the largest decentralized exchange on Ethereum,

specifies that transactions must be settled within 20 minutes and would otherwise fail. Capponi

et al. (2022) finds that execution risk is the main concern of transaction delays and thus com-

poses the main source of delay costs. Fourth, the design of Ethereum prohibits addresses from

submitting another transaction before the earlier transaction was settled or canceled, so delaying

a transaction can bear opportunity costs.

I apply a special case of Afèche and Mendelson (2004) in the Ethereum transaction fee mar-

ket to study how users with a delay cost bid optimally in the dynamic first-price auction of the

Ethereum transaction fee market. I adopt a simple delay cost term that includes all the opportu-

nity cost caused by transaction delays. I consider a continuous timeline denoted by t with its unit

measured in seconds.

Supply. The supply side of the market is straightforward. Blocks arrive in a homogeneous

Poisson arrival process with a shape parameter Λ. Let Xn be the inter-arrival time that follows an

exponential distribution Exp(Λ). Then the arrival moment of the nth block is Sn = ∑
n
i=1 Xn.

User arrivals. Suppose there are a total of N potential users (for example, there are a total of 200

million addresses on Ethereum). Demands of each potential user i comes at a Poisson process

with a shape parameter αi, so the demand from any user comes also following a Poisson process

with a shape parameter A=∑
N
i=1 αi. The gas need of each transaction follows i.i.d. from a known

distribution (e.g., Fig. B.3b).

The private value per gas of each submitted transaction, v, is defined as the total welfare of

completing the transaction without any delay divided by the total amount of gas used. v depends

on the time it is submitted and its own characteristics, i.e., v = f (θ , t), where θ is a vector of

characteristics. Specifically, θ includes the component depending on the user’s idiosyncratic
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characteristics and other characteristics of the transaction.

Delay cost structure. A user i’s utility function for transaction indexed j incorporating transac-

tion delay can be written as

ui j(v, t,b) = vi j −Ci j(t)−bi jgi j, (1)

where vi j is the private valuation, Ci j(t) is the delay cost, bi j is the bid price on a unit of gas, and

gi j is the total amount of gas used. Assume that C is continuously differentiable and monotoni-

cally increasing.

Market structure. Block builders collect all the transaction fees. They select the set of transac-

tions S to include in their blocks by solving the profit maximization problem

max
S

{ ∑
i, j∈S

bi jgi j} s.t. ∑
i, j∈S

gi j ≤ G. (2)

As a solution to this linear maximization problem, block builders prioritize the users who bid

higher gas prices.8 This makes the market an infinitely repeated first-price open-bid auction.

With 200 million addresses as potential users, I may assume that the actions of any infinitesimal

user do not affect the distribution of delay in the system.9

Information structure. In a dynamic setting, users learn from past auctions. Users observe

the past history of blockchain and mempool, from which they can infer the current rate of user

arrivals and the distribution of private values, which enables them to form an expectation on the

delay given any bid price.10 Under a specific observable market condition M, which includes

8It is true that in marginal cases when the total gas used approaches the gas limit, block builders may deviate from
this behavior. However, at most 1 or 2 transactions out of on average 170 transactions in each block would be
affected, so the marginal cases are ignored.

9In the sample period, the number of transactions done by the most active user accounts for merely 2% of the total
number of transactions. It is thus not likely that any single user has market power.

10It is reasonable to believe that users can predict future delays even for the less advanced ones because there
are plenty of gas price recommendation software on the Internet that people frequently look at. Cryptocurrency
wallets widely used for transaction submission like MetaMask show automatic reminders of waiting times when
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all the observable information on the blockchain history and current mempool status, a user can

predict the probability that the transaction is included in the ith block afterward and thus the full

distribution of waiting time conditional on any transaction fee bid b they submit.

Market Equilibrium. By Afèche and Mendelson (2004), there exists a unique symmetric bid-

ding equilibrium in this model, which thus leads to an equilibrium in network waiting time. I do

not explicitly endogenize the waiting time equilibrium as in Afèche and Mendelson (2004) but

instead estimate it empirically.

Let the conditional waiting time on any gas price bid b under the market condition M be a

random variable denoted as WM|b whose cumulative distributive function denoted as WM(t|b).

I assume that WM(t|b) ∈ [0,1] is twice continuously differentiable over both b and t and mono-

tonically increasing on the domain t ∈ [0,∞). Let the probability density function of WM|b be

wM(t|b). Also, the higher the bid is, the larger the probability that the transaction gets included

before any time t, which gives ∂WM(t|b)
∂b > 0,∀b, t > 0. For tractability purpose, I further assume

that ∂ 2WM(t|b)
∂b2 < 0,∀b, t > 0.

Since users are atomistic, the distribution of WM|b is independent of the bid of each single

user, so from the perspective of each user, WM|b follows an exogenous distribution that can be

predicted from the history on the blockchain.

Expected utility. The expected utility of a bid gas price b would be

E(ui j(v,b)) =
∫

∞

t=0
ui j(v, t,b)dWM(t|b) = vi j −E[Ci j(WM|b)]−bgi j. (3)

Users will only submit bids if the expected utilities are positive, i.e. E(ui j(v,b)) > 0. If users

don’t submit bids, denote b∗ = 0, and the realized utility is zero.

Optimal bids. Users submit the optimal bid (or no submission) that maximizes their expected

users set gas prices. See Fig. B.2 for an example of the fee bidding interface.
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utility,

b∗ = argmax
b

{E[ui j(v,b)]}. (4)

The first order condition of Eq. (3) gives ∂E[ui j(v,b)]
∂b |b=b∗ = 0. By Leibniz integral rule, this can

be written as

gi j +
∫

∞

t=0
Ci j(t)

∂wM(t|b)
∂b

|b=b∗dt = 0. (5)

In addition, b∗ must also satisfy the second order condition ∂ 2
E[ui j(v,b)]

∂b2 |b=b∗ < 0 and the boundary

condition that E(ui j(v,b∗)) > 0. Combining these observations, we have the following theorem

for users’ optimal pricing rule.

Theorem 3.1 (Optimal Bidding). Consider transaction j submitted by user i with the utility

function described in Eq. (1). Suppose the delay cost function Ci j is continuously differen-

tiable and monotonically increasing. Suppose WM(t|b) is the cumulative distribution function

of delay time given a bid b, which is twice continuously differentiable over both b and t, and

∂WM(t|b)/∂b > 0,∂ 2WM(t|b)/∂b2 < 0 for any b, t > 0. Then the optimal bid of this transaction

is

b∗i j =


0 if E(ui j(v, b̃i j))≤ 0,

b̃i j if E(ui j(v, b̃i j))> 0,
(6)

where b̃i j is the unique positive solution to Eq. (5).

Proof: See Appendix A.1.

The theorem gives two key observations. First, the optimal bid derived from this model is

smaller than that from a static first-price auction model. Intuitively, this is because the trans-

actions have multiple chances of being included in the blocks, whereas in a static setting the

transactions only have one chance. Second, the optimal bids are smaller for the users who are

more patient, i.e., whose delay costs are lower. These two observations are summarized as the

corollaries below. See Appendix A.2 for an example.
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Corollary 3.1.1. The optimal bid in a dynamic first-price auction is strictly smaller than that in

a static first-price auction when users are infinitesimal (i.e. N → ∞).

Proof: All subscripts of i j are omitted in the proof. In a static first price auction, the Bayes-

Nash equilibrium bidding strategy is bstatic = N−1
N

v
g → v

g when N → ∞. By Theorem 3.1, if

E(u(v, b̃)) ≤ 0, b∗ = 0 ≤ bstatic; If E(u(v, b̃)) > 0, then v−C(t)− b∗g > 0, so b∗ < v−C(t)
g <

v
g = bstatic.

Corollary 3.1.2. For two transactions under the same market condition M with the same amount

of gas used gi j1 = gi j2, suppose Ci j1(t) ≤ Ci j2(t) and C′
i j1(t) ≤ C′

i j2(t) for any t > 0, then the

optimal bids satisfy b∗i j1 ≤ b∗i j2.

Proof: Using integral by parts, the first-order condition in Eq. (5) can be rewritten as

∫
∞

t=0

∂WM(t|b∗i j)

∂bi j
C′

i j(t)dt = gi j.

Since C′
i j1(t)≤C′

i j2(t) for any t > 0, there exists t0 > 0 such that
∂WM(t0|b∗i j1)

∂b >
∂WM(t0|b∗i j2)

∂b . Since
∂WM(t0|b∗i j)

∂b is monotonically decreasing for any t > 0, b∗i j1 ≤ b∗i j2.

4 Data

4.1 Measurement

I combine data sets from the Ethereum blockchain and mempool. As a ledger itself, the Ethereum

blockchain records the whole transaction history, including the addresses involved, the times-

tamp when block builder started to pack the block (given by block builders), amounts of Ether

(the native token of Ethereum) transferred, transaction fees bids, amount of gas used of all trans-

actions that happened in the history. The immutability of the blockchain technology guarantees

the accuracy of these information. I access the Ethereum blockchain data through Google Big-

query Platform (2019).
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The blockchain, however, does not provide information on the time when each user submits

the transaction. To complement this, I use a data set from Liu et al. (2022a,b) that measures the

timing of users’ submission their transactions to the mempool, T mempool
TX , by constantly moni-

toring the Ethereum mempool. To obtain a reasonable approximation of the mempool data, Liu

et al. (2022a,b) operates four geographically-distributed nodes across the globe to get a repre-

sentative sample of the mempool. Their modified clients store logs of mempool whenever they

receive new transactions submitted from the network. The earliest time when any transaction

is observed in mempool across all servers is used to estimate the time when users submit their

transactions.

To measure the waiting time of each transaction, the timestamp when the transaction is con-

firmed on blockchain, T blockchain
TX , is also necessary. I follow the practices of Liu et al. (2022a,b)

to use the timestamp given by the block builder of the next block. The reasoning behind this

is that the time when the block builder of the next block start to pack the block should be ap-

proximately the time when the transactions in the current block are confirmed by the blockchain

network. The time that the transaction waits as a pending transaction is then

Waiting time of TX= T blockchain
TX −T mempool

TX .

A distribution of the waiting time collected in the data is shown in Fig. B.3.

4.2 Summary Statistics

The data covers most of the transactions in the 60,000 blocks from block number 12895000 (July

25, 2021) to 12954999 (August 3, 2021) on the Ethereum blockchain. Due to technological

issues with mempool monitoring, mempool data is missing from block number 12919573 to

block number 12920091 (8:13 - 10:00 +UTC, July 29) and from block number 12924071 to

block number 12924777 (1:13 - 4:00 +UTC, July 30). The mempool data is ephemeral, so it
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Table 1: Summary Statistics

mean SD
gas price (Gwei) 44.04 149.92
waiting time (s) 100.00 310.32
amount of gas used 75,083 149,772
time between two blocks (s) 15.72 14.25
block size (B) 65,209 16,876
block gas limit 14,986,493 19,545
number of transactions submitted per min 915.72 428.83
Observations 11,811,229

is not possible to recollect the data afterward. However, missing data due to exogenous server

breakdown should not be selected and bias the results.

As mentioned in Liu et al. (2022a,b), a small portion (approximately 5%) of the transactions

are submitted directly to the block builders to avoid potential frontrunning,11 so they are not

observable in the mempool. As a result, waiting time for these transactions are missing, so I

exclude them from the analysis. This might bring downward bias to estimates of average delay

cost functions because these transactions are usually high-value and high-delay-cost transactions.

In total, my data include 10462708 transactions from 58000 out of 60,000 blocks at the end

of July 2021. Summary statistics of several key variables in the data are presented in Table 1.

Distributions of several key variables is presented in Fig. B.3.

4.3 Descriptive Analysis

I run a simple ordinary least square regression to show the correlation between the waiting time

of each transaction and gas price bids and market conditions. The results are presented in Ta-

ble 2. As expected, when the market is more congested (proxied by the number of transactions

submitted to the mempool per minute), the waiting time is longer; when the user bids a higher

11Transactions in the mempool is public revealed, so other users may take advantage of the information to “frontrun”
the transactions by submitting a higher gas price bid or directly colluding with block makers. See more details
in Daian et al. (2020).
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Table 2: Correlation between waiting time and other variables

(1)
Variables waiting time (s)

num of txs submitted per min 0.169***
(0.000323)

gas price (Gwei) -0.0839***
(0.00120)

Constant -40.76***
(0.293)

R-squared 0.026
Observations 10,462,708
OLS regression with standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

gas price, the waiting time is shorter. These results, however, only demonstrate correlations and

should not be interpreted as causal because both independent variables can be endogenous.

5 Identification and Estimation

This section discusses identification and estimation methods of the model. The variance of bids

in a sample of transactions under different network conditions enables the identification of the

delay cost function. Estimation follows a two-stage procedure that first estimates the conditional

waiting time distribution and then the delay cost function.

5.1 Identification

As stated in Theorem 3.1, a higher transaction fee bid implies a higher delay cost. To illustrate

this, consider two types of users - one with a low delay cost and one with a high delay cost.

Suppose they bid both in a congested market and a non-congested blockchain market. In the

non-congested case, a low bid is enough to guarantee quick settlement, so both low and high
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delay cost users would bid low. In the congested case, however, a high bid is necessary for quick

settlement. In this case, users with low delay cost might still bid low because they do not care

about waiting time, but users with high delay costs will bid higher in comparison. Therefore, the

bids of the same transaction under different market conditions can identify the delay cost.

While this sheds some light on the delay cost, there are two main identification challenges.

First, the full functional form of the delay cost function takes an infinite sample to identify, which

is not available in reality. As a compromise, I suppose the delay cost function be a polynomial,

which can approximate any continuous function by StoneWeierstrass theorem. Suppose Ci j(t) =

∑
N
n=1 ci jntn, so Ci j(0) = 0. Second, and more importantly, only bid under one market condition

is observed for each transaction, so additional assumptions need to be made. I resolve this by

pooling the delay cost functions of multiple transactions with a random coefficient model.

Identification and estimation of the delay cost function are both conducted in two stages. In

the first stage, the conditional waiting time distribution WM(t|b) is identified for any waiting time

t conditional on any gas price bid b because the waiting times of all transactions are observed in

the data. Specifically, following Hansen (2004),

wM(t|b) = f (M,b, t)
f (M,b)

,

where M is the market condition related to the timing of the transaction. f (M,b, t) is the density

of the joint distribution of (M,b, t), and f (M,b) is the density of the marginal distribution.

In the second stage, the average delay cost function is identified for any group of transaction

under a random coefficient model. Suppose the delay cost functions of these transactions are

independently and identically drawn from a fixed distribution, Ci j(t)
iid∼ Ct . Let C(t) =E[Ct ] and

Ci j(t) =C(t)+ εi j(t), which gives E[εi j(t)] = 0. Let

ξi j =
∫

∞

t=0
εi j(t)

∂wM(t|b)
∂b

|b=b∗dt.
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With the polynomial form of Ci j = ∑
N
n=1 ci jntN , let ci jn = cn + εi jn and

Pn(b|WM) =
∫

∞

t=0
tn ∂wM(t|b)

∂b
|b=b∗dt.

Then, the first-order condition Eq. (5) can be written as

gi j +
N

∑
n=1

cnPn(b|WM)+ξi j = 0. (7)

The identification of C(t) relies on two plausible assumptions: exclusion and infinitesimal

users. First, network conditions impact users’ bidding exclusively through changing the distri-

bution of conditional waiting time on gas price bid. Second, the waiting time distribution does

not react to the bidding of any single infinitesimal user. Formally,

Assumption 5.1 (Exclusion). The idiosyncratic delay cost of a transaction satisfies

εi j ⊥WM.

Assumption 5.2 (Infinitesimal Users). For any transaction indexed j of user i,

WM|bi j =WM.

Proposition 5.1. Under Assumption 5.1 and Assumption 5.2, the average delay cost of a group

of transactions C(t) is identified.
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Proof: Notice that for any t0 > 0 and 0 < n ≤ N

E[ξi jPn(b|WM)] = E[
∫

∞

t=0
εi j(t)(Pn(b|WM)

∂wM(t|b)
∂b

)|b=b∗dt]

=
∫

∞

t=0
E[εi j(t)(Pn(b|WM)

∂wM(t|b)
∂b

)|b=b∗]dt

=
∫

∞

t=0
E[εi j(t)]E[Pn(b|WM)

∂wM(t|b)
∂b

)|b=b∗]dt = 0,

where the second step is by Fubini’s Theorem and the third step is by Assumption 5.1. This thus

gives the N moments conditions necessary to identify the N coefficients in the polynomial form

of Cn.

5.2 Parameterization

To aid in estimation, I impose a set of parametric assumption on the model. Specifically, I

assume the delay cost function to be a polynomial of order N and the conditional waiting time

distribution to follow a Gamma distribution.

As stated in Section 5.1, delay cost function is specified as a polynomial with random co-

efficients. Each coefficient contains a component of average delay cost function cn across the

sample and a transaction idiosyncratic delay cost εi jn. By definition, the idiosyncratic delay cost

has zero expectation.

Ci j(t) =
N

∑
n=1

ci jntN ,

cn =
1
M ∑

i, j
ci jn,

ci jn = cn + εi jn,

εi jn ∼ F(·) E[F ] = 0.

The waiting time distribution is parameterized as a Gamma distribution with both scale and
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shape coefficients linear to the transaction fee bid.

WM(t|b)∼ Gamma(αb,βb),

αb = α1(b−α0),

βb = β1(b−β0).

αb is the shape parameter of the Gamma distribution, which primarily determines the skew-

ness of the distribution. βb is the rate parameter of the Gamma distribution, which primarily

determines the length of the overall waiting time. Therefore, α0 and β0 can be interpreted as a

reserve price for gas price bids at different time periods. α1 and β1 capture the marginal response

of the shape and rate parameters to a higher bid price.

5.3 Estimation

Estimation follows a two-stage procedure as in Perrigne and Vuong (2019). In the first stage, I

estimate the conditional waiting time distribution. I first divide the study period into five-minute

intervals, which I consider as separate markets. Then, I sample 100 bid prices in each interval

and fit the empirical waiting times within a small interval around these bid prices to a Gamma

distribution. After obtaining the distribution parameters, I run a linear regression between the

distribution parameters and the bid prices to estimate α0, α1, β0, and β1 specified in the waiting

time distribution for each five-minute interval. An illustrative example of the first-stage result is

shown in Fig. B.4.

A shortcoming of this approach is that the linear model occasionally fails to extrapolate to the

transactions with extreme values of bid prices. Since α1 is expected to be negative, αb might be

negative for transactions that bid very high gas prices, which returns an undefined distribution for

waiting time. I drop these transactions (about 5% of total data) in the second-stage estimation.

This problem will be mitigated with a non-linear model for Gamma distribution coefficients or
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estimate the model in a non-parametric way.

In the second stage, I use a least square approach to estimate the polynomial coefficients of

the delay cost function. I first match the submission time of the transactions to the distribution

parameters estimated in the first stage by five-minute intervals. I then plug the estimates into the

moment conditions specified in Eq. (7) to compute the market condition proxies Pn(b|WM), which

can be written in closed forms under the parameter specifications. The polynomial coefficients

cn can then be estimated in an ordinary least square regression. I specify the order of polynomial

N = 5 in the estimation.

The current approach only identifies and estimates the average of the delay costs. The stan-

dard error from the least square estimation should be interpreted as the standard error of the

average delay cost function estimate instead of that of the delay costs of different transactions.

To shed light on the distribution of delay cost functions for different transactions, I use the error

term ξi j from the main specification as a proxy for the idiosyncratic delay costs εi j and split all

transactions to different percentiles by their delay costs. I then separately estimate the average

delay costs for different percentiles of transactions. The estimates shed light on the variance of

delay costs among the Ethereum transactions.

The same methodology can be used to identify and estimate the average delay cost of any

sample of transactions, which enables the study of the heterogeneity of delay costs. I further

estimate the average delay cost for transactions of different types (defined by the gas used),

by different users (defined by the frequency of transacting), and by different times (defined by

the hour of transaction submission). I also estimate the average delay cost for several large

centralized exchanges.

6 Results
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6.1 Main Results

The full functional forms of delay costs are graphed in Fig. 1 with the coefficient estimates

presented in Column (1) of Section 6.1. I use a conversion rate of ET H/USD = 2500, which is

approximately the average price of ETH in July 2021, to convert fees from ETH to USD. The

cost of delaying a transaction for one minute is estimated to be 8.78 US Dollar on average. As

expected, the average delay cost function is monotonically increasing. Moreover, the estimated

function has a concave structure, which implies a decreasing marginal delay cost. This number,

however, varies greatly across different transactions. The average cost of delaying by one minute

would be 94.56 USD for the 10% transactions with the highest delay costs and 1.72 USD for the

10% transactions with the lowest delay costs.

To further study the variance of delay costs among Ethereum transactions, I separately es-

timate the average delay cost functions for every percentile of transactions sorted by the error

term ξi j that I obtain from the main regression. While the sorting might not exactly reflects the

idiosyncratic delay cost term εi j, this exercise still demonstrates the large variance in the delay

costs among different transactions. The distribution of these percentile estimates should be iden-

tical to the distribution of the delay costs in the whole population, which is graphed in Fig. 2.

As expected, the distribution of average delay costs resembles an exponential distribution. The

coefficients of the average delay cost function for the 10% transactions with the lowest delay

costs, the 25% transactions with the lowest delay costs, the 25% transactions with the highest

delay costs, the 10% transactions with the highest delay costs are shown in Columns (2)-(5)

in Section 6.1.

6.2 Heterogeneity Analysis

I separately estimate the average delay cost function for several different samples of transactions.

First, Fig. 3a shows the average delay costs of simple transactions and complex transactions. A
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Table 3: Coefficient estimates for average delay costs of different groups of users

(1) (2) (3) (4) (5)
Coefficients All Bottom 10% Bottom 25% Top 25% Top 10%

c1 -86,993*** -17,065*** -26,196*** -473,661*** -912,576***
(95.30) (11.08) (13.78) (488.7) (1,306)

c2 530.8*** 104.3*** 163.0*** 2,771*** 5,249***
(0.795) (0.0921) (0.116) (3.732) (8.590)

c3 -1.004*** -0.196*** -0.311*** -5.137*** -9.589***
(0.00195) (0.000220) (0.000282) (0.00889) (0.0183)

c4 8.82∗10−4*** 1.68*10−4 ∗∗∗ 2.71*10−4 ∗∗∗ 4.48*10−3 ∗∗∗ 8.26*10−3 ∗∗∗
(2.18e-06) (2.34e-07) (3.05e-07) (9.71e-06) (1.85e-05)

c5 -2.11e-07*** -3.81e-08*** -6.22e-08*** -1.09e-06*** -1.98e-06***
(6.62e-10) (6.38e-11) (8.56e-11) (2.93e-09) (5.26e-09)

Obs. 9937603 993708 2484396 2484400 993760
R2 0.157 0.884 0.799 0.360 0.366

*** p<0.01, ** p<0.05, * p<0.1

Standard errors in parentheses. The variables are the coefficients in the delay cost function form
C(t) = c1t + c2t2 + c3t3 + c4t4 + c5t5. The unit of C(t) here is in Gwei (10−9 ETH). Column (1) shows
the polynomial coefficients for the average delay cost function among all Ethereum transactions. Col-
umn (2) - (5) shows the polynomial coefficients for average delay cost functions among the 10% trans-
actions with the lowest delay costs, the 25% users with the lowest delay costs, the 25% users with the
highest delay costs, and the 10% users with the highest delay costs. The quantiles are divided with
the error terms ξi j obtained from the main regression in Column (1), which are used as proxies for the
idiosyncratic delay costs εi j.

29



0

.01

.02

.03

.04

.05

D
en

si
ty

0 100 200 300

Delay cost per min (USD)

Figure 2: Distribution of estimates of average delay costs per minute among Ethereum trans-
actions. Estimates of average delay costs are sampled from different percentiles of delay costs.
The percentiles are divided with the error terms ξi j obtained from the main regression, which are
used as proxies for the idiosyncratic delay costs εi j. Costs of delay vary significantly for different
transactions.

simple transaction is defined to be one that uses exactly 21,000 units of gas, which is the amount

of gas used to transfer ETH tokens from one address to another on Ethereum. Simple transactions

account for about 35% of the transactions on Ethereum. Complex transactions make up all the

other transactions. As expected, complex transactions have higher delay costs on average than

simple transactions. The coefficient estimates are presented in Table B.1.

Second, Fig. 3b shows the average delay cost function for users with different trading fre-

quencies. I group users by the number of transactions they made in the study period. Low-

frequency users trade 1-5 times in the sample period (33.3% of all transactions), who can be

retail investors or individual blockchain users. Mid-frequency users trade between 6-100 times

in the period (29.9% of all transactions), who can be experienced investors or institutions. High-

frequency users trade 101-10000 times in the period (19.0% of all transactions), which should
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mainly be institutions. Ultra-high-frequency users trade more than 10000 times in the period

(17.9% of all transactions), which are mainly the centralized exchanges serving different blockchain

customers (e.g., the exchanges analyzed in Fig. 3d). The result shows that low-frequency and

ultra-high-frequency users have lower delay costs on average than mid- and high-frequency

users. The delay costs of ultra-high-frequency users are slightly higher than low-frequency users

because the centralized exchanges are mainly used by retail investors, who are essentially the

same cohort as low-frequency users. The delay costs of mid- and high-frequency users are not

distinguishable from each other. The coefficient estimates are presented in Table B.2.

Third, Fig. 3c demonstrates the cost of delaying one minute for the 227 different hours in the

sample. I group transactions by the hour in which they are submitted. The delay costs demon-

strate a strong autocorrelation across hours. Since both centralized and decentralized crypto

exchanges operate 24-7, the “opening effects” in traditional finance are not obvious here. There

are two peaks in the sample period that might be related to shocks in the market. Overall, the

delay costs are stable during the study period.

Fourth, Fig. 3d demonstrates the average delay costs for several large centralized exchanges,

including Binance, Coinbase, Crypto.com, and Gemini. Most transactions from centralized ex-

changes are related to user deposits and withdrawals of cryptocurrencies. It is surprising to see

that the delay costs of Binance transactions are higher than the three counterparts, which are

not distinguishable from each other. This might reflect the demand for settlement speed from

Binance users, but this may also be attributed to a more aggressive fee bidding strategy adopted

by Binance. The coefficient estimates are presented in Table B.3. A similar analysis can be done

for any addresses on Ethereum if the addresses perform enough transactions.

6.3 Discussion

This section discusses the potential issues that might bias the estimation of average delay costs

in this paper.
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Figure 3: Panel (a) shows the average delay cost estimates by transaction types. Simple trans-
actions are the ones that use exactly 21,000 gas (35% of all transactions), which transfers some
amount of ETH from one address to another. Complex transactions are the ones that use more
than 21,000 gas (65% of all transactions). Panel (b) shows the average delay cost estimates
by trading frequency. Low-frequency users trade 1-5 times in the sample period (33.3% of all
transactions); mid-frequency users trade between 6-100 times in the period (29.9% of all trans-
actions); high-frequency users trade 101-10000 times in the period (19.0% of all transactions);
ultra-high-frequency users trade more than 10000 times in the period (17.9% of all transactions).
Panel (c) shows the estimates of the average costs of delaying transactions by a minute. Trans-
actions are grouped by submission hour. Hour 0 is defined to be 12 a.m. July 25, 2021 UTC+0.
Panel (d) shows the average delay cost estimates of several large centralized exchanges.
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First, can the variance of bids reflect factors other than delay costs? For example, Li et al.

(2014) attributes the lack of strategy of a part of consumers to behavioral myopia. Liu et al.

(2022a) argues that Ethereum users sometimes overbid because of bounded rationality. However,

if behavioral biases were the main drivers of the variance in gas price bids, amateur users would

overbid more due to lack of experience and thus be estimated to have higher delay costs. Also,

behavioral biases are supposed to be constant over time. These predictions from behavioral

narratives are contradictory with the findings in Fig. 3b and Fig. 3c. Users who trade more

frequently have higher average delay cost estimates, and the average delay cost estimates of

users vary across time. Moreover, Capponi et al. (2022) analyzes the Ethereum transaction fees

in a reduced-form way and finds that users bid high fees to reduce the execution risk of their

orders due to blockchain congestion, which also supports the narrative of delay costs.

Second, can the assumption of the exogeneity of market conditions be violated? For exam-

ple, users with lower delay costs may select to submit their transactions when the network is less

congested. However, I argue that this is not likely to happen. While users can hide their pri-

vate information by concealing their transactions, they waste the potential chances to settle their

transactions when they conceal their transactions by submitting them later. The transactions that

have incentives to conceal are the ones with low delay costs and high private information, but

these two conditions are contradictory in nature. Thus, the subjective selection of users is not

likely to bias the estimates.

Third, the non-linear nature of the waiting time distribution might limit the extrapolation of

the estimates. This paper adopts relatively strong assumptions on the functional form of condi-

tional waiting time distribution, which is modeled as a Gamma distribution with both parameters

linear to gas price bids. The smooth delay cost function obtained from the estimation might be

attributed to the parametric assumptions, and it should not be interpreted as a nature of delay cost

functions. Moreover, because most transactions wait for less than a minute as shown in Fig. B.3,

estimation for delay cost when time is large might be inaccurate due to limited sample size in

33



both the first and second stages of the estimation. Therefore, I only present the delay cost func-

tions for waiting times up to 120 seconds. As a next step, both the first-stage and the second-stage

estimation can be conducted in a non-parametric way as in Athey and Haile (2007) to improve

the accuracy of the results.

Lastly, the estimation suffers from the missing data issue as introduced in Section 4. Waiting

time of about 5% of the transactions is missing, and these transactions might be submitted di-

rectly to the block makers without entering the mempool. These transactions might have higher

private values and delay costs than the average transactions. Hence, the estimates presented in

this paper apply to the transactions publicly submitted to the mempool and serve as a lower

bound for all transactions on Ethereum.

7 Application: Financial Market Design

7.1 Welfare Estimation

Ethereum uses the transaction fee mechanism introduced in Section 2.3 to allocate its block

spaces during the study period. However, alternative mechanisms have been proposed and im-

plemented to reduce transaction delays and improve user experience. Are these mechanisms

optimal in minimizing the cost of transaction delays? How far away are they from the socially

optimal case? The estimation of transaction delay costs sheds light on these questions. With the

delay cost estimates for each user and transaction group, I conduct counterfactual simulation on

alternative arrangements of Ethereum transactions and compare the welfare loss under different

mechanisms.

To obtain heterogeneity in delay cost estimation, I group transactions by their transaction

type (simple or complex), user experience (low, medium, high or ultra-high), and delay cost

percentile estimated from the baseline regression. I then separately estimate the average delay
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costs for each of these 800 groups of transactions. With knowledge of the waiting time,12 the

total welfare loss can be written as

L = ∑
i∈I

C(ti).

This gives that delays on Ethereum trigger a daily welfare loss of 14.03 million USD.13

7.2 Counterfactual Analysis

I then conduct simulation exercises to estimate welfare losses under alternative transaction fee

mechanisms. I compute the counterfactual waiting time for each transaction under two alternative

transaction fee mechanisms and then compute the counterfactual welfare loss using the same

methodology as in Section 7.1.14

First, I study the “socially optimal” case where transactions are settled according to their

private delay costs. Transactions with higher delay costs are settled first. This is not a fea-

sible mechanism in the real world because delay costs can only be measured ex-post, so this

case serves as a theoretical optimum for comparison. Second, I study a “naive” first-in-first-out

(FIFO) mechanism, which means that transactions are settled in the order of submission to the

mempool.

Table 4 compares the outcomes under the benchmark mechanism with these two alternative

mechanisms. The daily welfare loss due to transaction delays in the benchmark mechanism is

only slightly larger than that in the “socially optimal” case that ranks transactions using ex-post

information on delay cost. This is consistent with the theory in Theorem 3.1 that gas price bids

12Transactions waiting more than five minutes are usually beyond the effective domain of the delay cost function
I estimate. Using the original function might result in a negative delay cost estimate. In these cases, I use the
maximum value on the delay cost function as an alternative. For example, if a transaction waits for fifteen minutes
but the delay cost function peaks at three minute, I adopt the peak value of the delay cost function as the delay
cost for this function.

13In the sample period, the average delay cost for each transaction is 11.84 USD (though the median delay cost is
much lower). 823 transactions are settled each minute on average. These estimates give the daily welfare loss of
14.03 million USD.

14Due to the limits in computation, I only simulate the 1,678,247 transactions seen by the network before July 27,
2021. This sample size should be large enough to deliver a reliable estimate of welfare loss due to delay costs.
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Table 4: Simulated results of three transaction fee mechanisms

(1) (2) (3)
Variables Benchmark Counterfactual 1 Counterfactual 2

(by gas price) (by delay cost) (by time seen)
(Quantiles)

Waiting time (s)

10% 3.70 2.98 338.16
25% 7.31 9.11 696.21
50% 15.71 36.20 1401.16
75% 37.46 202.51 2091.06
90% 116.95 1401.61 2451.65

Observations 1,678,247 1,678,247 1,678,247
(Quantiles)

Delay cost (USD)

10% 0.60 0.97 3.02
25% 1.48 2.66 6.17
50% 3.83 5.77 13.55
75% 10.10 11.91 31.55
90% 24.17 23.20 66.81

Observations 1,678,247 1,678,247 1,678,247

Daily welfare loss 14.03 13.83 41.17
(million USD)

Simulated quantiles of waiting time, quantiles of delay cost, and daily welfare loss un-
der three different transaction fee mechanisms. Simulation is run for transactions in the
sample but seen before July 27, 2021. Daily welfare loss is calculated assuming that 823
transactions are settled each minute, so daily welfare loss is the average daily transaction
number times mean delay cost under each specific mechanism. Column (1) presents the
benchmark transaction fee mechanism used in reality as introduced in Section 2.3, where
transactions are ordered by their gas price bids. Column (2) presents the counterfactual
mechanism where transactions are ordered by their ex-post delay costs. Transactions
with higher estimated delay costs are settled first. Column (3) presents the counterfac-
tual mechanism where transactions are ordered by their time of submission. Transactions
submitted first are settled first.
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reflect users’ intrinsic delay costs. Controlling market conditions, the benchmark mechanism

that orders transactions by gas prices performs almost equally well as the socially optimal case

in terms of minimizing welfare loss. Moreover, the benchmark mechanism also performs better

regarding waiting times for most transactions.

On the other side, the benchmark mechanism performs three times better than the “naive”

first-in-first-out mechanism. Column (3) in Table 4 shows that substantial delays can emerge

due to congestion in the network, which can cause significant welfare loss. This comparison

underscores the importance of an effective transaction fee mechanism on blockchain efficiency.

7.3 Policy Implications

The welfare analysis in this section has several important implications for market design both in

traditional finance and on blockchains.

First, Budish et al. (2015) proposes the mechanism of frequent batch auctions in the settle-

ment of financial transactions. They propose to divide the trading day into frequent but discrete

time intervals. All trade requests received during the same interval are treated as having arrived

at the same (discrete) time. At the end of each interval, all outstanding orders are processed in

batches, using a uniform-price auction. They believe that the introduction of a frequent batch

auction can stop the socially wasteful arms race for network speed and transforms the competi-

tion on speed into competition on price.

The frequent batch auction model is very similar to the Ethereum transaction fee mechanism

studied in this paper, except that the gaps between two blocks on Ethereum are random and

much longer. Our analysis shows that frequent batch auction also introduces unnecessary delays

to the transaction settlement, which can cause significant welfare loss for all users. While the

problem might be mitigated in traditional finance with a much higher transaction throughput and

lower transaction delays, the exact welfare implication of the frequent batch auction model needs

further investigation.
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Second, the welfare estimates show partial optimality of the benchmark transaction fee mech-

anism, which is still widely used on many other blockchain platforms including Bitcoin.15 Ex-

isting literature like Roughgarden (2021); Chung and Shi (2022) evaluates different mechanism

designs using criteria like incentive compatibility. This paper proposes a novel criterion - welfare

loss due to transaction delay. I use counterfactual analysis to show that the benchmark transac-

tion fee mechanism performs almost as well as the socially optimal mechanism. From this, I

empirically hypothesize that a mechanism cannot perform significantly better if it differs from

the benchmark mechanism only on demand-side features. This preliminary hypothesis would

need support from theoretical proof, which is left to future works.

The benchmark mechanism might not be optimal in minimizing welfare loss due to transac-

tion delays compared to other mechanisms that change supply-side features. For example, EIP-

1559, a recent transaction fee mechanism reform on Ethereum implemented in August 2021,

makes two changes: a) users bid gas prices in a mechanism similar to a second price auction

instead of a first price auction and b) block gas limit becomes variable between 0 to 30 million

instead of fixed at 15 million (though the target average is still 15 million). Liu et al. (2022a) finds

that the reform significantly reduces the waiting time on Ethereum. This mechanism changes the

supply-side feature of Ethereum by making the block size variable, so it might also bring signif-

icant welfare gains.

8 Conclusion

This paper estimates the average delay costs of the DeFi transactions on Ethereum. With a

dynamic auction model that links the users’ per unit gas price bids to the delay costs and market

conditions, the average delay cost functions of any sample of transactions can be identified and

estimated. The estimation is first conducted on all transactions on Ethereum and then on different
15In fact, this mechanism was first proposed in the Bitcoin white paper (Nakamoto (2008)) and also called Bitcoin

Payment System (BPS) as analyzed in Easley et al. (2019); Huberman et al. (2021).
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groups of transactions by user and transaction characteristics. The results are then applied to

empirically evaluate different blockchain market designs by the welfare losses.

This paper shows that delays are costly for financial transactions. One natural direction of

future work is to study whether better market designs can reduce the waiting time in financial

transactions. For example, Liu et al. (2022a) finds that EIP-1559 causally reduces the waiting

time on Ethereum and improves user experiences, but the reason behind this is not well under-

stood. More theoretical works are needed to analyze the transaction fee mechanisms from a

dynamic perspective. In addition, while the dynamic auction model in this paper involves the

conditional waiting time distribution, it is taken as an exogenous variable related to market con-

ditions and empirically estimated from the data. I leave the work of endogenizing the equilibrium

gas price and waiting time for future studies.

The cost of delay in the Ethereum transaction fee market, while not directly comparable,

resembles that in the general financial market. The risk of being frontrun and execution failure

compose the main source of delay cost on the Ethereum blockchain, and these risk factors widely

exist in any financial market. This paper thus sheds light on the general understanding of delay

costs in finance.

While the previous studies in blockchain economics mostly apply economics and finance

theories to understand phenomena in decentralized finance, this paper demonstrates that obser-

vations and insights gained on decentralized finance can have general economic implications.

As an important market from an industrial organization and market design perspective, the de-

centralized finance on Ethereum provides a novel setting to study various phenomena that are

otherwise difficult in economics.
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A Mathematical Appendix

A.1 Proof of Theorem 3.1

For simplicity purpose, all subscript of i j are omitted here. The case when for any b > 0,

E(u(v,b)) < 0 is trivial because the only choice is to not submit any bids for a zero realized

utility.

Suppose there exists b> 0 such that E[u(v,b)]≥ 0. Recall that E[U(v,b)]= v−
∫

∞

t=0C(t)dWM(t|b)−

bg. Using integral by parts, we have

∫
∞

t=0
C(t)dWb(t) =C(t)WM(t|b)|t=∞

t=0 −
∫

∞

t=0
WM(t|b)C′(t)dt =−

∫
∞

t=0
WM(t|b)C′(t)dt

because C(t) = 0 when t = 0 and WM(t|b) = 0 when t → ∞. Then, the first-order condition

in Eq. (5) can be rewritten as ∫
∞

t=0

∂Wb(t)
∂b

C′(t)dt = g

Let f (b) =
∫

∞

t=0
∂Wb(t)

∂b C′(t)dt. Then by Leibniz’s Rule, f ′(b) =
∫

∞

t=0
∂ 2Wb(t)

∂b2 C′(t)dt. Knowing

that ∂ 2Wb(t)
∂b2 < 0 and C(t) is monotonically increasing in t, which gives C′(t)> 0, so ∂ 2Wb(t)

∂b2 C′(t)<

0. Therefore, f ′(b)< 0 for any b, t > 0. This means that f (b) is monotonically decreasing, which

guarantees the uniqueness of the solution to Eq. (5).

Since ∂Wb(t)
∂b > 0 and C′(t) > 0, f (b) > 0 for any b > 0. Notice that f (b)→ 0 when b → ∞

because ∂Wb(t)
∂b → 0, and f (b) → ∞ when b → 0 because ∂Wb(t)

∂b → ∞. By intermediate value

theorem, there exists b̃ > 0 such that f (b) = g. Therefore, the first-order condition Eq. (5) has a

unique positive solution b̃.

It has been shown that f ′(b)< 0 for any b > 0, the ∂ 2
E[U(v,b̃)]

∂b2 = f ′(b̃)< 0, which means that

b̃ is a global maximum of E[U(v,b)]. However, the user would make the bid if and only if the

expected utility is positive. Therefore, Eq. (6) holds, which concludes the proof.
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A.2 Example of Theorem 3.1

Suppose the delay cost function is linear Ci j(t) = ci jt. Suppose WM|b follows a exponential

distribution WM|b ∼ Exp(λb), where λb = mb, m being a constant depending on the network

conditions. So wM(t|b) = mbe−mbt . Then the expected utility function in Eq. (3) can be written

as

E(ui j(v,b)) =
∫

∞

t=0
(vi j − ci jt)mbe−mbtdt −b = vi j −

ci j

mb
−b. (8)

The first order condition is then ci j
mb2 = 1, which gives

b̃i j =

√
c
m

> 0. (9)

The second order condition is

d2
E(ui j(v,b))

db2 =−
ci j

2mb3 < 0,

so b̃i j is the global maximum of E(ui j(v,b)) when b > 0. b∗i j = b̃i j when E(ui j(v,b∗i j))> 0, which

is equivalent to vi j > 2
√

ci j
m . Therefore,

b∗i j =


0 if vi j ≤ 2

√
ci j
m ,√

ci j
m if vi j > 2

√
ci j
m .

(10)

Notice that the optimal bid b∗i j strictly increases as the delay cost ci j increases or if the network

parameter m decreases, which means the network becomes more congested. Also notice that the

optimal bid b∗i j is strictly smaller than the level of O(v) in a static first-price auction.
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B Additional Graphs and Tables

Figure B.1: Amount of gas consumed by each operation on Ethereum. Figure sources from
Ethereum Yellow Paper (Wood (2022)).
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Figure B.2: Example of fee bidding in MetaMask. The graph on the left shows the basic fee bid-
ding interface, where the software offers three levels of options for preliminary users to choose.
Expected waiting time is explicitly shown on the top. Users who don’t understand the mech-
anism of fee bidding can click on “How should I choose?” to learn more. The graph on the
right show the interface after more advanced users click on “Advanced options” in the left graph.
Users can bid exact number of per unit gas price here. If the gas prices users input are too low,
the software will show reminders. Therefore, even less experienced users should be able to form
reliable expectations about waiting time with the assistance of software.
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Table B.1: Coefficient estimates for average delay costs of different types of transactions

(1) (2)
VARIABLES Simple Tx Complex Tx

c_1 -22,746*** -115,255***
(16.33) (143.4)

c_2 142.9*** 700.0***
(0.136) (1.201)

c_3 -0.280*** -1.317***
(0.000337) (0.00295)

c_4 0.000255*** 0.00115***
(3.84e-07) (3.27e-06)

c_5 -6.32e-08*** -2.72e-07***
(1.21e-10) (9.83e-10)

Observations 3486309 6275903
R-squared 0.520 0.194

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table B.2: Coefficient estimates for average delay costs of users with different trading frequen-
cies

(1) (2) (3)
VARIABLES Low frequency Mid frequency High frequency

c_1 -38,881*** -95,902*** -95,000***
(89.43) (152.2) (164.7)

c_2 244.0*** 575.5*** 577.3***
(0.740) (1.267) (1.415)

c_3 -0.482*** -1.072*** -1.076***
(0.00184) (0.00309) (0.00354)

c_4 0.000448*** 0.000928*** 0.000923***
(2.11e-06) (3.42e-06) (3.99e-06)

c_5 -1.15e-07*** -2.19e-07*** -2.13e-07***
(6.72e-10) (1.02e-09) (1.22e-09)

Observations 1538488 4726526 3672589
R-squared 0.216 0.171 0.153

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table B.3: Coefficient estimates for average delay costs of different centralized exchanges

(1) (2) (3) (4)
VARIABLES Binance Coinbase Crypto.com Gemini

c_1 -116,979*** -50,401*** -52,604*** -57,290***
(211.0) (105.7) (282.1) (519.9)

c_2 647.9*** 310.4*** 329.6*** 370.8***
(2.202) (0.985) (2.584) (4.600)

c_3 -1.075*** -0.583*** -0.617*** -0.739***
(0.00569) (0.00265) (0.00648) (0.0118)

c_4 0.000823*** 0.000513*** 0.000510*** 0.000684***
(6.20e-06) (3.26e-06) (7.15e-06) (1.36e-05)

c_5 -1.73e-07*** -1.26e-07*** -1.06e-07*** -1.76e-07***
(1.75e-09) (1.11e-09) (2.18e-09) (4.34e-09)

Observations 654706 523020 71180 33607
R-squared 0.441 0.457 0.518 0.443

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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