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Abstract 

Do hedge funds earn statistically significant 
premia on common factor trading strategies 
after trading costs are accounted for? 
Furthermore, what is the gap between what a 
hedge fund would earn and the paper portfolios 
that they hold? I answer this question by using 
the latest cutting-edge methodology to estimate 
trading costs for major financial market 
anomalies. This methodology uses the familiar 
asset-pricing Fama-MacBeth procedure to 
compare the on-paper compensation to factor 
exposures with those earned by hedge funds. I 
find that the typical hedge fund does not earn 
profits to value or momentum, and and low 
returns to size.   

 
 
 
 
 
 

 

JEL classification: G12; G14; G23; 

 Keywords: Hedge Funds, Trading Costs, Performance Evaluation, Market Efficiency 



2 

I. Introduction 

Hedge funds make up $3.2 trillion dollars of assets under management (AUM)1 and yet very 

little is publicly known about their trading strategies and the costs associated with them. In fact, 

traditional empirical asset-pricing focuses little on net of transaction cost returns in general. 

Much work has instead been focused on expected gross returns and potential strong predictors of 

those returns (Frazzini, Israel & Moskowitz, 2015). These predictors, or factors, of cross-

sectional returns, challenge traditional market efficiency models. If we assume market efficiency, 

then all information should be baked into prices and there should be no ex-post predictors that 

significantly explain future returns. However, if these predictors are unable to “survive” due to 

substantial implementation costs, then the “limits to arbitrage” on these predictors is crucial to 

the efficient market debate. Hedge funds are critical to this discussion because they are regarded 

as some of the most sophisticated investment vehicles in the world, leading them to have the 

lowest limits to arbitrage on these predicting factors. Therefore, hedge funds are a fascinating 

laboratory to test these predictor’s real-world efficacy. If these factors are able to survive the 

lowest practical implementation costs in the industry, then these predictors may offer incredibly 

lucrative arbitrage opportunities, or represent significant risk factors that most investors are 

exposed to in the markets.      

Furthermore, due to their size and influence on the market, hedge funds’ net of transaction 

cost returns are interesting to study in their own right. To outsiders, many hedge funds simply 

have a “black box” that generates outlandish returns. During the peak of the Great Recession in 

2008, hedge fund managers Jim Simons, John Paulson, and George Soros all earned payouts of 

                                                           
1 Source: Estimates conducted by Hedge Fund Research (HFR) for year-end 2017, available at https://www.hedgefundresearch.com 
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$2.5 billion, $2.0 billion and $1.1 billion respectively.2 These payouts came despite a wide 

market downturn that saw the S&P 500 lose 38.5% of its value.3 4 

Are these hedge funds then, able to really achieve such robust profitability, even in the wake 

of the sometimes-substantial trading costs they incur? Although there is a plethora of research on 

trading costs, never before has a researcher analyzed the trading costs faced by the hedge fund 

industry specifically. How much performance attrition is caused by the trading costs these firms 

face? Is $3.2 trillion an efficient allocation of scarce capital to these funds?   

This paper attempts to answer these questions by applying a new cutting-edge methodology 

for measuring real-world implementation costs for factor trading strategies introduced in Andrew 

Patton’s and Brian Weller’s working paper, What You See is Not What You Get: The Cost of 

Trading Market Anomalies (2017). The novelty of this approach is that unlike previous estimates 

of trading costs, the technique does not require trade-level data and imposed parametric models 

to generate trading cost estimates. Furthermore, it does not require proprietary trading data in the 

hopes of generalizing those estimated costs as representative of the typical firm. Finally, the 

approach most importantly does not require the researcher to take a stand on the type of factor 

trading strategy employed. This is a necessary feature given that hedge funds likely implement 

academic factor-based investing strategies with lower cost industry variants that see a much 

lesser degree of performance attrition. 

                                                           
2 Source: Payouts reported by CNN, available at https://money.cnn.com/2009/03/25/markets/hedge_alpha/ 
3 Source: Returns reported by Reutuers, available at https://www.reuters.com/article/us-usa-stocks-sp-timeline-idUSBRE9450WL20130506 
4 Further adding to the hedge fund mystique is there availability only to “sophisticated” investors. By law, hedge fund investors must be 
“accredited,” meaning that they possess a certain minimal income, have a net worth of over one million dollars, and possess “significant” 

investment knowledge. Because hedge fund investors are by law required to be knowledgeable, hedge funds are often able to escape the 

scrupulous reporting standards mandated under the Investment Company Act of 1940. This marks a drastic difference between hedge funds and 
mutual funds, and also allows hedge funds to invest in a greater investable universe of assets, employ greater leverage, and also short (bet against) 

certain assets. 
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The empirical methodology follows the widely used Fama-MacBeth procedure where first, 

time series regressions of asset pricing factors are run on a series of representative stock 

portfolios and hedge fund returns. Standard stock portfolios are used from the academic literature 

and act as a strong proxy for real-life quantitative investment strategies. These time series betas, 

𝛽𝑖𝑘, which encapsulate the factor risks (loadings) of the different portfolios, are then used in a 

second-stage regression, in which they are regressed on the cross section of returns. This second 

stage regression thereby gives new coefficients (𝜆𝑘𝑡) which represent the incremental 

compensation per unit of risk exposure (factor loading). By allowing 𝜆𝑘𝑡 to vary for my test 

portfolios (𝜆𝑘𝑡
𝑆 ) and my fund portfolios (𝜆𝑘𝑡

𝐻𝐹), I am able to then use this difference, 𝜆𝑘𝑡
𝑆 − 𝜆𝑘𝑡

𝐻𝐹 =

 𝜆𝑘𝑡
𝛥  , effectively as the estimate between gross of transaction cost factor returns and net of 

transaction cost factor returns in order to determine the magnitude of the implementation costs 

faced by hedge funds. Therefore, the difference between the on-paper returns of my stock 

portfolios, 𝜆𝑘𝑡
𝑆 , and the real life returns of my hedge fund portfolios, 𝜆𝑘𝑡

𝐻𝐹, make up real-world 

trading costs faced by these funds.  

My analysis will focus on the four predominant factor trading strategies found in the 

literature (Fama & French, 1992; Carhart, 1997).5 These standard asset pricing factors include 

the market, size, value, and momentum factors that serve as the basis for hundreds of billions of 

dollars in managed money. The market factor (MKT) typically represents the excess returns on a 

market index such as the S&P 500. The size, or SMB factor, represents the excess returns on a 

basket of portfolios that is long small-cap stocks and correspondingly short large-cap stocks. 

Similarly, the value factor (HML) is constructed from a basket of excess returns on portfolios 

that are long securities that have high book equity to market capitalization (BE/ME) ratios and 

                                                           
5 These risk-proxying factors can be download on Ken French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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short corresponding portfolios that have low BE/ME ratios. Finally, the momentum factor 

(UMD) is long past “winners” (stocks that have done well recently) and is short past “losers.”  

Under traditional asset-pricing models, these factors have been shown to credibly predict 

future returns (Fama & French, 1992; Carhart, 1997). These asset-pricing anomalies are often 

given risked based explanations. For example, the market factor represents the systematic market 

risk inherent in every equity investment. If a security has a 𝛽𝑀𝐾𝑇 = 2, for example, then it is 

exposed quite significantly to this market risk and therefore, will need to be compensated by 

twice the typical market return in order to justify the increased risk. These financial time-series 

betas therefore represent exposure to typical risks, and therefore the magnitude of the 

coefficients will also determine the amount of compensation necessary for such a risk. Therefore, 

it is common to say that if a security has a 𝛽𝑀𝐾𝑇 = 2, then the security has a particularly 

substantial “loading” (exposure) on the market risk factor. These time-series betas can also be 

estimated on the returns of portfolios and different types of funds (Sharpe, 1993) with the same 

intuition applying as above and which will be utilized extensively in this paper. 

This paper proceeds as follows. Section II is a comprehensive overview of the current 

literature on the topic. Section III lays out the theoretical framework that my empirical analysis 

builds upon. Section IV describes my data. Section V lays out my empirical methodology. 

Section VI then discusses my results, various robustness checks, and a comparison of my 

findings with the current literature. Section VII lists the limitations of the methodology. Section 

VIII concludes.  
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II. Related Literature 

In order to determine the real-world efficacy of certain cross-sectional predictors, much 

research has been conducted on the trading costs to factor-based strategies. Additionally, because 

of the large sums of money that hedge funds trade, much research has been done analyzing their 

effects on financial markets and the risks that they are exposed to. However, due the lack 

financial regulations subjecting hedge funds to mandatory reporting, funds typically report 

returns voluntarily to different database vendors. Therefore, there is a large literature detailing 

the potential biases these hedge fund databases incur and potential ways to minimize them. 

Potentially because of these database biases, never before has a researcher analyzed the trading 

costs faced by typical hedge funds. 

A. Related Literature on Trading Costs 

The literature on trading costs has focused primarily on the real-world efficacy of certain 

cross-sectional predictors (namely the four predominant asset pricing factors mention in Section 

I). The literature on trading costs has typically employed two different methodologies. The first 

approach derives transaction costs using price and transaction records (usually from the TAQ 

database) to infer parametric price impact models in order to measure the implementation costs 

to different factor-based strategies. Earlier studies typically paint rather pessimistic results for the 

real-world efficacy of these cross-sectional anomalies. For example, Lesmond, Schill, and Zhou 

(2004) show that majority of the returns from the momentum factor come from securities that 

also have the largest trading costs. Therefore, they show that momentum profits are largely 

illusory when implemented in the real world. Furthermore, Chen, Stanzl, and Watanabe (2002) 

calculate trading costs faced by factor-based strategies (specifically size, value, and momentum) 

by estimating price impact functions for just under 5,000 stocks in their sample. They find that 
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these factors are largely unimplementable after trading costs are accounted for. Korajczyk and 

Sadka (2004) and Novy-Marx and Velikov (2016) present more favorable results for factor 

trading strategies. Both find break-even carrying capacities (amount of money that can be traded 

in a certain strategy before price impact erodes all potential excess returns) for the momentum 

anomaly around $5 billion and Novy-Marx and Velikov (2016) further find strong real-world 

efficacy for both the size and value factor. Both of these works take into account trading cost 

mitigation techniques likely employed by real-world investment managers when implementing 

these factor strategies. 

The second approach uses specialized, firm specific proprietary trading data under the guise 

that these firms are representative of the asset management universe. These papers typically 

make use of Perold (1988)’s implementation shortfall measure which captures the difference 

between real-world profits and on-paper profits. This method is readily applied by both Keim 

and Madhavan (1997) and Frazzini, Israel, and Moskowitz (2015). Frazzini, Israel, and 

Moskowitz (2015) find that size, value, and momentum all carry break-even carrying capacities 

an order of magnitude larger than that what is found in the literature. They estimate that these 

strategies are implementable in the range of tens to hundreds of billions of dollars before 

significant attenuation. 

Patton and Weller (2017)’s approached combines the best features of both existing 

approaches by effectively estimating the total costs of implementing factor strategies similar to 

the papers that utilize proprietary trading data, while also capturing representative asset 

managers of factor investing. Furthermore, Patton and Weller (2017)’s methodology does not 

require me to take a specific stance on the type of factor investing strategies these firms employ. 

This is critical for hedge funds because many funds will implement these strategies quite 
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differently from each other while pursuing more liquid versions of these strategies in order to 

combat high trading costs. By combining Patton and Weller (2017)’s approach to measure real-

world implementation costs with Agarwal, Daniel, and Naik (2009)’s approach to covert hedge 

fund net of fee returns to gross of fee returns, my approach will be novel in that it will be the first 

paper specifically analyzing trading costs faced by the hedge fund industry.  

B. Related Literature on Hedge Fund Database Biases 

There has been a variety of research documenting the flaws in hedge fund databases (Aiken, 

Clifford & Ellis, 2012; Fung & Hsieh, 2000; Fung & Hsieh, 2009; Liang, 2000). Because hedge 

funds are often exempted from the Investment Company Act of 1940, disclosures regarding 

holdings, fees, and returns often don’t exist. The only significant regulatory disclosure that hedge 

funds are mandated to provide is under SEC regulation 13-f. This regulation forces hedge funds 

greater than $100 million in AUM to report their quarterly holdings. Even these relatively light 

regulations have been fought extensively by hedge funds. Funds have high incentives to keep 

their holdings absolutely secret (Huddart, Hughes, & Levine, 2001) or run the risk of other funds 

front running their trades and eroding their potential profits (Christoffersen, Danesh, & Musto, 

2016). 

Furthermore, hedge funds are able to delay reporting their quarterly holdings by filing a 

petition with the SEC that allows the regulating body to delay exposure that is “necessary or 

appropriate in the public interest or for the protection of investors.” Until the SEC rejects or 

approves the petition, funds are not forced to disclose their holdings (Agarwal et al., 2013). 

 Due to the relative lack of mandatory reporting regulations required for hedge funds, 

majority of the databases that researchers have available come from hedge fund managers 
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voluntarily reporting returns and fund characteristics. For example, under 3(c)1 and 3(c)7 

exemptions to the Investment Company Act, disclosing past performance and fund size to 

publicly available databases is one of the few ways that hedge funds are able to market 

themselves to new investors (Jorion & Schwartz, 2010). This voluntary reporting causes a 

variety of biases in the presented data. Through constructing their own proprietary database of 

hedge funds who don’t report to any publicly available database, Aiken, Clifford and Ellis (2012) 

find that the performance of these non-reporting funds are significantly worse than the funds that 

do report. Additionally, due to the relatively quick turnover in the hedge fund industry, it likely 

experiences strong survivorship bias where surviving firms report materially higher and more 

consistent returns and fund characteristics. This type of bias is well documented in mutual funds 

as well (Brown, Goetzmann, Ibbotson, and Ross (1992)). Additionally, Fung and Hsieh (2004) 

report that many of these publicly available databases are filled with instant history bias. This 

occurs when a fund enters a database and its past performance history is then appended to the 

database. These past returns are often selectively higher than the actual fund performance due to 

an “incubation” period in which fund managers allocate small amounts of money to many 

different “insider” funds. The funds that then perform the best are marketed and opened to 

outside capital. Due to statistical chance, if enough funds are incubated, managers are able to 

report funds with seemingly outsized returns and therefore attract capital. 

In addition to these biases, hedge fund databases also seem to exhibit return smoothing. For 

example, Asness, Kraill, and Liew (2001) note the existence of serial correlation leads reported 

returns to appear less risky than they actually are. Furthermore, Getmansky, Lo, and Makarov 

(2004) show that the only explanations that adequately address such strong autocorrelation in 

hedge fund returns are either non-synchronous trading or purposeful performance smoothing. 
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Additionally, Bollen and Pool (2012) find sets of performance flags that help predict fraudulent 

hedge fund activities while Bollen and Pool (2009) find that there are substantially fewer 

reported monthly returns that are small and negative than those that are positive. However, when 

aggregated to bimonthly returns, no such problem arises which suggests that funds temporarily 

overstate their returns. In fact, the idea that voluntary disclosures allow funds to misreport is 

further documented by Patton, Ramadorai, and Streatfield (2015), who find that hedge funds 

frequently revise returns and that 49% of the hedge funds in their sample of 12,128 have revised 

their previous returns by a minimum of .01% at least once and over 20% revised a previous 

monthly return by at least 1.0%. They also find that these “revisers” are not random, but 

consistently post worse returns than their non-revising peers. Researchers have even found that 

hedge funds’ mandatory reports are subject to substantial error, such as Cici, Kempf, and Puetz 

(2011) who find that in 13-f filings, the value of the securities is often quite different from the 

prevailing closing prices reported by CRSP for the same time periods.  

C. Related Literature on Hedge Funds 

Despite the challenges presented by these databases, hedge funds make up ~15% of all 

actively managed money in the United States and therefore their study is of immense 

importance. In addition, to the sheer volume of active funds, hedge funds have also been shown 

to account for a significant fraction of aggregate trading in certain asset classes. Due to their 

immense impact on asset markets, one camp of academics has focused on hedge funds and their 

role in the stability of financial markets. For example, Kruttli, Patton, and Ramadorai (2015) 

show that hedge fund illiquidity has robust in and out of sample forecasting power for 72 

portfolios of international equities, U.S. corporate bonds, and currencies. They show this by 
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constructing a simple measure of hedge funds’ aggregate ability to provide liquidity to asset 

markets.  

Another camp of academics has focused their efforts on hedge funds and efficient markets. 

For example, Ramadorai (2012) finds that the closed end fund premium for hedge funds, which 

is highly correlated with that of mutual funds, is well explained by variables in rational theories 

and that more behavioral explanations do not find support in the data. In addition to efficient 

markets, other academics have attempted to discover systematic risk factors in the returns of 

hedge funds. Fung and Hsieh (2004) show that a seven-factor model is able to explain up to 56% 

of the variation in time series returns. Additionally, Fung, Hsieh, Naik, and Ramadorai (2008) 

find that a subset of fund-of-funds are able to consistently deliver alpha and that these funds 

received far greater and steadier capital inflows. They also show that in turn, these capital 

inflows attenuate fund performance, which is consistent with the literature regarding size and 

fund performance. The last major camp of academics focuses on the managerial skill, fee 

structures and incentives of different hedge funds. For example, Agarwal, Daniel, and Naik 

(2009) show that hedge funds with greater managerial incentives, higher levels of managerial 

ownership, and the inclusion of high-water mark provisions are associated with superior returns. 

Additionally, Brown, Goetzmann, and Park (2001) find that in spite of fee structures that 

incentivize additional volatility, especially for funds that have underperformed, reputational 

concerns mitigate this excess risk taking. Instead of looking at fees and incentives for mutual 

fund which make up half of the real-world investor return shortfall, I will be looking at trading 

costs, which like fees, represent the difference between how assets perform on paper, and the 

returns that investors actually see on their account balances. 
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III. Theoretical Framework 

The tests run in this paper follow the procedures of Fama and MacBeth (1973). This 

procedure was originally devised as a way to test the efficacy of the Capital Asset Pricing Model 

(CAPM). Therefore, an understanding of the CAPM and the portfolio theory underlying it, are 

crucial to the understanding of the Fama-MacBeth procedure itself. The traditional portfolio 

theory of Markowitz (1959) relies on the assumption that one-period percentage returns are 

multivariate normally distributed and therefore can be simplified into a normal two-parameter 

model where investors only look at assets in terms of their expected returns, 𝐸(𝑅̃𝑖), and their 

contribution to the risk (or dispersion) of total portfolio returns, 𝜎(𝑅̃𝑝). In the standard portfolio 

model, idiosyncratic risk is diversified away and therefore the predominant measure of risk is the 

covariance of assets with each other. If 𝑥𝑖𝑝 is the proportion of portfolio funds invested in asset i, 

𝜎𝑖𝑗 = 𝑐𝑜𝑣(𝑅̃𝑖, 𝑅̃𝑗) is the covariance between two different assets, and N is the number of assets 

then 

𝜎(𝑅̃𝑝) =  ∑ 𝑥𝑖𝑝

𝑁

𝑖=1

 ⌈
∑ 𝑥𝑖𝑝𝜎𝑖𝑗

𝑁
𝑗=1

𝜎(𝑅̃𝑝)
⌉ =  ∑ 𝑥𝑖𝑝

𝑁

𝑖=1

 
𝑐𝑜𝑣(𝑅̃𝑖, 𝑅̃𝑗)

𝜎(𝑅̃𝑝)
 

Therefore, the risk of asset i in portfolio p is proportional to: 

∑
𝑥𝑗𝑝𝜎𝑖𝑗

𝜎(𝑅̃𝑝)

𝑁

𝑗=1

 =  ∑
𝑐𝑜𝑣(𝑅̃𝑖, 𝑅̃𝑗)

𝜎(𝑅̃𝑝)

𝑁

𝑖=1

. 

Traditional risk averse investors want to maximize expected portfolio returns 

𝐸(𝑅̃𝑚) =  ∑ 𝑥𝑖𝑚

𝑁

𝑖=1

𝐸(𝑅̃𝑖), 

subject to the constraints 
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(2) 

(3) 

(4) 

𝜎(𝑅̃𝑝) =  𝜎(𝑅̃𝑚)    and     ∑ 𝑥𝑖𝑚

𝑁

𝑖=1

= 1. 

Lagrangian methods can then be shown that for any asset i in m, there must be weights, xim, 

chosen in a way that 

𝐸(𝑅̃𝑖) −  𝐸(𝑅̃𝑚) =  𝜆𝑚 [
∑ 𝑥𝑗𝑚𝜎𝑖𝑗

𝑁
𝑗=1 

𝜎(𝑅̃𝑚)
−  𝜎(𝑅̃𝑚)] 

where 𝜆𝑚 is the rate of change (shadow price) of 𝐸(𝑅̃𝑝) with respect to 𝜎(𝑅̃𝑝) at the point of the 

efficient set corresponding to portfolio m. Even though condition (1) is only subject to the 

weights of each asset in a portfolio corresponding to an efficient portfolio, the equation can still 

be viewed in light of the relationship between risk and return of asset i in portfolio m. For 

example, the equation shows that the expected return of asset i and asset m is proportional to the 

difference in risk between asset i and portfolio m with the proportionality constant, 𝜆𝑚, being the 

slope of the efficient set at the tangency point for a particular portfolio m.   

Having established the efficiency condition in equation (1), a derivation of the Capital Asset 

Pricing Model (CAPM) is easily accessible. If we rewrite (1), we get: 

𝐸(𝑅̃𝑖) =  [𝐸(𝑅̃𝑚) − 𝜆𝑚𝜎(𝑅̃𝑚)] + 𝜆𝑚𝜎(𝑅̃𝑚)𝛽𝑖, 

where  

𝛽𝑖  ≡  
𝑐𝑜𝑣(𝑅̃𝑖, 𝑅̃𝑚)

𝜎2(𝑅̃𝑚)
=  

∑ 𝑥𝑗𝑚𝜎𝑖𝑗
𝑁
𝑗=1 

𝜎2(𝑅̃𝑚)
=  

𝑐𝑜𝑣(𝑅̃𝑖, 𝑅̃𝑗) 𝜎(𝑅̃𝑚)⁄

𝜎(𝑅̃𝑚)
 

𝛽𝑖 here can be defined as the risk of security i in regards to the total risk of the portfolio, 𝜎(𝑅̃𝑚). 

Furthermore, the intercept in (2) can be rewritten to:  

(1) 
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(5) 

(6) 

(7) 

𝐸(𝑅̃0) =  𝐸(𝑅̃𝑚) − 𝜆𝑚𝜎(𝑅̃𝑚). 

The intercept is equal to the zero-beta security, more commonly known as the risk-free rate. The 

zero-beta security is the part of the return that is uncorrelated with the portfolio and therefore is a 

riskless asset in terms of the portfolio m. From (4) it then clearly follows that 

𝜆𝑚 = 
𝐸(𝑅̃𝑚) −  𝐸(𝑅̃0)

𝜎(𝑅̃𝑚)
, 

So that (2) can be rewritten 

𝐸(𝑅̃𝑖) =  𝐸(𝑅̃0) + [𝐸(𝑅̃𝑚) −  𝐸(𝑅̃0)]𝛽𝑖, 

This risk-return relationship, frequently referred to as the CAPM, shows that security i’s 

expected return is comprised of a riskless component, 𝐸(𝑅̃0), plus a risk premium that is 𝛽𝑖 

times the difference between the expected portfolio return and the riskfree rate (this is also 

known as the market factor or 𝑀𝐾𝑇). This relationship has endured extensive empirical testing 

and is the building block for multi-factor models used extensively in the literature. For example, 

the Carhart (1997) four-factor model, still lauded as one of the most successful empirical asset-

pricing models to date (and used extensively in this paper), can be described as 

𝑟𝑖𝑡 − 𝑟𝑓𝑡  =  𝛽1 (𝑅𝑚 − 𝑅𝑓)⏟      
𝑀𝐾𝑇

+ 𝛽2𝑆𝑀𝐵 + 𝛽3𝐻𝑀𝐿 + 𝛽4𝑈𝑀𝐷 

IV. Data 

My data primarily comes from MorningStar’s CISDM database (formerly the Mar database)6 

which is the oldest hedge fund database available in the market. The database contains both 

monthly return and monthly AUM data for 4,634 active funds and 16,211 dead funds from the 

                                                           
6 Data can be found via a Wharton Research Data Services (WRDS) subscription.  
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time period between January 1994 and December 2017. These funds are comprised of hedge 

funds, fund of funds, and commodity trading advisors. In addition to performance data, the 

database also contains fund characteristics such as domicile, base currency, management fees, 

performance fees, hurdle rates, high watermarks, and fund styles (general investment strategies). 

All performance and characteristic data are mapped to corresponding SEC identifiers. Because of 

the well documented issues with hedge fund databases (e.g. Aiken, Clifford and Ellis (2013) & 

Fung and Hsieh (2004)), I apply a detailed filtering methodology designed to limit certain 

database biases. A detailed look at this methodology can be seen in Appendix A.  

However, a couple of steps bear mention. First, because my methodology involves using test 

portfolios drawing from securities located on U.S. exchanges, I attempt to filter my hedge fund 

sample in a way that captures only those funds that primarily invest in securities located on those 

exchanges. I therefore filter my funds on base currency, eliminating all funds that don’t have 

United States dollars as their base currency. Furthermore, in an effort to limit incubation bias, I 

follow the advice of Berk and van Bisbergen (2015) and eliminate funds that don’t have $10 

million in AUM. The last step that bears mention is subjecting my funds to a 24-month 

continuous non-missing return restriction. Because I use a two-staged regression approach, any 
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Figure I: Count of Active Domestic Hedge Funds by Month 

 

Figure shows total count of hedge funds active and reporting in my sample during my sample 

period (1994-2017) on a month by month basis.  

funds that report less than 24 continuous returns are subject to imprecise estimates of 𝛽𝑖𝑘 which 

become problematic when these 𝛽𝑖𝑘 estimates are used the cross-sectional regressions. This 

concern over the “variable in errors” problem is further addressed in Section V. 

Furthermore, because the CISDM reports all hedge fund returns net of fees, I follow the 

suggestions of Agarwal, Daniel, and Naik (2009) in converting my net of fee data to gross of fee 

data. A detailed look at this conversion can be found in Appendix B. This conversion is critical. 

Without it, I would be unable to differentiate between the reduction to these factor-based 

strategies’ profitability due to trading costs, or due to a more complex combination of trading 

costs and fees.  

Figure I denotes a significant increase in the number of active hedge funds from the 

database’s creation up until 2008. However, after the 2008 financial crisis, there has been a 

steady decrease in the number of active funds reporting to the database during the last 10 years. 

However, this result is in contrast to the growth of total assets held by hedge funds over the same 
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Unit
Funds 

#

AUM 1994

Million USD

AUM 2017

Million USD

Incentive 

Fee

Hurdle 

Rate

Mean 1,719 59.8 178.1 16.2% 0.4%

Std. Dev. 1,038 120.4 555.9 7.3% 2.5%

25% 947 5.4 15.6 10.0% 0.0%

50% 1,464 17.1 45.0 20.0% 0.0%

75% 2,546 53.3 138.2 20.0% 0.0%

Table 1: United States Hedge Fund Sample Summary Statistics 

Table reports summary statistics for my domestic hedge fund sample (1994-2017). The top sub- 

table provides summaries of the average count of active hedge funds reporting in my sample 

periods. The next two columns show average AUM across all funds starting at the beginning of 

the sample period (1994) and ending at the end of the sample period (2017). The next two columns 

then show related summaries of hedge fund fees that are necessary in the conversion of net-of-fee 

data to gross-of-fee data. The second sub-table shows average performance data of my hedge fund 

sample and their correlations. The first two panels show monthly statistics for average returns and 

volatility and the third column shows annualized Sharpe Ratio (risk-adjusted returns) coefficients. 

Finally, the last two columns show average pairwise correlations between the hedge funds 

themselves and the market factor which serves as a proxy for general market conditions. 

  

Unit
Mean Return

% / Month

Return Volatility

% / Month

Sharpe Ratio 

Annualized % %

Mean 0.93 3.87 0.69 24.39 0.34

Std. Dev. 1.42 3.57 1.21 32.09 0.31

25% 0.42 1.88 0.24 2.80 0.12

50% 0.76 2.89 0.59 24.51 0.39

75% 1.22 4.78 0.96 47.80 0.58

  𝐻𝐹   𝑀𝑘𝑡

10-year period. This seems to suggest that investors’ preferences are changing from smaller 

hedge funds, to larger, more sophisticated funds (with likely lower trading costs). Table I 

additionally seems to support this conclusion. The mean AUM for funds in 2017 as reported in 

column 3, is greater than the 75th percentile of fund’s AUM. This suggests a fat right tail in the 

distribution of assets with large funds continuing to find success in increasing their deployable 

capital. 

Table I further details both performance metrics and average fund characteristics. Interesting 

to note is column 5 in the bottom table which details that the average pairwise correlation 

between the market and my hedge fund sample is only ~34%. This drastically differs from the 
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average pairwise correlation found in Patton and Weller (2009) for mutual funds (86.6%) and 

seems to suggest that hedge funds do give investors low market exposure. However, Patton 

(2009) documents that many of these seemingly “market-neutral” hedge funds are in reality, 

significantly non-neutral in their exposure to the market.    

Because my analysis involves comparing hedge funds with similar stock portfolios based on 

certain risk exposures, I augment my hedge fund data with common academic test portfolios. 

Following the suggestions of Patton and Weller (2017), I include the Fama-French 25 size-value 

sorted portfolios, 25 size-prior return sorted portfolios, and 25 size-beta sorted portfolios to 

ensure adequate variation in factor exposures to identify risk premia in the cross section. I then 

supplement these test assets following the recommendation of Lewellen, Nagel, and Shanken 

(2010) who find that high 𝑅2 values for tests of these factors on the portfolios mentioned above 

isn’t a particularly high hurdle. I therefore augment my test portfolios with 49 industry 

portfolios, 25 size-operating profitability portfolios, 25 size-investment portfolios, 10 market 

capitalization-sorted portfolios, 10 beta-sorted portfolios, 10 book equity to market equity ratio 

(BE/ME) sorted portfolios, 10 prior-return sorted portfolios, 10 operating profitability-sorted 

portfolios and 10 investment-sorted portfolios for a total of 234 portfolios. All of these portfolios 

are readily available through Ken French’s website.7 These 234 portfolios comprise a large set of 

the investable universe of equities.  

I also include in my analysis additional non-equity portfolios and factors knowing that hedge 

funds have a much greater universe of securities available to them then just equities that trade on 

U.S. exchanges. Following the recommendations of Fung and Hsieh (2004) I include five 

additional non-equity risk factors. Three of the risk factors are lookback straddles on currencies, 

                                                           
7 All equity portfolio data is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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commodities, and bonds (in order to capture risk from trend-following strategies). The last two 

factors are the change in yield on U.S. 10-year Treasury bond (constant maturity), and the 

change in the credit spread of Moody’s BAA bond over the 10-year Treasury bond (in order to 

capture risk exposure to changing interest rates).The three lookback straddle factors are available 

on David Hsieh’s website and the two bond factors are accessible from FRED.8  

I also include test portfolios from other asset classes following the suggestions of He, Kelly, 

and Manela (2016) that are much more representative of the entire universe of investments 

available to domestic hedge funds. For U.S. treasury bonds, I use 10 maturity-sorted government 

bond portfolios provided by Fama and French. For corporate bonds, I use 10 yield spread-sorted 

portfolios from Nozawa (2014). For other sovereign bonds, I use 6 portfolios from Borri and 

Verdelhan (2012). For options, I use 18 portfolios of S&P 500 index options sorted on 

moneyness and maturity from Constantinides, Jackwerth, and Savor (2013). For foreign 

exchange, I use the 6 interest rate spread-sorted currency portfolios from Lettau, Maggiori, and 

Weber (2014), and another set of 6 momentum-sorted currency portfolios from Menkhoff, Sarno, 

Schmeling, and Schrimpf (2012). For commodities, I use the 23 equal-weighted commodity 

portfolios from He, Kelly, and Manela (2016). Finally, for credit default spreads (CDS), I also 

use the 20 spread-sorted portfolios from He, Kelly and Manela (2016). This gives me a total of 

99 test portfolios for non-equity asset classes (all aggregated and available on Asaf Manela’s 

website)9 and a total of 333 potential test portfolios that range across all asset classes.  

V. Empirical Methodology 

                                                           
8 Three trend-following factors available at https://faculty.fuqua.duke.edu/~dah7/HFRFData.htm 
9 These additional portfolios are available at http://apps.olin.wustl.edu/faculty/manela/data.html 
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Under the general multi-factor framework of equation (7), we can use the Fama-MacBeth 

two-staged regression approach to measure the returns to these factors. I consider, with cross 

sectional regressions, how the compensation per factor differ between representative factor stock 

portfolios on-paper and the returns hedge funds realize in practice. In my estimates, I assume that 

hedge funds have constant per-unit cost in their implementation of factor investing. Investing in 

a market index (𝛽𝑀𝑘𝑡 = 1 by default) for example, results in a performance gap relative to the 

on-paper performance of the market index. Therefore, the investor would earn some fraction 

𝜑𝛽𝑀𝑘𝑡 where 𝜑 < 1 with implementation cost = (1 −  𝜑)𝛽𝑀𝑘𝑡. 

The familiar asset-pricing Fama-MacBeth procedure can be divided into two parts. First, 

time-series regressions are run in order to find stock and fund exposure to different risk factors 

(as denoted by my factors 𝑓𝑘𝑡). These risk-measuring coefficients, 𝛽𝑖𝑘 (factor loadings), are then 

regressed on the cross-section of common stock portfolios and hedge fund returns in order to 

find the incremental compensation per unit of factor (risk) exposure. The difference between the 

incremental compensation per risk exposure on the stock portfolios (on-paper compensation) and 

the hedge fund returns (realized compensation) therefore give estimates of the trading costs 

associated with trading these risk factors (factor investing). 

  More concretely, the first-stage Fama-MacBeth regression is a standard time series 

regression of excess returns on the series of factors described in Section I. For those excess 

returns, I have 𝑁𝑠 = 75 and 𝑁𝑠 = 234  stock portfolios (depending on the regression 

specification) that proxy for the investable universe of equity securities. I then augment these test 

portfolios with 𝑁𝐻𝐹 = 4,996 hedge fund return series for a total return matrix of 𝑁𝑡𝑜𝑡𝑎𝑙 = 5,071 

or 𝑁𝑡𝑜𝑡𝑎𝑙 = 5,230 depending on the specifications. Regressions of my asset-pricing factors on 

these 𝑁𝑡𝑜𝑡𝑎𝑙 excess returns therefore yields my factor loadings, 𝛽𝑖𝑘, that will be used in my 
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(9) 

(8) 

second-stage regression. Due to the well diversified portfolios that hedge funds hold, fund betas 

give much more precise estimates than betas of individual stocks (because most idiosyncratic 

risk has been diversified away in a well-balanced portfolio) and therefore I do not need to apply 

any kind of characteristic sorting portfolio procedure that is common when using this 

methodology for individual stocks. Formally, the 𝑁𝑠 + 𝑁𝐻𝐹 time series regressions are 

𝑟𝑖𝑡 = 𝛼𝑖 + ∑ 𝑓𝑘𝑡𝛽𝑖𝑘 + 𝜀𝑖𝑡,    ∀𝑖, … , 𝑁𝑠 + 𝑁𝐻𝐹    

𝑘

 

where  𝑟𝑖𝑡 is the month 𝑡 gross return on either a stock portfolio or hedge fund i, net of the 

contemporaneous risk-free rate and where 𝑓𝑘𝑡 ∀ 𝑘 = 1, … , 𝐾. Equation (8) is identical to 

equation (7) except that it is expressed in a generalizable notation. 𝛽𝑖𝑘 contains the same 

economic meaning as expressed in Sharpe (1992). It is simply the risk exposure (or loading) that 

a certain fund has to one of the risk factors.  

The second stage regressions are cross sectional in scope and attempt to measure the 

incremental compensation required for a unit increase in risk exposure. It can be formalized as 

𝑟𝑖𝑡 = ∑ 𝜆𝑘𝑡
𝑆 𝛽𝑖𝑘1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽𝑖𝑘1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡,    𝑡 = 1, … , 𝑇.

𝑘

 

𝜆𝑘𝑡
𝑆  is the realized price of risk factor 𝑘 at time 𝑡 based on test portfolio returns, while 𝜆𝑘𝑡

𝐻𝐹 is the 

same estimate except for hedge fund returns. The difference, 𝜆𝑘𝑡
∆  ≡  𝜆𝑘𝑡

𝑆 − 𝜆𝑘𝑡
𝐻𝐹, is therefore my 

estimate of implementation costs of a certain factor strategy. This difference should theoretically 

capture very real trading costs such as bid-ask spreads, commissions, slippage, and market 

impact. However, it should also capture less tangible measures such as investing in more liquid 

measures of each factor in order to ensure against redemptions and “rushes” on capital. My 
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estimates for average trading costs faced by hedge funds are then just the averages of the 

monthly differences in factor compensation 𝜆𝑘
∆ .  

One important feature of my second stage regression is the suppression of the constant. I 

follow the suggestions of both Lettau, Maggiori, and Weber (2014) and Patton and Weller (2017) 

to follow this step because the constant and the market risk factor are otherwise 

indistinguishable. Similarly to Patton and Weller (2017), I find for my time period sample that 

the cross-sectional compensation for the market, 𝜆𝑀𝑘𝑡
𝑆 , and my constant terms cross-sectional 

compensation, 𝜆𝛼
𝑆 , are of similar magnitude and strongly negatively correlated10 which supports 

this conclusion. Other factors are not meaningfully affected by the inclusion of a constant. 

Economically, this suppression forces the zero-beta (risk-free) security or hedge fund with the 

risk factors used to have no excess return.  

The methodology used has one major assumption that needs to be addressed. By assuming 

that risk exposures are constant through my 24-year window, I impose stationarity on my betas. 

The primary motivation for this is in order to minimize the errors in variable problem that is 

common in two-staged regressions. This issue arises when betas in the first stage regressions are 

measured imprecisely, giving forth to noisy betas that are then used in the second-stage 

regression. This leads to wildly inaccurate 𝜆𝑘𝑡 estimates. Therefore, to dampen this effect, I 

maximize the potential time period used in my regression (a maximum of 288 monthly returns 

and a minimum of 24 monthly returns) in order to measure betas as precisely as possible. 

However, the major limitation of this is that my regression now takes on measurement error 

arising from time-variation in risk exposures. 

                                                           
10 I find that correlations between the cross-sectional slopes of the constant and market are as high as .7 in my analyses. 
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VI. Fama-MacBeth Estimates of Trading Costs 

The empirical results detailed below apply the Fama-MacBeth procedure (Equations (8) and 

(9)) to my hedge fund sample and various test portfolios. Part A details the implementation gap 

between my test portfolios and my unadjusted hedge fund returns. Next, following suggestions 

from the literature revolving around the smoothing of hedge fund returns (Asness, Krail & Liew, 

2001; Getmansky, Lo, & Makarov, 2003; etc.), Part B then applies Equations (8) and (9) my 

various test portfolios and ARMA(1,1) adjusted and unsmoothed hedge fund returns. In order to 

avoid “p-hacking” and model over-fit, I include in Part C two-staged regressions for my test 

portfolios and ARMA(3,3) adjusted hedge fund returns. As a robustness check, Part D details the 

Fama-MacBeth methodology applied to ARMA(1,1) adjusted stock portfolio returns and hedge 

fund returns. Section E checks for omitted factor trading strategies augmented by a plethora of 

multi-asset class data to tease out non-equity biases. Section F than draws a comparison between 

my findings and those currently found in the literature.  

A. Baseline Estimates 

Table II presents results from Equation (9) for my unadjusted hedge fund returns and various 

test portfolios on a value-weighted and equal-weighted basis. 𝜆∆ in panel (3) of my tables shows 

that hedge funds seemingly don’t incur trading costs on many of these academic anomalies. 

Intuitively, 𝜆𝐻𝐹, or the compensation that hedge funds earn per factor exposure, is greater than 

that earned on the stock portfolios 𝜆𝑆 for all factors besides the value factor. For the value factor, 

average implementation gap ranges between 2.71% and 3.83% and are largely significant. These 

results are robust regardless of which weighting strategy is used for the test portfolios. 
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(a) Value-Weighted Stock Portfolios (b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ
S 75 8.18*** 1.42 4.98** 5.93*
t-stat (2.66) (0.59) (2.07) (1.65)

λ
S 234 8.56*** 0.68 3.87 6.67*
t-stat (2.81) (0.28) (1.55) (1.85)

λ
HF

75 11.80*** 7.73*** 1.14 9.08*
t-stat (3.60) (2.78) (0.42) (1.84)

λ HF 234 11.82*** 7.62*** 1.17 8.97*
t-stat (3.60) (2.73) (0.43) (1.82)

λ Δ 75 -3.62*** -6.31*** 3.83** -3.15
t-stat -(2.92) -(4.55) (2.49) -(0.88)

λ
Δ

234 -3.26*** -6.94*** 2.71* -2.30
t-stat -(2.63) -(5.14) (1.65) -(0.65)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹

Table II: Fama-MacBeth Estimates of Implementation Costs – Baseline Specifications 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average 

cross-sectional compensation per factor exposure for value-weighted and equal-weighted stock 

portfolios, 𝜆𝑆 (top panel), and US based hedge funds, 𝜆𝐻𝐹(second panel). This difference 𝜆𝑆 −

 𝜆𝐻𝐹 =  𝜆∆ is represented in the third (bottom) panel. This cross-sectional compensation is 

averaged across all funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by 

fund time series betas 𝛽 𝑖𝑘 , 

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the literature (e.g. Fama French 

(1992) & Carhart (1997)). Again, 𝜆∆ represents the trading costs faced by the typical hedge fund 

during implementation of a factor strategy. All coefficients are reported in percent and annualized. 

𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 8.20*** 3.61 5.27** 5.44
t-stat (2.61) (1.37) (2.16) (1.50)

λ
S

234 9.30*** 3.43 3.83 7.60**
t-stat (2.96) (1.26) (1.51) (2.05)

λ
HF

75 11.91*** 7.54*** 1.12 9.30*
t-stat (3.63) (2.70) (0.41) (1.88)

λ HF 234 11.91*** 7.57*** 1.13 9.31*
t-stat (3.63) (2.72) (0.42) (1.87)

λ Δ 75 -3.71*** -3.93** 4.15*** -3.86
t-stat -(2.67) -(2.32) (2.65) -(1.06)

λ
Δ

234 -2.61* -4.14** 2.70 -1.70
t-stat -(1.79) -(2.43) (1.61) -(0.46)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹
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However, what are the other three factor’s compensation telling us? How are hedge funds 

generating more compensation per risk factor than the gross of transaction cost stock portfolios? 

There are largely two plausible explanations for this phenomenon.  

First, based off the current literature, hedge funds smooth returns, therefore downwardly 

revising their risk exposures which in turn artificially raises their compensation on these risk 

factors. This phenomenon is further explored in great depth in Parts B-E of my results. 

The second plausible explanation is that the sample of test portfolios isn’t truly representative 

of the assets hedge funds invest in, and therefore all of risk factors, that hedge funds are exposed 

to. This result seems entirely feasible. Hedge funds clearly invest in a greater investable universe 

than just domestic equities. Therefore, many risk exposures inherent in other asset classes are 

therefore being captured in my 𝜆𝐻𝐹 estimates, further biasing upwards my results. These 

concerns are addressed in Part E. Most likely, a combination of both of these phenomena are 

significantly affecting my baseline results here.  

B. ARMA(1,1) Adjusted Hedge Fund Return Estimates 

Hedge funds smoothing their reported returns is not novel. Asness, Krail, and Liew (2001) 

were the first to empirically show that at first glance, traditional factor models (specifically 

regressions of hedge fund returns against a market proxy such as the S&P 500) did a poor job at 

explaining the returns posted by hedge funds and therefore showed little correlation between the 

market and hedge fund returns (strong market neutrality). However, they then show that these 

results are largely misleading. If they also included lagged market factors in their model, then 

hedge fund returns showed serious correlations with the market. These results were largely 

confirmed by Patton (2009) who shows that market-neutral hedge funds often understate there 
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true market neutrality. Asness, Krail, and Liew (2001) hypothesized that non-synchronous 

trading was a plausible explanation for why hedge fund returns were so positively correlated 

with the market after lagged terms were included. Non-synchronous trading is simply the 

concept that certain securities are not marked-to-market daily, and therefore hedge fund 

managers are able to either extrapolate prices for these illiquid securities or use the last available 

price which could significantly differ from the true value of the asset. 

These results were formalized in Getmansky, Lo, and Markarov (2004) (referred to as GLM 

from now on). GLM wrestle with the question of serial correlation in hedge fund returns. Often 

labeled the best and the brightest in the industry, hedge fund managers, as predicated by market 

efficiency, shouldn’t allow serial correlations to exist amongst there returns. If hedge fund 

managers knew of serial correlation in their returns, then they would alter their behavior because 

any other behavior would mean leaving potential profit on the table. For intuition purposes, if a 

hedge fund manager knew a priori, that good returns today would mean good returns tomorrow, 

then in good months, managers would load more heavily on risk exposures so that they could 

experience positive returns in the next period as well. Serial autocorrelation in returns therefore 

violates market efficiency. GLM discuss many potential explanations for this autocorrelation but 

find that the point estimates generated from many of these explanations are either not strong 

enough to explain the trend seen in the data or are of the wrong sign.  

The two explanations shown by GLM to adequately explain performance smoothing are non-

synchronous trading and intentional performance smoothing. The first, non-synchronous trading, 

forces managers to take their best guesses as to what the value is of their illiquid assets that have 

stale prices. The second explanation posited, though ineloquent, is that managers purposely 

“massage” the returns of their assets in order to present their funds in a more favorable light. 
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(10) 

This “performance smoothing” is rather distasteful, but Chandar and Brickar (2002) find that 

certain closed-end mutual funds use some accounting leniencies to smooth returns around 

different benchmarks. Therefore, given the relatively unregulated environment that hedge funds 

operate in, this explanation must be considered. 

While remaining agnostic to reasons behind return smoothing, GLM formalize this idea as 

presented below in Equation (10) 

𝑟𝑡
𝑜𝑏𝑠 = 𝜃0𝑟𝑡

𝑡𝑟𝑢𝑒 + 𝜃1𝑟𝑡−1
𝑡𝑟𝑢𝑒 + 𝜃2𝑟𝑡−2

𝑡𝑟𝑢𝑒 + ⋯ + 𝜃𝑝𝑟𝑡−𝑝
𝑡𝑟𝑢𝑒    𝑤ℎ𝑒𝑟𝑒 ∑ 𝜃𝑝

𝑝

0

= 1 

where 𝑟𝑡
𝑜𝑏𝑠 is the observed return one would see in the database while 𝑟𝑡

𝑡𝑟𝑢𝑒 is the true return 

biased by some smoothing coefficient 𝜃0. Because hedge funds aren’t able to generate returns 

out of thin air, ∑ 𝜃𝑝
𝑝
0  must equal 1. A simple two period model then could be represented as 

𝑟𝑡
𝑜𝑏𝑠 = 𝜃𝑟𝑡

𝑡𝑟𝑢𝑒 + (1 − 𝜃)𝑟𝑡−1
𝑡𝑟𝑢𝑒 

Therefore, when these returns are used in the first stage of the Fama-MacBeth procedure, 

𝑐𝑜𝑣(𝑟𝑡
𝑜𝑏𝑠, 𝑓𝑘𝑡)  ≠ 𝑐𝑜𝑣(𝑟𝑡

𝑡𝑟𝑢𝑒 , 𝑓𝑘𝑡) 

In fact, assuming that 𝑐𝑜𝑣(𝑓𝑡 , 𝑓𝑡−1) = 0,11 my time series 𝐵𝑖𝑘 are biased downwards by a factor 

of 𝜃 where 𝜃 < 1. Therefore, in reality, instead of using 𝛽𝑖𝑘
𝑡𝑟𝑢𝑒 I am instead using 𝜃𝑖𝛽𝑖𝑘 in my 

estimates of equation (9) found in Table II which leads to inflated estimates of 𝜆𝐻𝐹.12 

                                                           
11 This turns out to not be a bad assumption. Durand, Lim, and Zumwalt (2011), using the Ljung-Box Q statistic to test for autocorrelation, fail to 

reject the null that there is no autocorrelation for the market factor. While they do reject the null for the other three Carhart (1997) factors, the 

point estimates are sufficiently small as to not significantly change the form of the equations above. I confirm these results by plotting ACFs for 
my factors and find small point estimates for the average autocorrelations.  
12 The math can be further explored in either Getmansky, Lo, Markarov (2004) or Huang, Liechty, Rossi (2018). 
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(11) 

The simplest way to unsmooth these hedge fund returns is to invert an auto-regressive 

moving average model (ARMA). This method is used in the literature to recover 𝑟𝑡𝑟𝑢𝑒             

(Li, Xu, & Zhang, 2016). The basic intuition of the ARMA model in this context is that the 

autoregressive component helps pick up the effects of nonsynchronous trading while the moving 

average component helps pick up the effects of other performance smoothing behaviors. A 

general representation of an ARMA(p,q) model is presented below 

𝑟𝑡 =  ∅𝑟𝑡−1 +  ∅𝑟𝑡−2 + ⋯ +  ∅𝑥𝑟−𝑝 + 𝜀𝑡 + 𝜃𝜀𝑡−1 + 𝜃𝜀𝑡−2 + ⋯ + 𝜃𝜀𝑡−𝑞 

By inverting this model (solving for 𝜀𝑡), I am able to recover the fundamental innovations, or 

shocks, to hedge fund returns and therefore generate a much better estimate of 𝑟𝑡𝑟𝑢𝑒. 

Before jumping in to my ARMA adjusted results,13 I need to address two first-order concerns 

when working with ARMA models: stationarity and varying time-series variances. I assume 

stationarity in my hedge fund returns. This is generally a safe assumption when working with 

return data because returns by definition are calculated as 
𝑟𝑡

𝑟𝑡−1
− 1 and this division by a lagged 

return factor effectively keep returns safely bounded. Further, when estimating an ARMA model 

for fund 𝑖, I assume constant variance. A more robust approach to this would be to generate a 

maximum likelihood estimator using my entire hedge fund sample set to infer time varying 

variances. However, this is outside the scope of this paper and will be left to future research.  

Table III therefore reports my results from equation (9) with my various stock portfolios and 

my ARMA(1,1) adjusted hedge fund returns. The recovered innovations and corresponding 

𝜆𝐻𝐹’s of my hedge fund return sample now looks significantly more plausible. Hedge funds on 

average face trading costs between 1.0% and 1.5% depending on the test portfolios selected for 

                                                           
13 By ARMA adjusted results, I am referring to the process in equation (11) where I invert an ARMA process in order to recover the fundament 

shocks to my hedge fund return series.  
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(a) Value-Weighted Stock Portfolios (a) Value-Weighted Stock Portfolios

1994 - 2017 1994 - 2017
N S MKT SMB HML UMD

λ S 75 8.18*** 1.42 4.98** 5.93*
t-stat (2.66) (0.59) (2.07) (1.65)

λ
S

234 8.56*** 0.68 3.87 6.67*
t-stat (2.81) (0.28) (1.55) (1.85)

λ
HF

75 7.12** 2.86 1.32 5.10
t-stat (2.16) (1.03) (0.51) (1.04)

λ HF 234 7.12** 2.85 1.32 5.10
t-stat (2.16) (1.02) (0.51) (1.05)

λ Δ 75 1.06 -1.44 3.66*** 0.83
t-stat (0.85) -(0.95) (2.58) (0.23)

λ
Δ

234 1.44 -2.17 2.56* 1.57
t-stat (1.15) -(1.48) (1.66) (0.44)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹

Table III: Fama-MacBeth Estimates of Implementation Costs – ARMA(1,1) Specification 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average 

cross-sectional compensation per factor exposure for stock portfolios, 𝜆𝑆 (top panel), and 

ARMA(1,1) adjusted domestic hedge funds, 𝜆𝐻𝐹(second panel). This difference, 𝜆𝑆 −  𝜆𝐻𝐹 =  𝜆∆, 

is represented in the third (bottom) panel. This cross-sectional compensation is averaged across all 

funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by fund time series 

betas 𝛽 𝑖𝑘 , 

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the literature (e.g. Fama French 

(1992) & Carhart (1997)). Again, 𝜆∆ represents the trading costs faced by the typical hedge fund 

during implementation of a factor strategy. All coefficients are reported in percent and annualized. 

𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 8.20*** 3.61 5.27** 5.44
t-stat (2.61) (1.37) (2.16) (1.50)

λ
S

234 9.30*** 3.43 3.83 7.60**
t-stat (2.96) (1.26) (1.51) (2.05)

λ
HF

75 7.19** 2.78 1.29 4.97*
t-stat (2.18) (1.00) (0.50) (1.01)

λ HF 234 7.17** 2.76 1.31 5.09*
t-stat (2.17) (1.00) (0.51) (1.03)

λ Δ 75 1.01 0.83 3.98*** 0.46
t-stat (0.74) (0.44) (2.75) (0.13)

λ
Δ

234 2.12 0.67 2.51 2.52
t-stat (1.49) (0.35) (1.56) (0.68)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹
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the market factor. These point estimates are not statistically significant nor economically 

significant. It is unsurprising that hedge funds are relatively good at implementing the widely 

used market factor. 

Interestingly, hedge funds still earn some premia above and beyond the value-weighted 

portfolios, and close to that of the equal-weighted portfolios for the size (SMB) factor. The 

equal-weighted stock portfolios earn more compensation per size factor than do the value-

weighted portfolios because of the increased significance put on smaller companies during the 

equal-weighted portfolios construction. The fact that hedge funds earn compensation similar to 

that of the equal-weighted portfolios shows that they are increasingly adept at managing liquidity 

risks (the SMB factor is often thought about as a type of liquidity risk). This conclusion is 

supported in the hedge fund literature with Sadka (2010) finding that funds that load on liquidity 

risk earn about 6.0% more than funds with low loadings on this risk factor. This work confirms 

Sadka (2010)’s conclusion that hedge funds implement liquidity risk well. Hedge funds only 

show implementation costs between 0.7% and 0.8% for the size factor for the equal-weighted 

test portfolios.  

Column 3 of my table shows that hedge funds, similar to the baseline specification, earn very 

low compensation on the value factor. Trading costs erode between 2.6% and 3.7% of its returns 

depending on the test portfolios selected. This results in hedge fund’s compensation for value to 

have low point estimates that are statistically insignificant from zero. This result is particularly 

surprising given the large amount of funds that have a value bent. These point estimates are 

about 1.0% lower than what Patton and Weller (2017) find in their results for mutual funds. One 

potential explanation for these low point estimates could be due the over-abundance of value 

funds chasing the same few trades, and therefore seeing significant realized performance attrition 
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due to adverse price impacts. However, while plausible, this explanation is outside the scope of 

the results I present. Another explanation given by Frazzini, Israel, and Moskowitz (2015) is that 

much of the value premia lies in microcap companies that hedge funds aren’t able to adequately 

invest in. Regardless of the explanation, I find that the typical hedge fund does not earn 

significant premia on the value factor when facing real-world trading costs. 

The final column of Table III shows the compensation earned on the momentum factor. 

Similar to the size factor, hedge funds appear to be good at implementing momentum. Because 

momentum has particularly high turnover, this strategy tends to incur higher trading costs than 

the other factors. Lesmond, Schill, and Zhou (2004), for example, find that momentum strategies 

have difficulty achieving robust profitably in the wake of the trading costs they incur. The results 

in Table III however, suggest that hedge funds actually are quite proficient at implementing the 

momentum factor and earn compensation of ~5.0%.14 Additionally, the trading costs faced by 

hedge funds implementing this strategy appear to be low (0.8% and 1.6% depending on the set of 

value-weighted portfolios used).15           

C. ARMA(3,3) Adjusted Hedge Fund Return Estimates 

Table IV reports the results from equation (9) with ARMA(3,3) adjusted hedge fund returns. 

This model serves as a further robustness check of my results presented in Part B above. I use 

three-month lags for both my autoregressive component and my moving average component in 

order to fully capture the potential performance smoothing biases that occur in my sample. 

Intuitively, it does not make sense to use a model that moves beyond three-month lags because 

hedge funds are (1) forced to reveal their quarterly holdings via SEC regulation 13-f, and (2) 

                                                           
14 The fact that momentum’s compensation is a relatively large point estimate and yet not statistically different from zero (small t-statistic) is 
explained by the relatively low dispersion of momentum betas in the time series first-stage regression step. 
15 All results are robust to the choice of outlier threshold factor (3,5,10) used in my analysis. 
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(a) Value-Weighted Stock Portfolios (a) Value-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 8.18*** 1.42 4.98** 5.93*
t-stat (2.66) (0.59) (2.07) (1.65)

λ
S

234 8.56*** 0.68 3.87 6.67*
t-stat (2.81) (0.28) (1.55) (1.85)

λ
HF

75 6.39* 0.98 -1.38 4.27
t-stat (1.95) (0.35) -(0.53) (0.88)

λ HF 234 6.41* 0.94 -1.39 4.33
t-stat (1.95) (0.34) -(0.53) (0.90)

λ Δ 75 1.79 0.44 6.36*** 1.66
t-stat (1.43) (0.30) (4.47) (0.47)

λ
Δ

234 2.15* -0.26 5.26*** 2.34
t-stat (1.71) -(0.18) (3.43) (0.68)

T  288 288 288 288 288
1702 1702 1702 1702 1702

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹

Table IV: Fama-MacBeth Estimates of Implementation Costs – ARMA(3,3) Specifications 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average 

cross-sectional compensation per factor exposure for stock portfolios, 𝜆𝑆 (top panel), and 

ARMA(3,3) adjusted domestic hedge funds, 𝜆𝐻𝐹(second panel). This difference, 𝜆𝑆 −  𝜆𝐻𝐹 =  𝜆∆, 

is represented in the third (bottom) panel. This cross-sectional compensation is averaged across all 

funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by fund time series 

betas 𝛽 𝑖𝑘 , 

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the literature (e.g. Fama French 

(1992) & Carhart (1997)). Again, 𝜆∆ represents the trading costs faced by the typical hedge fund 

during implementation of a factor strategy. All coefficients are reported in percent and annualized. 

𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 8.20*** 3.61 5.27** 5.44
t-stat (2.61) (1.37) (2.16) (1.50)

λ
S

234 9.30*** 3.43 3.83 7.60**
t-stat (2.96) (1.26) (1.51) (2.05)

λ
HF

75 6.48** 0.86 -1.43 4.16
t-stat (1.97) (0.31) -(0.55) (0.85)

λ HF 234 6.45** 0.87 -1.39 4.29
t-stat (1.96) (0.31) -(0.54) (0.87)

λ Δ 75 1.72 2.75 6.70*** 1.28
t-stat (1.25) (1.48) (4.63) (0.36)

λ
Δ

234 2.85** 2.56 5.22*** 3.31
t-stat (1.99) (1.36) (3.26) (0.91)

T  288 288 288 288 288
1702 1702 1702 1702 1702

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹
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because most hedge funds issue quarterly reports to their investors and therefore publicly reveal 

there performance. These strong incentives (and accountability) to report returns in a consistent 

manner therefore strongly dampen the effect of potential performance smoothing beyond this 

quarterly window.16  

The results reported in Table IV confirm much of what was reported in Table III. Across all 

factors, 𝜆𝐻𝐹 is further attenuated. This can perhaps be attributed to a slight over-fitting of the 

model. The value factor again sees the worse attrition with its cross-sectional compensation for 

my hedge fund sample showing a negative point estimate and massive trading costs (5.3%-6.4% 

depending on the value-weighted stock portfolios chosen). Hedge funds see slight attrition of 

their momentum strategies, but the implementation costs of momentum are still lower (between 

1.7%-2.3%) than that which is typically found in the literature. Finally, the cross-sectional 

compensation for the size factor is also attenuated by about 2% for my hedge funds. The 

economic significance of this attenuation is that the size factor likely loads on the most illiquid 

holdings of these hedge funds’ portfolios and therefore the most likely to face non-synchronous 

trading effects that are captured by the additional lags. 

D. ARMA(1,1) Adjusted Stock and Hedge Fund Return Estimates 

Table V shows my estimates from equation (9) for which I apply my ARMA inversion step 

to my stock portfolios as well as well as to my hedge fund returns. While lacking economic 

intuition, by recovering the fundamental innovations on my stock portfolios, I have the added 

benefit of being able to compare like-to-like as a further robustness check to my model. Table V 

shows attenuation in the compensation earned by my stock portfolios across all factors. 

                                                           
16 Furthermore, it is increasingly difficult to estimate a model precisely with more than six parameters for the limited time series monthly 

observations (𝑇 = 288) that I have available to me. 
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(a) Value-Weighted Stock Portfolios (b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 5.29* 3.21 3.92 2.59
t-stat (1.71) (1.33) (1.60) (0.71)

λ
S

234 5.54* 2.40 4.86* 3.63
t-stat (1.81) (1.00) (1.92) (0.98)

λ
HF

75 7.04** 2.98 1.33 4.90
t-stat (2.13) (1.08) (0.51) (1.00)

λ HF 234 7.08** 2.87 1.34 4.94
t-stat (2.14) (1.03) (0.51) (1.01)

λ Δ 75 -1.74 0.23 2.59* -2.30
t-stat -(1.40) (0.15) (1.79) -(0.63)

λ
Δ

234 -1.54 -0.47 3.52** -1.31
t-stat -(1.24) -(0.33) (2.32) -(0.36)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹

Table V: Fama-MacBeth Estimates of Implementation Costs – Total ARMA(1,1) Specifications 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average 

cross-sectional compensation per factor exposure for ARMA(1,1) adjusted stock portfolios, 𝜆𝑆 

(top panel), and ARMA(1,1) adjusted domestic hedge funds, 𝜆𝐻𝐹(second panel). This difference, 

𝜆𝑆 −  𝜆𝐻𝐹 =  𝜆∆, is represented in the third (bottom) panel. This cross-sectional compensation is 

averaged across all funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by 

fund time series betas 𝛽 𝑖𝑘 , 

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the literature (e.g. Fama French 

(1992) & Carhart (1997)). Again, 𝜆∆ represents the trading costs faced by the typical hedge fund 

during implementation of a factor strategy. All coefficients are reported in percent and annualized. 

𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017
N S MKT SMB HML UMD

λ S 75 6.69** 2.97 3.89 3.13
t-stat (2.12) (1.14) (1.54) (0.84)

λ
S

234 7.42** 2.68 2.61 4.65
t-stat (2.35) (1.01) (1.02) (1.22)

λ
HF

75 7.17** 2.79 1.29 5.02
t-stat (2.17) (1.00) (0.50) (1.02)

λ HF 234 7.16** 2.78 1.31 5.10
t-stat (2.17) (1.00) (0.51) (1.03)

λ Δ 75 -0.48 0.18 2.60* -1.89
t-stat -(0.36) (0.10) (1.69) -(0.51)

λ
Δ

234 0.26 -0.10 1.30 -0.45
t-stat (0.18) -(0.06) (0.80) -(0.12)

T  288 288 288 288 288
1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

𝑁 𝐻𝐹



35 

However, the one factor that isn’t able to clear this lowered hurdle is again the value factor. Even 

with the compensation earned by HML lower on three of the four sample stock portfolios, 𝜆𝐻𝑀𝐿
𝐻𝐹  

still faces implementation costs between 2.6% and 3.5% that significantly affect its efficacy as a 

profitable trading strategy.  

The cross-sectional compensations for my stock portfolios that see the largest attenuation 

include the market and momentum factors. Because momentum is constructed based on returns 

of past winners, it is unsurprising that it sees attrition after an autoregressive component is 

included in the model. With these lowered hurdles for the compensation earned by hedge funds, 

all 𝜆𝐻𝐹’s besides 𝜆𝐻𝑀𝐿
𝐻𝐹  survive trading costs and show positive signs of real-world efficacy. 

E. Do Omitted Factor Trading Strategies and Asset Classes Explain Low Trading Costs? 

I have only considered up to this point equity-based factors for explaining the cross section 

of returns for hedge funds. However, hedge funds have access to many different asset classes and 

therefore also have exposure to many different risk factors in addition to the four factors as 

presented in my analysis so far. In order to account for these two issues, I augment my test 

portfolios with 99 additional non-equity portfolios17 in order to adequately capture non-equity 

risk factor loadings. I also augment Carhart (1997)’s four factor model with an additional five 

non-equity factors that have been shown to explain (when also coupled with the market and size 

factors) up to 56% of the time series variation in hedge fund index returns. Although these Fung 

and Hsieh (2004) factors were originally constructed to explain time series variation, and not 

cross-sectional variation of hedge fund returns, I follow Sadka (2010) and use them as risk 

controls.  

                                                           
17 Mentioned in detail in Section IV of this paper. 
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An explanation of the five additional factors are as follows. In order to capture common risk 

components for fixed-income funds, I use Fung and Hsieh’s bond market factor (Bond_MKT) 

that measures the monthly change in the 10-year treasury (held with constant maturity) and the 

credit spread factor (Credit_Spread) which measures the changes in Moody’s Baa bonds less the 

changes in the constant maturity 10-year treasury yield. Because the strategies hedge funds 

employ in the fixed income markets often revolve around these instruments’ interest rates, fixed-

income funds’ risk exposures can be well modeled by their interest rate exposure captured by 

these two factors. Fung and Hsieh (2004) show these two factors explain a majority of the 

variation in fixed-income funds because these hedge funds typically buy bonds that have lower 

credit ratings (typically less liquid off-the-run treasury securities) and sell bonds (short) that have 

higher credit ratings (typically more liquid on-the-run treasury securities). Because these trades 

often revolve around profiting on tight spreads, leverage is frequently employed to amplify 

returns.18 The cost of financing these trades then depends on the overall liquidity of the credit 

markets, and therefore is reflected by the credit spread factor (during times of illiquidity, this 

factor will be high as investors prioritize safe assets while during times of ample liquidity, this 

spread will be much lower). Therefore, both the way and nature in which these bets are placed 

are capture by my two factors.  

 The other three factors used by Fung and Hsieh (2004) attempt to explain the variation in 

trend-following strategies. These strategies typically revolve around identifying a trend in the 

price of a security and then “riding the tide” as the trend continues to play out. Interestingly, 

Fung and Hsieh (1997b) show that these strategies typically perform most successfully during 

the best and worse months for the world equity markets (typically when markets were the most 

                                                           
18 See Roger Lowenstein’s When Genius Fails for an example of this trading strategy. 
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volatile). They additionally show that the returns of these trend-following funds are typically 

nonlinear in nature. Fung and Hsieh (2001) therefore shows that the returns from these trend-

following funds can be empirically modeled successfully using look-back straddles for bonds 

(PTFSD), foreign exchange (PTFSFX), and commodities (PTFSCOM). A straddle is a type of 

options strategy that buys call and put options at the same strike price, hoping to profit off of 

volatile moves in the underlying asset’s price. The lookback feature is an exotic derivative 

provision that allows an option holder to “lookback” and earn compensation for the highest and 

lowest levels achieved by the underlying asset’s price. These lookback straddle factors therefore 

dynamically capture the non-linear relationship between risk and return for these trend-following 

funds as well as these fund’s reliance on market volatility to make money. 

Table VI and VII show the results of equation (9) when applied to my full test portfolio set, 

my hedge fund returns and my augmented nine factor model. Table VI shows baseline results. 

Table VII shows results when I invert an ARMA(1,1) process to unsmooth my hedge fund 

returns.  

Table VI shows significant attenuation for the momentum (UMD) factor when compared to 

our baseline results in Table II (by ~7.0%). The market factor and size factor are negligibly 

impaired (< 1.0%). The value factor takes a negative point estimate when benchmarked against 

those baseline results with moderate attenuation. Momentum sees the biggest attrition in my 

augmented model likely caused by the three trending-following controls. Momentum, in a way, 

is a type of trend-following strategy itself and therefore it is unsurprising that its compensation 

point estimate, 𝜆𝑈𝑀𝐷
𝐻𝐹 , is significantly attenuated as other trend-following factors are introduced 

as controls for other asset class strategies.
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(a) Value-Weighted Stock Portfolios

1994 - 2017

N S MKT SMB HML UMD Bond_MKT Credit_Spread PTFSBD PTFSFX PTFSCOM

λ S 333 8.59*** 0.84 3.32 5.77 -0.60 0.37 -0.17 0.94** -0.24
t-stat (2.82) (0.35) (1.34) (1.60) -(1.48) (1.19) -(0.56) (2.51) -(0.85)

λ HF 333 11.31*** 6.89** -0.85 2.74 0.35 -0.68*** 0.25* 0.59*** 0.22
t-stat (3.52) (2.56) -(0.34) (0.67) (1.47) -(4.14) (1.65) (3.34) (1.52)

λ
Δ

333 -2.72*** -6.05*** 4.17*** 3.04 -0.95** 1.05*** -0.41 0.35 -0.46*
t-stat -(2.68) -(5.20) (3.18) (1.32) -(2.32) (3.93) -(1.45) (0.98) -(1.76)

T  288 288 288 288 288 288 288 288 288 288
N HF 1715 1715 1715 1715 1715 1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

Table VI: Fama-MacBeth Estimates of Implementation Costs – Baseline Nine Factor Model Specifications 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average cross-sectional compensation per factor 

exposure for all portfolios (as specified in Section VI, Part E), 𝜆𝑆 (top panel), and unadjusted domestic hedge funds, 𝜆𝐻𝐹(second panel). 

This difference, 𝜆𝑆 −  𝜆𝐻𝐹 =  𝜆∆, is represented in the third (bottom) panel. This cross-sectional compensation is averaged across all 

funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by fund time series betas 𝛽 𝑖𝑘 ,  

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the asset-pricing literature (e.g. Fama French (1992) & Carhart (1997)) 

and one of the five non-equity factors used in the hedge fund literature (Fung and Hsieh 2004) and further described in Section VI, Part 

__. Again, 𝜆∆ represents the trading costs faced by the typical hedge fund during implementation of a factor strategy. All coefficients 

are reported in percent and annualized. 𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017

N S MKT SMB HML UMD Bond_MKT Credit_Spread PTFSBD PTFSFX PTFSCOM

λ
S

333 9.44*** 2.56 3.27 6.38* -0.81* 0.37 -0.66** 1.36*** -0.21
t-stat (3.02) (0.98) (1.23) (1.74) -(1.90) (1.33) -(2.09) (3.41) -(0.63)

λ
HF

333 11.31*** 6.89** -0.85 2.74 0.35 -0.68*** 0.25* 0.59*** 0.22
t-stat (3.52) (2.56) -(0.34) (0.67) (1.47) -(4.14) (1.65) (3.34) (1.52)

λ
Δ

333 -1.87 -4.33*** 4.12*** 3.64 -1.16*** 1.06*** -0.91*** 0.77** -0.43
t-stat -(1.58) -(2.94) (2.60) (1.52) -(2.66) (4.48) -(2.99) (2.01) -(1.41)

T  288 288 288 288 288 288 288 288 288 288
N HF 1715 1715 1715 1715 1715 1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01
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Table VI further shows that now, even for unadjusted returns, hedge funds face serious 

implementation costs for these factor-based strategies for momentum and value. For the analysis 

when value-weighted test portfolios are used, hedge funds face trading costs of a little over 4.1% 

when implementing the value factor and of around 3.0% when implementing the momentum 

factor. This result for momentum is corroborated by Frazzini, Israel, and Moskowitz (2015) who 

find that their real-life arbitrageur faces implementation costs of around 3.0% for the momentum 

factor. Little attention is paid to the trading costs on the non-equity factors in my analysis. This is 

because the other five factors were not originally intended to explain the cross-section of returns 

for hedge funds, but rather to significantly explain the time series dispersion of hedge fund 

returns. As Sadka (2010) notes, they still are useful controls in cross-sectional regressions. But 

the fact that these factors weren’t intended to be used in the cross section makes their economic 

interpretation difficult (this is coupled by the fact that my additional 99 portfolios by no means 

captures every asset class available to hedge funds which likely distorts my average 

compensation per factor for my stock portfolios. However, they are still useful for controlling for 

hedge fund non-equity exposure giving my equity factors a more robust interpretation.).   

 Table VII presents the same augmented model as Table VI except that it uses the inverted 

ARMA(1,1) unsmoothing procedure as detailed above for my hedge fund returns. We see 

relative attenuation for 𝜆𝐻𝐹’s for all factors besides value. Now, similar to the literature, 

momentum faces the most significant implementation costs of all of my factors. One sees that 

when trading costs are accounted for, they substantially erode the relatively high compensation 

found on paper. In fact, the momentum factor does not survive (earn positive profits) after 

trading costs are accounted for.
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(a) Value-Weighted Stock Portfolios

1994 - 2017

N S MKT SMB HML UMD Bond_MKT Credit_Spread PTFSBD PTFSFX PTFSCOM

λ
S

333 8.59*** 0.84 3.32 5.77 -0.60 0.37 -0.17 0.94** -0.24
t-stat (2.82) (0.35) (1.34) (1.60) -(1.48) (1.19) -(0.56) (2.51) -(0.85)

λ
HF

333 7.08** 2.41 -0.59 -2.14 0.06 -0.27* 0.35** 0.36** 0.24*
t-stat (2.16) (0.89) -(0.24) -(0.53) (0.26) -(1.68) (2.36) (2.03) (1.65)

λ
Δ

333 1.52 -1.57 3.91*** 7.91*** -0.66 0.64** -0.51* 0.58 -0.48*
t-stat (1.34) -(1.21) (3.04) (3.47) -(1.59) (2.35) -(1.80) (1.64) -(1.83)

T  288 288 288 288 288 288 288 288 288 288
N HF 1715 1715 1715 1715 1715 1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01

Table VII: Fama-MacBeth Estimates of Implementation Costs – ARMA(1,1) Adjusted Return & Nine Factor Model Specifications 

Table reports implementation costs for Fama-MacBeth estimates as the difference of average cross-sectional compensation per factor 

exposure for all portfolios (as specified in Section VI, Part E), 𝜆𝑆 (top panel), and ARMA(1,1) adjusted domestic hedge funds, 

𝜆𝐻𝐹(second panel). This difference, 𝜆𝑆 −  𝜆𝐻𝐹 =  𝜆∆, is represented in the third (bottom) panel. This cross-sectional compensation is 

averaged across all funds, 𝜆 
𝑘 , and is found by monthly regressions of excess returns 𝑟𝑖𝑡  on fund by fund time series betas 𝛽 𝑖𝑘 ,  

𝑟𝑖𝑡 =  ∑ 𝜆𝑘𝑡
𝑆 𝛽 𝑖𝑘 1𝑖∈𝑆 + 

𝑘

∑ 𝜆𝑘𝑡
𝐻𝐹𝛽 𝑖𝑘 1𝑖∈𝐻𝐹 + 𝜀𝑖𝑡 ,    𝑡 = 1, … , 𝑇.

𝑘

 

where 𝑘 indexes to one of the four factors used extensively in the asset-pricing literature (e.g. Fama French (1992) & Carhart (1997)) 

and one of the five non-equity factors used in the hedge fund literature (Fung and Hsieh 2004) and further described in Section VI, Part 

__. Again, 𝜆∆ represents the trading costs faced by the typical hedge fund during implementation of a factor strategy. All coefficients 

are reported in percent and annualized. 𝑇 represents the number of monthly time periods in the sample and 𝑁 𝐻𝐹 represents the average 

number of hedge funds active and reporting during the sample. All t-statistics are in parentheses. 

 

(b) Equal-Weighted Stock Portfolios

1994 - 2017

N S MKT SMB HML UMD Bond_MKT Credit_Spread PTFSBD PTFSFX PTFSCOM

λ
S

333 9.44*** 2.56 3.27 6.38* -0.81* 0.37 -0.66** 1.36*** -0.21
t-stat (3.02) (0.98) (1.23) (1.74) -(1.90) (1.33) -(2.09) (3.41) -(0.63)

λ
HF

333 7.08** 2.41 -0.59 -2.14 0.06 -0.27* 0.35** 0.36** 0.24*
t-stat (2.16) (0.89) -(0.24) -(0.53) (0.26) -(1.68) (2.36) (2.03) (1.65)

λ
Δ

333 2.36* 0.15 3.87** 8.52*** -0.87* 0.65*** -1.01*** 1.01*** -0.44*
t-stat (1.90) (0.09) (2.49) (3.59) -(1.99) (2.62) -(3.32) (2.61) -(1.45)

T  288 288 288 288 288 288 288 288 288 288
N HF 1715 1715 1715 1715 1715 1715 1715 1715 1715 1715

*p < .10, ** p < .05, ***p < .01
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Furthermore, when trading costs are accounted for, hedge funds don’t on average earn 

positive returns for the value factor during my sample period. Trading costs erode about 3.9% of 

the premia that these hedge funds would see on paper for HML, making this factor strategy 

infeasible. Again, the size factor is robust to the factor model used. Again, this confirms Sadka 

(2010)’s conclusion that hedge funds that load on illiquidity risk outperform those that don’t.  

F. Comparison of Empirical Results with those Estimated in the Prior Literature 

Table VIII shows a comparison of the trading costs on factor strategies that I estimate for 

hedge funds with the prior literature. I compare my results with those of Patton and Weller 

(2017) and Frazzini, Israel, and Moskowitz (2015). I choose this literature for comparison 

because Patton and Weller (2017) use the same Fama-MacBeth methodology as I do except 

applied to the domestic mutual fund domain. Therefore, holding methodology constant, one can 

compare the net of cost returns earned on these factor-based strategies between hedge funds and 

mutual funds. I additionally choose Frazzini, Israel, and Moskowitz (2015) because their live 

trading data that they use to estimate trading costs on factor strategies comes from a large, 

institutional hedge fund. Therefore, holding type of fund constant, one can directly compare the 

trading costs faced by hedge funds. 

One caveat to this comparison is that the years used in the sample do differ. For example, 

2017 was a particularly difficult year for value investors,19 which helps explain the gap between 

𝜆𝐻𝑀𝐿
𝑆   in Patton and Weller (2017)’s work and my own 𝜆𝐻𝑀𝐿

𝑆 . However, the compensation earned 

by investment managers tracks the compensation earned by these stock portfolios closely20, so 

this concern is minimized. 

                                                           
19 Further discussion on this topic can be found here https://www.ft.com/content/6563efaa-467c-11e7-8519-9f94ee97d996 
20 All correlations > .75. 
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Table VIII: Comparison of Findings with Current Literature on Trading Costs 

Table presents a comparison between my Fama-MacBeth estimates of implementation costs from 

Section VI Part C and Part E with the current literature. I regress standard four-factor & nine-factor 

models from the literature (e.g. Fama-French (1993), Carhardt (1997) & Fung Hsieh (2004)) on 

common value-weighted stock portfolios detailed in Section III and ARMA(1,1) adjusted hedge 

fund returns to find factor risk exposures, and then use these risk coefficients (𝛽𝑖𝑘 ) in cross-

sectional regressions to estimate incremental compensation per unit of risk for stocks, 𝜆𝑠, and 

hedge funds, 𝜆𝐻𝐹, and use this difference, 𝜆∆, as an estimate of trading costs for the typical hedge 

fund. Patton and Weller (2017) use the exact same methodology except applied to all domestic 

equity mutual funds. Our common stock portfolios are largely the same except for the sample 

period measured (1994-2017 vs. 1993-2016) and the data below can be found in Table II of their 

paper. Frazzini, Israel, and Moskowitz (2015) use live trading data from a large institutional 

arbitrageur and the data reported below comes from Table IV of their paper with the exception of 

𝑟∆ which is found through subtracting 𝑟𝑛𝑒𝑡  from 𝑟𝑔𝑟𝑜𝑠𝑠 . Trading cost estimates are bolded. T-

statistics are represented in parentheses. 

 

 

Current Trading Cost Literature SMB HML UMD

λ
S

0.68 3.87 6.67*
t-stat (0.28) (1.55) (1.85)

λ HF 2.85 1.32 5.10
t-stat (1.02) (0.51) (1.05)

λ
Δ

-2.17 2.56* 1.57
t-stat -(1.48) (1.66) (0.44)

λ S 0.84 3.32 5.77
t-stat (0.35) (1.34) (1.60)

λ HF 2.41 -0.59 -2.14
t-stat (0.89) -(0.24) -(0.53)

λ Δ -1.57 3.91*** 7.91***
t-stat -(1.21) (3.04) (3.47)

λ S 1.18 4.61 6.67*
t-stat (0.49) (1.62) (1.80)

λ
MF

2.21 2.19 1.27
t-stat (0.92) (0.79) (0.34)

λ Δ -1.03 2.42*** 5.40***
t-stat -(1.32) (3.72) (3.37)

r gross 7.98*** 4.86 2.26
t-stat (3.01) (1.12) (0.40)

r net 6.52** 3.51 -0.77
t-stat (2.48) (0.80) -(0.14)

r ∆ 1.46 1.35 3.03

*p < .10, ** p < .05, ***p < .01

Cross-Sectional Compensation with 

ARMA(1,1) Adjusted Hedge Fund Returns

 (1994-2017)

Patton & Weller (2017)

(1993-2016)

Frazzini, Israel, and Moskowitz (2015)

(1998-2013)

Cross-Sectional Compensation with 

ARMA(1,1) Adjusted Hedge Fund Returns 

With Augmented 9 Factor Model

(1994-2017)
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One sees that in comparison to mutual funds, hedge funds compare unilaterally worse when 

implementing of the value factor. Although trading costs are comparable (although slightly 

worse, 2.56% vs. 2.42%) for the value factor between my Part C results and those found in 

Patton and Weller (2017), they perform far worse when compared to my augmented 9 factor 

model (3.91% vs. 2.42%). 

Patton and Weller (2017) estimate around a 5.4% implementation costs for momentum. This 

is significantly higher than the costs that I estimate in my Part C results (I estimate 

implementation costs of 1.57%). However, when trend following strategies are augmented to my 

model, I see that implementation costs become significantly prohibitive at 7.91%. In comparison 

to the size factor, both Patton and Weller (2017) and I conclude that these funds tend to 

implement the size factor better than (or when looking at the results from Part E, as equally well 

as) the stock portfolios we have chosen in our sample. However, both of our point estimates are 

not statistically different from zero. 

In comparison to the large hedge fund that Frazzini, Israel, and Moskowitz (2015) analyze, I 

find that factor-based trading strategies for the typical hedge fund suffer significantly more 

attrition. I find that the typical hedge fund suffers around double the trading costs for the value 

factor than the firm analyzed by Frazzini, Israel, and Moskowitz (2015). Furthermore, when 

looking at the results from my augmented factor model (Part E results), I see that the typical 

hedge fund suffers more than double the attrition brought on by trading costs. This seems to 

rebuff the argument by Frazzini, Israel, and Moskowitz that they are a marginal agent of the 

hedge fund industry. They are certainly not representative of the typical hedge fund in terms of 

AUM with their analyzed firm having several magnitudes more AUM than the typical hedge 

fund reported in Column 3 of Table I. The fact, therefore, that the large hedge fund analyzed by 
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Frazzini, Israel, and Moskowitz (2015) has significantly lower implementation costs for these 

factor trading strategies is unsurprising given their size, level of sophistication, and leverage over 

prime brokers that the typical fund does not have.       

VII. Limitations – Can Hedge Funds be Saved? 

First, it is important to note that my results indicate trading costs for the average hedge fund, 

and therefore, are not indicative of all alternative asset managers. Some hedge funds, such as the 

ones presented in Frazzini, Israel, and Moskowitz (2015), are able to implement these strategies 

exceedingly well. However, my results seem to suggest that the value and momentum market 

anomalies are out of reach for the typical hedge fund. 

A second major limitation of my methodology is that it assumes that returns on factors 

(especially the equity factors) are linear. However, hedge funds often employ dynamic trading 

strategies that lead to time varying risk exposures and other non-linearities (Fung & Hsieh, 2001; 

Agarwal & Naik, 2004). However, this non-linear modeling is outside the scope of this paper and 

will be left to future research. 

Finally, another limitation of my methodology is that I include all hedge funds regardless of 

trading strategy or assets held into my analysis. I try to correct for this by my augmented model 

presented in Section VI Part E, however, potential biases because of this inclusion are bound to 

exist. I include all hedge funds in my analysis simply because of the tracking error involved in 

actually understanding an investment manager’s strategy and what they hold in their portfolio. 

For example, a majority of funds in my sample labeled themselves as “multi-strategy” and it is 

impossible to therefore know the total exposure that these types of funds have to different asset 

classes or the trading strategies that they employ. Furthermore, funds often experience style drift, 
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wherein they tell databases (even sometimes investors) what type of strategy their fund employs 

and then (sometimes substantially) drift from this strategy.21 However, further research should be 

dedicated to minimizing this tracking error and calculating implementation costs for hedge funds 

that employ different strategies. 

VIII.  Conclusion 

I apply the empirical asset-pricing Fama-MacBeth procedure to hedge fund returns and a 

comprehensive set of test portfolios in order to measure the real-world efficacy of factor trading 

strategies. I corroborate what both Lesmond, Schill, and Zhou (2004) and Patton and Weller 

(2017) find in that the momentum factor does not survive its corresponding real-world trading 

costs. Furthermore, I surprisingly find that the typical hedge fund is unable to implement the 

value factor effectively after trading costs are accounted for. Finally, I confirm Sadka (2010)’s 

conclusion that hedge funds typically implement liquidity risk well, and I find that the typical 

hedge fund earns profits to the size factor robust to multiple specifications.   

The methodology, used first in Patton and Weller (2017), is novel in that it is free of most of 

the assumptions that plague other measures of trading costs. Old-school approaches typically 

impose parametric price impact functions or use proprietary trading data in the hopes of being 

representative of the market as a whole. The methodology used in this paper not only capture 

tangible trading costs (bid-ask spreads, commissions, etc.) but also more intangible costs 

(opportunity costs of using more liquid versions of these factors, etc.) without making any of the 

assumptions of the pre-existing approaches. Because hedge funds are regarded as the most 

sophisticated investment managers in the world, the trading costs faced by these firms should 

                                                           
21 A great example of this is the hedge fund, Amaranth, who blew up after a commodity trader, Brian Hunter, lost the fund $6 billion dollars in 

two weeks. Amaranth was a multi-strategy hedge fund which traditionally had little exposure to energy trading. 



46 

represent a lower bound. Therefore, hedge funds are a curious testing field of different cross-

sectional predictors found in the literature. In future research, I hope to further apply this 

methodology considering different trading strategies employed by the funds while also 

augmenting my model to allow for certain non-linear pricing features.  

Appendix A: Hedge Fund Filtering and Cleaning Methodology 

Hedge fund data as noted throughout can be difficult to work with. First, there are no 

universal regulations regarding hedge fund performance reporting, and therefore, majority of the 

funds that report do so as a type of marketing. Therefore, all hedge fund returns and AUM data 

available to researchers is voluntarily reported (opening up rooms for biases). Although, current 

research has shown that manager’s incentives to report correctly are relatively in-line with 

truthful reporting (Agarwal, Daniel, and Naik 2009), as Getmansky, Lo, and Markarov (2004) 

and Bollen and Pool (2009) show, these incentives don’t always play out in reality. 

 Because of the concerns about different hedge fund data biases, multiple steps have been 

taken in this paper to address them. Below is a detailed filtering methodology I used to clean and 

substantiate my data. 

1. I first unstack my return and AUM data using Matlab’s unstack command in order to 

generate a [T by N] table where T represents the time series values of my returns or AUM 

data, and N represents my funds. I then map these funds using their unique SEC identifiers to 

their characteristics (such as fees, lock-ups, etc.) 

2. After my data is mapped correctly, I filter my data based on funds that invest primarily in 

assets posted on U.S. exchanges. Generally, a clear way to find which funds are located in 

the U.S. and therefore likely to invest in instruments trading on U.S. exchanges is through 
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domicile. However, because of the different tax laws and regulations governing hedge funds, 

many of the funds in the sample are registered in places such as Ireland and the Cayman 

Islands, even though their operational headquarters are in the United States. Because of this, I 

instead use fund base currency as a filter for funds that invest in U.S. securities. Because 

investments in securities outside the United States typically involve the conversion of 

currency, I assume that investment managers that denominate their funds in United States 

dollars are most likely to invest primarily in securities located on U.S. exchanges. This 

filtering step reduces the amount of funds in my sample from 20,845 total funds to 13,140 

total funds. If I filtered on domicile instead, I would have been left with a sample of only 

5,723 funds. Therefore, in order to not eliminate valuable information, fund denominated 

currency is the clear choice. 

3. Because hedge funds report data net of fees, I filter my data according to the availability of a 

fund’s incentive fees. Additionally, when annual hurdle rate data is available, I use monthly 

Libor as the hurdle rate. The rationale for this is that investors will expect returns at least 

greater than the relatively risk-free monthly Libor rate, and therefore, if managers are unable 

to surpass this benchmark, than they are unlikely to surpass their own hurdle rate provision. 

Furthermore, given the relatively little significance it has on the conversion (and given the 

trade-off between tossing valuable fund observations), any fund that doesn’t report a hurdle 

rate, I assume it to equal zero. This enables me to keep significantly more funds in my 

sample. The calculation for the conversion between net returns and gross returns is explicitly 

detailed in Appendix B. This filtering step reduces the funds in my sample from 13,140 total 

funds to 8,872 funds.  
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4. Before the I convert my net of fee returns to gross of fee returns, I additionally filter out 

missing value flags inherent in the CISDM return series database. These missing value flags 

are represented as the values 9999.9999 or 99.999999. I therefore convert them to Matlab’s 

missing value identifier, NaN. I find that there were 1,246 of these missing return flags in my 

dataset.  

5. Although my filtering process so far contains 8,872 funds left in my sample, some of these 

funds fail to report any returns. These funds are still included in the database, however, 

because they report some of their funds’ characteristics. Because my empirical methodology 

relies on return series data, I next eliminate all funds that don’t report any returns. After 

eliminating these non-reporting funds, I am left with a total of 7,851 funds. 

6. I then follow the suggestions of Berk and van Binsbergen (2015) to filter my data further 

based on size of AUM. One common technique that hedge funds and mutual funds use is 

what is called incubating a fund. Incubation is the practice where an investment manager 

allocates a small portion of its total assets to a plethora of very small funds in order to see 

which new strategies or investment styles they should add to the overall flagship fund. 

However, this is commonly used as a marketing tool whereby managers attempt to build 

attractive track records of funds before attempting to scale them. If an investment manager 

allocates a relatively small amount of money to 100 funds, then it is statistically likely that 1 

or 2 of them will demonstrate extremely strong returns. These couple of funds are then 

marketed to investors and scaled. Because of this incubation bias, Berk and van Binsbergen 

(2015) suggest that micro funds should be excluded from any analysis that looks at 

performance evaluation because these funds are not representative of a manager’s skill or the 

wider market as a whole. I follow their filtering methodology and filter out any fund that has 
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AUM under 10 million dollars. Additionally, for funds that cross this boundary during the 

life of the fund, I filter out any returns that occur before a fund reaches the 10-million-dollar 

mark. This filtering technique reduces my sample further from 7,851 funds to 5,610 funds. 

7. I next ensure that that my hedge fund return series sample has at least 24 non-missing 

cumulative returns. Because of my two-stage regression approach, it is critical to minimize 

the errors in variable problem of running a second regression strictly on noise. This noise will 

strongly bias the coefficients that are to be found in the second stage regression. I therefore 

ensure that a fund contains 24 consecutive returns to allow for a certain safety threshold 

when estimating my time series betas in the first-stage regression. This step reduces the 

amount of funds in my sample to 4,966 from 5,610 total funds.  

8. My final data cleaning step utilizes Matlab’s filloutliers command. This function takes a table 

of returns, and then column by column, identifies outliers by identifying elements that are a 

specified number of median absolute deviations away from the median. Median absolute 

deviation is an ideal outlier technique for financial time series data because unlike standard z-

scoring techniques, the median is not biased upwards from outliers. For example, take 

CISDM’s database as an example. Using standard z-score techniques, it would correctly 

identify 9999.9999 as an outlier. However, if the flag 99.99999 was also included in the 

funds’ return series, the first outlier would bias the mean in such a way as to inflate it, 

potentially making the 99.9999 look like a reasonable event. The threshold factor I use in my 

results is 10 MADs. While this potentially seems like too high of a threshold, because hedge 

funds have been shown to have rather large fat tails22, I use this cutoff to ensure I am not 

                                                           
22 LTCM’s risk management models for example, showed that the fund was experiencing a ten-sigma event during its collapse in the late 1990s. 

See Roger Lowenstein’s When Genius Failed for more details. 
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throwing away valuable data. Results are further run with the threshold factor equal to 3 and 

5, and my results remain largely unchanged.  

Appendix B: Conversion of Net of Fee Returns into Gross of Fee Returns 

In order to parse out the effect of trading costs on returns, it is crucial that the returns 

analyzed are gross of fee returns. However, hedge funds report returns almost exclusively net of 

fees to database vendors. The CISDM database is no exception and therefore one must convert 

this net of fee data to gross of fee data. Luckily, the CISDM database, in its fund characteristics 

data, provides adequate information to do this. In order to estimate gross of fee return data, I 

follow Agarwal, Daniel, and Naik (2009) and use their methodology with slight modification. A 

funds gross return can be calculated as follows: 

𝑔𝑟𝑜𝑠𝑠𝑡  = {

𝑛𝑒𝑡𝑡 − ℎ𝑢𝑟𝑑𝑙𝑒𝑡 ∗ 𝐼

1 − 𝐼
,          𝑖𝑓 𝑛𝑒𝑡𝑡 > ℎ𝑢𝑟𝑑𝑙𝑒𝑡

𝑛𝑒𝑡𝑡,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, I = yearly incentive fees and hurdlet = libort if the fund has a hurdle rate, and zero if it 

does not. The calculation follows directly from Agarwal, Daniel, and Naik (2009). Furthermore, 

I assume that management fees cover all fixed costs. 
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