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Abstract  

The advent of blockchain technology has created a new asset class named 

cryptocurrencies that have experienced tremendous price appreciation leading to speculation that 

the asset class is experiencing an asset bubble. This paper examines the novelty and functionality 

of cryptocurrencies and potential factors that may lead to conclude the existence of an asset 

bubble. To empirically evaluate whether the asset class is experiencing an asset bubble the LPPL 

model is used. The LPPL model was able to successfully identify two of the four crashes within 

the data set signifying that cryptocurrencies are within an asset bubble.    
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Introduction:  

One of the most googled terms of 2017 was “How to Buy Bitcoin.” There has been an 

explosive interest in cryptocurrencies to the point where crypto exchanges have in many 

instances restricted the inflow of new users because of the overwhelming demand. The global 

cryptocurrency markets are witnessing trading volumes that are comparable to the NYSE 

(Chaparro, 2017). The exuberance of the asset class can be portrayed by the 2 billion dollar 

market valuation a cryptocurrency coin named Dogecoin achieve. The coin’s name originates 

from a popular internet meme that parodies the comical appearance of a Japanese dog breed 

named Doge (Bach, 2018). With several cryptocurrencies having returns of over several 

thousand percents, such as Ripple which achieved 36,018% gain in 2017 (Wong, 2018), the 

questions that naturally arise if the cryptocurrency market is in a bubble.  

Asset bubbles typically amplify the behavior of herding, moral hazard, and extrapolation 

to an extreme. Often, however, it is only with hindsight that these behaviors are identified. 

Identifying asset bubbles becomes problematic when a new revolutionary technology emerges as 

the valuation of the technology becomes extremely difficult because it is hard to quantify the 

degree of “disruption” the technology will induce (Cheah & Fry, 2015).  

 In 2009, a new technology was introduced under the name of Bitcoin. The inner workings 

of Bitcoin involved complex and groundbreaking cryptographic technology that aimed to disrupt 

the traditional fiat-based monetary system. Throughout history, the concept of currency has 

either taken the form of commodity money or fiat money. Commodity money derives its worth 

by a physical tangible good such as gold and offers a dual utility of being storage of value and a 

medium of exchange. A fiat currency also offers a storage of value and medium of exchange, but 

the currency itself has no intrinsic value; as its value originates from the backing of a central 
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authorities’ economic power and reputation. The advent of Bitcoin has introduced a new asset 

class called cryptocurrencies. This new asset class is not tangible and only exists virtually while 

having no centralized authority backing the intrinsic value. The value of cryptocurrencies 

originates in the additional level of convenience, convertibility, and security that is provided over 

traditional fiat currencies (Chiu, 2017). Blockchain technology has the capability of radically 

changing existing business structures as it combines the workings of computer science, 

information systems, and applied cryptography.   

 As alluring as blockchain technology has become, the technology itself is in its infancy 

and is far from being fully integrated within the current economic structure. Although the 

blockchain industry itself is still in its developmental stages, the current valuations provide a 

different perspective. This has brought forth the question of whether a speculative bubble exists 

within the cryptocurrency sector due to the meteoric rise of the currencies and the extreme 

volatility that has been accompanied. One of the most promising models that originate from 

statistical physics has been the log-periodic power law model. The log-periodic power law 

(LPPL) model seeks to predict the continuation and termination of a bubble.  

The current academic literature has been able to find bubbles within the price action of 

Bitcoin successfully. Current research has primarily fixated investigating asset bubbles within 

Bitcoin as this is the largest cryptocurrency in regards to valuation. There has not been an 

extensive investigation into the cryptocurrencies outside of Bitcoin which are named Altcoins. 

As of 1/10/2018, Altcoins have reached a market capitalization exceeding $400 billion according 

to Coinmarketcap.com. The purpose of this paper will be applying the LPPL model to the 

aggregate cryptocurrency market including Bitcoin to determine if the asset class is in a 

significant asset bubble. 
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Background: 

Cryptocurrencies 

For the last few thousands of years, physical tokens have been used as a means of 

payment and store of value. There are, however, great limitations with the current monetary 

system in regards to the transferring of money between two parties. The transferring of money is 

an incredibly complex system that requires a third-party verification to serve as the middleman; 

to ensure that both parties obtain the agreed amount of money and that it is properly recorded 

within a ledger. Bitcoin introduces a new technology called blockchain that can greatly improve 

the current monetary exchange system through properly and securely digitalizing the entire 

process. Blockchain provides a global ledger that is available to every participant within the 

respective network, and the collective network verifies each transaction (Hayes, 2017). The 

security of this system is essentially impenetrable, and this allows for the velocity of a monetary 

unit to greatly increase – ultimately leading to greater economic efficiency.  

 The internet is powerful in that enables the spread of information. Unfortunately, the 

internet can’t perform the function of disturbing value such as assets, money, contracts, and 

votes due to the dilemma of “double spending.” Double spending is the problem that users have 

to ability to make a digital copy of the original item and send this copy as if it was the original 

digital item. This dilemma would allow for individuals to “double spend.” To further understand 

this key concept, a digital currency wouldn’t be feasible since an individual could take the digital 

currency and send the digital currency to two separate parties at the same time. The sender of the 

digital currency made a copy and sent it to the two other parties while still retaining the original. 

Because of this dilemma digital currencies were not plausible until the introduction of the 
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blockchain. Blockchain created a decentralized database where the order of transactions is 

unanimously agreed upon by everyone involved (Franco, 2015). A blockchain is a decentralized 

transaction and data management technology that allows its public depository of records to be 

incorruptible and irreversible. The most basic way to conceptualize blockchain is as a distributed 

public ledger that contains every single transaction that has been carried out in history. 

Furthermore, the blockchain is publicly available to everyone involved in the system, and the 

encryption involved far exceeds any current firewall security system that is utilized by banks or 

another financial intermediary (Lakhani, 2018).  

The concept of blockchain technology came into existence with the introduction of 

Bitcoin. In 2008, a few weeks following the collapse of Lehman Brothers an anonymous 

individual under the pseudonym Satoshi Nakamoto released the first decentralized digital 

currency known today as Bitcoin.  Bitcoin operates under the process of validating entries, 

safeguarding these entries, and finally preserving the historical record. Every bitcoin account has 

a private key and electronic signature that accompanies each transaction as a verification and 

security protocol. The verification process is completed once is it established that the sender has 

actual ownership of the currency and there is a sufficient amount of his account. This is done 

through an elaborate process involving cryptography where several computational codes are 

solved. Once the transaction is verified, it becomes a “block,” this block is then broadcasted to 

the massive global ledger that is interconnected with millions of computers around the world. 

The transaction is distributed using a peer to peer network that is operated by volunteers called 

“miners.” These miners collectively at any given time have a computational power that is 10 to 

100 times the capacity of Google (Tapscott, 2016). The miners are responsible for solving a 

complex computational problem that involves verifying, clearing and storing the block and 
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finally linking it to a preceding block, therefore creating a chain of blocks. The block containing 

the transaction becomes linked to the blockchain that holds the historical data of every 

transaction that ever took place. Once the block becomes linked, a specific time stamp is 

established that completes the transaction. This timestamp is an important characteristic as it 

ensures that double spending is impossible within the system (Price, 2017). 

The miners are the reason the system can function in a decentralized manner, and their 

work input allows for the global ledger to exist. The efforts of the miners are compensated with 

Bitcoin every instance a miner verifies, processes and link the blocks to the blockchain. This 

current blockchain system offers the most advanced level of encryption that is possible. To 

attempt to hack the system and alter existing data would require the altering of every blockchain 

in the history of commerce that has been created on millions of computers simultaneously—a 

task that is almost impossible (Swan, 2015).  

The technology behind Bitcoin has been dispersed to other cryptocurrencies called 

Altcoins. Altcoins are Bitcoin alternatives and use the same or a similar technological 

foundation. Currently, there are three designations for altcoins. The three designations rely on the 

hashing algorithms functions and are categorized into SHA-256 alternate cryptocurrencies, 

Scrypt alternate cryptocurrencies and other (Bonneuau et al., 2016). The SHA-256 was originally 

developed by the NSA and is the protocol that is used by Bitcoin. The Scrypt hashing function 

provides the same degree of encryption, but the difference lies in the mining capabilities, which 

is a very technical component and is outside the scope of this paper.  

Outside of the technical engineering distinctions of Altcoins, there has emerged different 

subgroups within the Altcoin arena. The two main categories are split among currencies and 
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utility tokens. Bitcoin is a cryptocurrency; the purpose of the coin is to act as a medium of 

exchange. Utility tokens greatly differ in that they act as quasi-securities since their purpose to 

provide a decentralized application. This decentralized application, however, utilizes its tokens 

(still considered cryptocurrency) to function as a stand-alone economy.  

This class of cryptocurrency utilizes the blockchain trust in performing specified 

functions. Participants that are engaging with the specified function in the decentralized 

application pay for that service with the underlying cryptocurrency (Digital Currencies, 2015). 

Decentralized applications attempt to create the same services like Uber, Twitter, and Facebook. 

The distinguishing factor is that all the user information is decentralized. The decentralized 

component results in no single entity have access to your information, which is not the case with 

centralized applications such as Uber, Twitter and Facebook. To further illustrate the complexity 

and variation in the functionality and purpose of utility based cryptocurrencies it is helpful to 

examine Siacoin. 

Siacoin is unique in that the tokens provide a service that aims to compete with the cloud 

storage industry. Siacoin uses the same basic principles Bitcoin utilizes; but rather than miners 

solving mathematical problems to be awarded a monetary gain, Siacoin has the miners provide 

their unused computer storage. Currently, there is a massive amount of latent storage on 

personal, and business computer’s hard drives and Siacoin aims to use that untapped storage to 

create a decentralized storage network. To use the Siacoin application, an individual would buy 

the Siacoin cryptocurrency to rent storage, while miners (providers) of storage would be paid in 

Siacoin. This Siacoin will act as another form of currency and can be exchanged for any other 

currency such as Yen, USD, etc. Outside of the added security component within Siacoin’s 

blockchain, the cost is significantly less than the current cloud storage average (Vorick, 2017). 
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 Investors come into play as there is a belief that as the network grows the value of the 

currency appreciates due to the increased demand for the currency (Digital Currencies, 2015). 

This is the general underlying framework of most cryptocurrencies where there exists a 

blockchain solution that is far more efficient, safe or cost-effective.  

 

Literature Review  

Asset Bubbles  

 The exemplary case of an asset bubble that is repeatedly cited is the Dutch Tulip Mania 

Craze. The Dutch Tulip Mania focused on the insane price appreciation of tulip bulbs in Europe 

in the mid-17th century where certain tulips became more valuable than homes. The tulip 

example provides a very robust framework of what compromises asset bubbles. The fundamental 

value of the tulips was significantly below the market value; as the tulips provided no source of 

additional utility outside of an aesthetic perspective. The price appreciation was momentum 

based and thrived of individual’s irrational exuberance. Asset bubbles that solely focus on a 

particular asset that far exceeds its historical worth with no technological innovation are far 

easier to identify and understand than “rational” asset bubbles. Rational asset bubbles focus on a 

revolutionary technology that can significantly affect how a current economy operates. The most 

recent example is the dot-com bubble; where the appeal of the internet’s potential capabilities 

brought valuations that weren’t sustainable in the long run (Bonneau, 2017). The NASDAQ 

which tracks technology and internet related stocks, towards the end of the 1990’s had an 

average price to earnings ratio of 200. During the dot-com bubble, the funding among venture 

capitalist and initial public offerings surged from $3 billion to a staggering $60 billion in 1999 
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(Teeter & Sanderberg, 2017). This rate of growth is simply unsustainable, and that was made 

apparent as the NASDAQ fell a staggering 78 percent in the following 30 months erasing over 

$5 trillion in market value. The reoccurring theme among asset bubbles involving revolutionary 

technology is that market participants fail to critically understand the lengthy process of 

progression and adoption concerning technology. This hindsight creates valuations that would 

indicate the technology is fully operational and adopted, while in reality that is far from the case.   

 The cryptocurrency markets have seen explosive levels of growth that greatly question 

the sustainability of the asset with regards to price action. Below in figure 1 is a visual 

representation of the top 10 ranked cryptocurrencies by market capitalization from January 2014 

to January 2018. The growth of Bitcoin is spectacular with a 1782% within this time frame. The 

greatest amount of price appreciation, however, occurred within cryptocurrencies outside of the 

top 10 ranking cryptocurrencies by market capitalization. While Bitcoin experienced an insane 

price appreciation of 1782% within this four-year period, the entire cryptocurrency market grew 

from $10.7B to $600B from January 2014 to January 2018 (coinmarketcap.com) achieving an 

unbelievable growth rate of 59,900%.  In figure 2 below is the growth of the cryptocurrency 

market from April 28, 2013, to January 11, 2018 index from a starting price of 100. The 

illustration was constructed from the data set used for the LPPL model, and the y-axis is log 

scaled to portray the meteoric growth and volatility of the asset class. It is undeniable that the 

technology behind cryptocurrencies is revolutionary. However a quick analysis of the growth 

rates within the industry immediately questions the sustainability and intrinsic value of such a 

market.  
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Potential Asset Bubble Factors in Cryptocurrencies  

The actual theory behind the cause of the asset bubbles is still heavily debated among 

economist. Below are some of the main contributors within the cryptocurrency markets that may 

point to a potential asset bubble. 

I. Illiquidity  

In US equities there have been several instances of price manipulation within OTC markets. 

Over-The-Counter markets in the United States are not subject to regulation by the SEC. OTC 

markets are typically filled with small, illiquid stocks and are subject to manipulation. Because 

of the liquidity issues with the underlying OTC markets, there is a common illegal practice 

known as a “pump and dump.” The basic premise involves a small group of individuals buying 

shares that are illiquid and then proceeding to spread false information about how promising the 

underlying asset is and how the asset will continue to appreciate in price. Since the asset has such 

low liquidity a small spike in demand will lead to massive price appreciation as inflowing 

demand significantly overshadows the limited supply. While this is occurring, the original group 

of participants who bought the shares will slowly unwind their position into the overflowing 

demand. In the end, the majority of the investors are left with an illiquid asset that continues to 

fall as the artificial demand ceases and investors come to realize the inaccuracies of the false 

information that originally prompted the hype. The opposite trend proceeds as investors rush to 

the exit their position and further contribute to the crash. Massoud et al. (2016) studied this 

activity within the OTC market and found that companies hire promoters to engage in 

continuously feeding the demand of the illiquid asset. This practice has seen to be prominent 
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within the cryptocurrency space as several large online messaging groups have engaged in the 

illegal price manipulation (Williams-Grut, 2017). 

 Outside of questionable and illegal trading activities, there is also the extreme 

concentration of ownership within cryptocurrencies. Within the cryptocurrency sector, there is a 

term coined “whales,” about individuals who own large percentages of the total supply of a given 

cryptocurrency. Within Bitcoin, currently, 1000 people own 40 percent of the total market 

supply. Ethereum, the second largest cryptocurrency by market cap has 100 individuals owning 

40 percent of the supply. There is even further drastic concentration of wealth in less prominent 

coins such as Gnosis, Qtum, and Storj. These three coins which are all within the top 100 coins 

by market cap have a few groups of individuals controlling more than 90 percent of total supply 

(Kharif, 2017). This creates an environment where cryptocurrency exchanges do not have the 

appropriate liquidity of a “whale” unloading his shares of cryptocurrencies. Furthermore, such 

excessive concentration within a small group of individuals creates more opportunities for price 

manipulation. These two factors of illiquidity may lead to greater price volatility within the asset 

class and potential of bubble-like price action. 

II. Greater Fool Theory  

There exists a social phenomenon known as the Greater Fool Theory. Participants within a 

market comprehend that the underlying asset is overvalued way beyond intrinsic valuations. The 

participants continue to actively bid up the price of the asset searching for a “greater fool” that 

will come along and pay a higher price. The foundation of this theory lies on the human bias of 

overestimating our abilities and having the false belief that there will always be an investor less 

knowledgeable to serve as the greater fool. This phenomenon seems to be in place within 
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cryptocurrency markets as there is no required registration to partake in most Initial Coin 

Offerings and exchanges. An Initial Coin Offering is a fundraising mechanism that allows for a 

new project to sell their underlying crypto tokens in exchange for bitcoin. The idea is similar to 

an Initial Public Offering where the investors obtain shares of the company. Within an IPO there 

is an extreme regulatory oversight as well as a review of track record and credibility of the 

company. A regulatory body greatly investigates detailed information regarding the duration, 

access, utility of the offering. Most importantly IPOs are only allocated to institutional investors 

(Geiger, 2017). Within the ICO market, there is no regulatory framework and compliance. 

Furthermore, the offering is available to anyone willing to invest. The lack of restriction in who 

can participate leads to the potential of having a massive number of unaccredited investors who 

do not have the proper understanding and skillset in how financial markets operate.  

The inclusion of participants with no little to no prior knowledge of financial markets can 

lead to cryptocurrencies becoming greatly overvalued as these individuals lack the expertise and 

skill set to intrinsically price assets within a rational bound. In The ICO Gold Rush (Zetzsche et 

al., 2017) 450 ICOs were investigated by informational accuracy and regulatory compliance. It 

was found that less than 10 percent of the token acquired by investors had any degree of 

functionality. Over 90 percent of the tokens acted solely as speculative trading instruments 

providing no intrinsic value to the investor. Even with the clear concern surrounding the 

legitimacy and practicality of some of the cryptocurrencies, the ICO volume exceeded $20 

billion at the end of January (Zetzche et al., 2017). The potential lack of financial knowledge and 

due diligence among unaccredited investors has the potential to of creating asset bubble 

environment. The rise of ICO’s offering purely speculative instruments as examined in Zetzche’s 

work further portrays this scenario.  
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III. Bounded Rationality  

This theory relies on the belief that the current marketplace where the asset is trading is 

asymmetrical in information. Thus the individuals purchasing the inflated asset have limited 

information on how to appropriately price the underlying asset. Due to a lack of resources and 

skillset leads the participants in misunderstanding pricing models and making suboptimal 

decisions as limited bounded rationality bounds individuals. Within efficient and rational 

markets, homogenous goods obey the Law of One Price (LOOP). Cryptocurrencies such as 

Bitcoin are homogenous in that each Bitcoin is completely identical. Although each unit of 

Bitcoin is identical, there still exists large price deviations within exchanges. In Financial 

Regulations and Price Inconsistencies Across Bitcoin Markets, Pieters & Vivanco (2017) found 

that the lack of required ID to open an account greatly contributed to the that significant 

differences in prices among bitcoin exchanges. 

 Outside of the Law of One Price dilemma, there has been significant inconsistencies 

within ICOs. A shocking 31 percent of do not provide any information about the backers of the 

project. 23 percent of the white papers fail to provide any description of how the project’s 

financials currently stand. Out of the 450 ICOs examined by Zetzche et al. not a single ICO 

provided the inclusion of an external auditor to verify the claims and facts cited in the 

documents. The lack of financial information leaves participants with a very limited outlook on 

the entire project. This issue of bounded rationality results in the potential situations where 

investors are buying cryptocurrencies on the premise of false information – such a scenario can 

greatly magnify asset bubbles.   
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IV. Herding  

Herding is a theory that is often the premise of empirical models that attempt to examine asset 

bubble formations. Due to human nature, there is a natural inclination for individuals to mimic 

the actions of a larger group. Within the bubble context, this behavior is typically irrational, and 

the individuals continue the behavior due to the social pressure of conformity. Furthermore, the 

common rationale that it is unlikely for such a large collection of individuals to be wrong further 

amplifies the underlying problem (Hanna, 2018).  

 There is a plethora of theories and phenomenon that attempt to pinpoint the fundamental 

causation of asset bubbles. The core to understanding asset bubbles, however, relies primarily on 

valuations. The intrinsic value of an asset relies on the summation of future cash flow which is 

then discounted to the present day. A problem arises when a new revolutionary technology 

emerges as it is difficult to assess the intrinsic value as there is no historical data. The new 

technology brings forth the potential to disrupt the current economic ecosystem due to its 

innovation. The problem that arises is that growth rate, adoption rate, and several other factors 

can’t be accurately quantified to determine the future cash flows the asset will produce. The large 

discrepancy in understanding future earnings allows for an extreme valuation to be produced -- 

this disagreement among pricing typically leads to higher volatility which is represented by beta 

(Cheah & Fry, 2015). This was one of the main problems surrounding the internet bubble of 

2000 as there isn’t a fundamental value anchored to the technology and soon unrealistic prices 

become justified and accepted. Herding is an important component and underlying mechanism 

behind the LPPL model and will be further analyzed within our theoretical framework. 
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Several papers that have evaluated Bitcoin and its price action. Malhorta & Maloo (2014) 

utilized the unit root test in 2013 to conclude that due to the strong explosiveness in the Bitcoin 

exchange rates there is a reason to believe the asset is in a bubble. Similar results were found by 

Cheah & Fry (2015) where the bubble component of Bitcoin accounted for 48.7% of the 

observed price and concluded that the fundamental value of Bitcoin is zero.   

In Econometric Analysis of Bitcoin and its 2013 Bubbles, Fiser examines the price action 

of Bitcoin from 2012-2015 using three ARIMA, GARCH, and LPPL models. The ARIMA 

model was unable to predict future development of Bitcoin price because the ARIMA process 

had significant conditional heteroscedasticity in the error term. To overcome this issue, Fiser had 

to adopt the GARCH model. The GARCH process is not stationary as well as the conditional 

variance did not converge to a constant unconditional variance in the long run. The GARCH 

process essentially lead to the estimated variances to grow linearly over the time series and when 

further investigating the data from the GARCH model there are questions whether the model 

properly captures the variance of the price action. Fiser lastly tested the price data of Bitcoin 

using the LPPL model and found that the model was most effective in testing Bitcoin due to the 

extreme volatility and price action. The LPPL model was able to predict a crash on April 2013 

accurately, however, failed to forecast a crash on November, 2013 convincingly.  

In Popping the Bitcoin Bubble: An Application of Log-Periodic Power Law modeling to 

Digital Currency, MacDonell was able to forecast a crash on December 4, 2013 successfully of 

Bitcoin using the LPPL model. The model prediction was two days off from the actual crash. 

Based on the current literature the LPPL model seems to be the predominant method of 

evaluating asset bubbles within cryptocurrencies.  
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There has been a considerable amount of literature published on the price action of 

Bitcoin and the existence of an asset bubble. The current outstanding research has under-

emphasized investigating the relationship between asset bubbles and cryptocurrencies outside of 

Bitcoin. In 2017 13 cryptocurrencies outperformed Bitcoin in percentile gains (Wong, 2018). 

There has been very limited academic research investigating the asset bubble question among 

these coins. Rather than focusing on a few popular cryptocurrencies, this paper will aim to 

analyze the existence of an asset bubble within the aggregate cryptocurrency market. Therefore 

the total market capitalization of all cryptocurrencies including Bitcoin will be evaluated. The 

contribution of this research will hopefully provide a broader perspective on asset bubbles and 

the cryptocurrency asset class as a whole. Such an analysis is useful as it could potentially serve 

as a benchmark to compare individual cryptocurrencies to the entire asset class to further 

determine whether an individual cryptocurrency asset bubble is predominately systematic or 

idiosyncratic in relation to the cryptocurrency asset class.   

If the LPPL model does not detect the presence of a bubble, then further investigation can 

be made into what tangible variables have contributed to the increased price of the 

cryptocurrencies. Such an outcome would signify that there is a fundamental value associated 

with cryptocurrencies.  

Theoretical Framework  

The problem within frameworks when observing asset bubbles is that no specific superior 

model applies to all asset bubbles. One prominent economist summarized the dilemma as 

“Econometric detection of asset price bubbles cannot be achieved with a satisfactory degree of 

certainty. For each paper that finds evidence of bubbles, there is another one that fits the data 
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equally well without allowing for a bubble. We are still unable to distinguish bubbles from time-

varying or regime-switching fundamentals, while many small sample econometrics problems of 

bubble tests remain unresolved” (Geraskin & Fantazzini, 2013, p. 2).  

One of the standard econometric models that are typically used when analyzing potential 

bubble formation is the Autoregressive Conditional Heteroskedasticity model (ARCH). ARCH is 

a statistical model for a time series of data that aims to describe the variance within current error 

terms. The ARCH model computation is based on the function of previous time interval error 

terms. The model is ideal for data sets that appear to be heteroskedastic with periods of volatility 

followed by a minimal noise among the time series. The ARCH model, however, is based on 

conditional heteroskedasticity where the periods of high volatility and calm are easily 

discernable. When evaluating asset bubbles, the periods of volatility do not typically occur at set 

times – greatly limiting the functionality of ARCH within asset bubbles (Fiser, 2015).   

To overcome the limitations of ARCH, a generalized ARCH (GARCH) model is 

typically utilized within financial time series as it assumes the randomness of the variance 

process will vary with the variance (Brooks, 2014). The limiting factor with GARCH models is 

that they are not technically stochastic as the volatility is pre-determined from the previously 

given values. This key distinction is what makes the LPPL model most suitable when examining 

asset bubbles is that the model uses a stochastic approach. A non-stationary stochastic random 

walk component overcomes the time-varying drift. Johansen & Sornette (2001) conclude that the 

GARCH model performs well in predicting variations among normal trading periods, however 

insufficiently establishes fluctuations within large crashes. The advantage of using the LPPL 

model when compared to other models is that the LPPL model aims to predict the continuation 

and termination of the bubble within the same estimation (Geraskin, 2013).  
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The Law Periodic Power Law approach was developed by Johansen et al. (2000) to 

detect asset bubbles. The model has had incredible success in the past and has been able to 

demonstrate that about two-thirds of crashes are endogenous. One of the creators of the model, 

Didier Sornette, has set up a Financial Crisis Observatory to identify financial asset bubbles 

within stocks, bonds, and commodities. The FCO has been successful in predicting the asset 

bubbles within the US real estate bubble in 2006, Oil bubble in 2008 and the Chinese stock 

market bubble ex ante (Sornette et al., 2015).  

 The log periodic power law model evaluates the price action of an asset following a 

periodic log oscillation and predicts the crash of the asset. The main idea behind the model is that 

it is impossible for an asset to exhibit exponential price growth continuously and therefore the 

increasing oscillation within the price action of the asset provides for an indicator of a 

subsequent crash. The first use case of the LPPL model was within earthquakes and predicting 

within a probability band when the rupture will occur. The model measures a precursor signal 

and assumes that there is a positive feedback loop where each following precursor signal puts 

further pressure on the entire system until the system finally reaches the critical point. In the 

context of earthquakes, the critical point would be rupture itself. The probability of the critical 

point occurring is dependent on the separating spaces, time distances and the magnitude of each 

precursor (Sornette & Sammis, 1995).  

 The LPPL model does, however, contain limitations. There are six parameters that need 

to be found for the model.  Finding the seven parameters is difficult, and there is a chance that 

the optimization algorithm that is utilized to find the parameters are trapped in a local minimum 

without finding the actual global minimum. Without the proper calibration of all the parameters 

the predictive power of the model greatly decreases. The LPPL model also needs a long-range 
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time series to model the dynamics of the price movements. Therefore its functionality is greatly 

diminished when evaluating short-term price movements (Gustavsson et al., 2016).  

 

LPPL Model  

The first assumption that the model makes is the asset is purely speculative and pays no 

dividend and ignores interest rates, risk aversion, information asymmetry and market-clearing 

conditions. Following this assumption, the martingale hypothesis can be inferred where 

𝐸𝑡[𝑝(𝑡′)]  =  𝑝(𝑡)                 (1) 

The martingale hypothesis is assumed since the model is a stochastic process and 𝑡′ is greater 

than 𝑡. The 𝑝(𝑡)denotes the price of the asset at time 𝑡. Since cryptocurrencies don’t produce any 

dividends, the fundamental value of 𝑝(𝑡) = 0. Using this equality, any 𝑝(𝑡) value greater than 

zero signifies a bubble, since this is the deviation from the fundamental value which was 

established at zero through the equality (Johansen, 2000).  

 The next process in understanding this framework is examining the agents participating. 

Within this framework, there are two types of agents. The first group consists of rational agents 

that have identical preferences and characteristics. The second group consists of irrational agents 

who exhibit strong herding behavior. All the traders within the system including the rational and 

irrational agents are connected in a global network, whereas his/her local network influences 

each participant.  The local network of a trader consists of their friends, colleagues and other 

sources of information concerning the underlying traded asset. The decision of the market 

participants is based on the opinion of the trader’s external local network or from idiosyncratic 

internal signals. When the internal idiosyncratic signal dominates, there will be randomness and 
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instability within the market as the number of buyers and sellers balance each other out (Sornette 

et al., 2015). However, once herding becomes prevalent within the system and spreads through 

the network, the external factor outweighs the idiosyncratic component, and there is a crash 

within the system. The crash occurs because all the participants have collectively begun to sell. 

The crash hazard rate is a variable which models the price action and is denoted by ℎ(𝑡). 𝐻(𝑡) is 

the probability per unit of time that the crash will take place. This is in relation likewise to the 

probability that more agents will assume the sell position than the buy position, which would 

dictate a fall in price. Within this framework there doesn’t have to be just a strong collection 

force of herding for a crash to occur, rather the crash can begin from an imitative local micro-

interaction which leads to a macroscopic effect (Geraskin & Fantazzini, 2013).  

 Based on the mean field theory, the imitative reaction between traders derives the hazard 

rate in equation 2.  

 

𝐷ℎ(𝑡)

𝑑𝑡
= 𝐶ℎδ,    with δ > 1      (2) 

 

The C is a constant that is greater than 0, and δ > 1 represents the average number of interactions 

between traders minus one (MacDonell, 2014). As the number of interactions among the 

participants increases, there is an increased probability of a critical rate occurring as the 

oscillations movement increases. Through integrating the equation two we are left with equation 

three where B is a positive constant.  

ℎ(𝑡) = 𝐵(𝑡𝑐 − 𝑡)−𝑎, 𝑎 =  
1

δ−1
 (3) 



 
 

 
22 

 

Equation 3 allows us to derive 𝑡(𝑐), which is the critical time of the asset bubble crash. The 

critical 𝑡(𝑐) is unknown however and only defined with probabilistic terms. The model applies a 

non-zero probability of a crash occurring, therefore a jump process which provides discrete 

movements is defined as zero before the crash and one after the crash. By ensuring that the 

martingale condition is still met where 𝑡′ is greater than 𝑡, we can obtain the behavior of the 

price preceding the crash when the jump process still equals zero. This provides us with the 

following differential equation: 

   `  𝑙𝑜𝑔
𝑝(𝑡)

𝑝(𝑡0)
= 𝐾 ∫ ℎ(𝑡′)𝑑𝑡′

𝑡

𝑡0
  (4) 

Equation 4 dictates that as h(t) increases and there is a greater probability of a crash, there must 

be a faster price increase to constitute the equality within the martingale condition. Logically this 

is equivalent to a riskier investment demanding a higher rate of return (Johansen et al., 2000). 

There are two states that the agents within the model can operate either buy or sell.  

(5) 

When 𝑆𝑖 is equivalent to 1 the agent is in the state of buying and when 𝑆𝑖 is -1 the agent is 

within the state of selling. K is a positive constant that represents the behavior of the collection 

of participants and the coupling strength between them providing the degree of imitation among 

market participants. 𝑁(𝑖) is the set of traders who influence the traders and 𝑆𝑗 is the current state 

of the traders. The 𝜎 is the tendency of idiosyncratic behavior for all traders and finally 𝜀𝑖 is the 

random draw from a normal distribution (Geraskin, 2013).   
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 The importance of this equation stems in that the critical time 𝑡𝑐 is can be defined when 

K(𝑡𝑐) reaches 𝐾𝑐. The behavior can be equated as 𝐾𝑐 - 𝐾(𝑡𝑐) = constant × (𝑡𝑐 − 𝑡). This allows 

us to solve for the critical point of 𝐾𝑐. The general solution is listed below in terms of hazard rate 

h(t): 

                            (6)  

 The hazard rate can be generalized to equation six where 
𝜔

2𝜋
 determines log frequency of 

the oscillation term and ψ represents the phase constant that is moving the oscillation. the log 

frequency increases significantly when 𝑡 approaches the critical time. The increase in the hazard 

rate is a sequence of accelerating oscillations. The hazard rate will reach its maximum near the 

critical date and provides the log-periodic oscillations. The price action of the underlying asset 

right before the critical point is summarized below in equation 7.  

  (7) 

p(t) Price at time t 

𝒕𝒄  critical point  

β the exponential price growth, constraints of {0,1} 

ω  the oscillation amplitude with the constraints of {2, 20} 

ϕ fixed phase constant parameter with of constraint  0 < ϕ < 2π 

A  price at the critical time p(𝒕𝒄) 

B constant embodying the scale of a power law with the constraint < 0 

C constant that captures the magnitude of the oscillation around price growth with the 

constraint that the absolute value of C must be < 1 
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This is the Log Periodic Power Law, and it provides the price action growth of an asset 

when the hazard rate is reached, thus the lead up to a crash. The difficulty of the LPPL model is 

that there are four linear paraments (A, B, C, 𝒕𝒄) and 3 non-linear paraments in ϕ, β  and ω. The 

three non-linear paraments provide for the oscillations of the function and are found through 

using a through using a search algorithm. This is the main difficulty of the LPPL model is being 

able to calibrate the non-linear components in relation to past critical points where crashes have 

occurred. 

Due to the difficulty of estimating an LPPL model, Johansen and Sornette (2001) devised 

an approximation method. Within this method ϕ, β  and ω are chosen as nonlinear parameters, 

rewriting the LPPL model as: 

𝑦𝑖 = 𝐴 + 𝐵𝑓𝑖 + 𝐶𝑔𝑖, where 𝑦𝑖 = 𝑝(𝑡) 

Through this approach, we can obtain our linear variables through the ordinary least square 

method of running multivariable linear regressions. This will allow us to find A, B, and C as they 

are linear variables. Furthermore, a search algorithm is utilized to find the values of the nonlinear 

parameters which minimize the sum of squared residuals (Macdonell, 2014). 
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Data 

 The main contribution of this paper is that the LPPL model is applied to the entire 

cryptocurrency market. The main difficulty with this objective is that cryptocurrencies are a very 

infantile asset class that do not have a standardized index that is properly weighted and 

representative of the market. Within the equities there are several indices such as the S&P 500 

and the NASDAQ that provide for a standardized basket of assets that provide for a proper 

benchmark and track the cumulative change. Typically these indexes are related to a certain 

market sector, size and a variety of other possible factors. Indexes provide for a strong baseline 

in evaluating performance and price action. The lack of an index resulted in having to create 

from scratch a cryptocurrency market index.   

 The first stage of obtaining my data was constructing an index that would serve a strong 

baseline throughout the financial time series. Since there is tremendous volatility within the 

cryptocurrency markets, I opted not to choose the 100 largest cryptocurrencies as my proxy. The 

100 largest cryptocurrencies would greatly fluctuate through the time series with different 

cryptocurrencies surpassing each other in market capitalization and creating inconsistencies 

within the time series. Furthermore, this option would be further problematic in formatting the 

data. To fully capture the price action and obtain a strong baseline, I choose instead to calculate 

the aggregate market capitulation of all the cryptocurrencies being traded. This method allows 

for further consistency within the data set but also serves as one of the contributions of this paper 

as current LPPL research regarding cryptocurrencies has mainly fixated on a single 

cryptocurrency such as Bitcoin. It is important to note that there is a significant correlation 

between Bitcoin and Altcoins.  
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The price data of the cryptocurrency market index was obtained by using a scraper that 

drew its information from coinmarketcap.com. Coinmarketcap.com was chosen as the source of 

data due to the credibility of the website and the fact that the website tracks every active 

exchange and all of the cryptocurrencies being traded. The scraper was built on python and used 

the sys, re, urllib2, argparse and datetime modules. The scraper takes the average of the open and 

close price of each currency listed on coinmarketcap.com. The average price is then multiplied 

by the circulating suppy to obtain the market capitulation. It extracts the data from html format 

into a csv file format. There was a total of 1,719 observations extracted from March 4, 2013, to 

January 11, 2018. Within this data, there are 1,398 different cryptocurrenices representing a total 

of 659,374 price points throughout the time period. For every given date within the time series, 

there was a summation of the total market capitulization of all 1,398 cryptocurrnecies for the 

corresponding date. Figure 3 below represents the summary statistics of the data set. Figure 4 

provides the price action of the total cryptocurrency time series.  
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Mean 36,421,442,448 

Standard Error 2,293,173,225 

Median 7,973,159,853 

Standard Deviation 95,076,853,517 

Sample Variance 9,039,608,074,647,180,000,000 

Kurtosis 28 

Skewness 5 

Range 827,835,784,466 

Minimum 833,662,134 

Maximum 828,669,446,600 

Sum 62,608,459,568,761 

Count 1,719 

Confidence Level (95.0%) 4,497,705,615 

 

           Figure 3 
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              Figure 4 

 

 Empirical Specifications and Results  

After compiling the data and creating an index that tracks the aggregate cryptocurrency market 

the next stage was determining the parameters of the log periodic power law model to create a 

simulation that most accurately portrays the price action. The most difficult component of the 

LPPL model is finding the nonlinear parameters. The objective in selecting the parameters is to 

obtain the lowest possible root mean squared error between the data and the LPPL model.  The 

model was written within the computer software R.  To find the nonlinear parameters of ϕ, 

β  and ω a function within R was used called expand.grid which allowed to create a data frame 

from all the combinations of the supplied vectors. The vectors within this function are the 

parameter range that corresponds to the theoretical framework developed by Johansen & 

Sornette (2001). A search algorithm was utilized in finding the three nonlinear parameters with 

the lowest residual. The search algorithm first ran a global range on all three nonlinear 
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parameters and with each combination of nonlinear parameters proceeded to run a multilinear 

regression that provided a residual. Eventually, the model becomes fine-tuned as the parameters 

corresponding to the lowest residual are chosen.   

Nonlinear Parameters  Min range Max range  Interval  

ω  2 20 .02 

ϕ 0 6.28 .25 

β  0 1 .01 

 

 For the above ranges using the specified intervals, the search algorithm tested a total of 

23,331 combinations of ϕ, β, and ω. The search algorithm worked in the following manner; the 

first combination tested was 2 for ω, 0 for ϕ and 0 for β. Proceeding forward from the first 

combination the algorithm would then run the program again but changing one of the nonlinear 

variables by a single unit of the interval. Thus, for the second search the following numbers were 

inputted into the parameters, 2.02 for ω, 0 for ϕ and 0 for β. Each proceeding search would 

change one single parameters while keeping the two parameters constant so that the third search 

would result in 2.02 for ω, 0.25 for ϕ and 0 for β. Every search within this process created a 

multilinear regression to find the linear parameters. The search that provided the lowest residuals 

were chosen for the linear parameters A, B, and C. 
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A. Identifying Critical Points  

The utility of the LPPL model stems from the fact that the model when properly calibrated 

has the ability to forecast crashes. One of the common downfalls in fitting the LPPL model is 

choosing the wrong crash date (critical point). To avoid this potential problem, Bree & Joseph 

(2013) incorporated the following guidelines when identifying a critical point. The first criteria is 

that there is a drop in price of at least 25 percent, down to .75 of the peak price. Within the 

critical point, there has to be 60 days before the peak where there is no value higher than the 

actual peak. These criteria allow for only the most pronounced crashes to be tested.  

Figure 5 

 Figure 5 provides a visual representation of the volatility of the cryptocurrency market 

index with regards to 60-day average and daily changes in percentiles. The critical points that 

were chosen followed the two guidelines outlined above. Once the critical points were identified 

the LPPL model is fitted from the beginning of the time series to the day before the critical point. 

-100

-80

-60

-40

-20

0

20

40

60

80

100

10/18/2012 5/6/2013 11/22/2013 6/10/2014 12/27/2014 7/15/2015 1/31/2016 8/18/2016 3/6/2017 9/22/2017 4/10/2018

Percent Change in Cryptocurrency Market Time Series 
60 Day Average Change Daily Change



 
 

 
31 

 

Using the parameters found from the fitting process the LPPL model generates 60 day forward 

estimates to see if the model was able to predict the critical point accurately. The  LPPL model 

forecasts the price action following the critical point. Below are the critical points that were 

chosen. The summary statistics of each critical point along with the parameters are referenced in 

the appendix under critical points statistics.  

Critical Points  

December 5, 2013 

June 17, 2016 

January 5, 2017 

January 7, 2018 

 

December 5, 2013, was chosen as a critical point as it was the peak price of the time 

series up to this date. At this data point, the cryptocurrency market cap reached a peak of 

$15,874,831,048 and proceeded to crash to a low of $6,903,446,929 on December 19, 2013, 

signifying a drop in the price of 56%. Although there are typically several factors that contribute 

to a crash one of the reasons for the drastic depreciation in price was due to China’s largest 

cryptocurrency exchange no longer accepting deposits in renminbi (Hern, 2013).  

The LPPL model fails to detect this critical point and subsequent crash. The model 

greatly overshoots the critical point and continues an upward trajectory and continuation of the 

bubble. Surprisingly the R squared value between the LPPL fit and data set before the 60-day 

forecast is .93. Although the model seems to be properly calibrated given the high R squared 

value, the model drastically failed in identifying the crash. This result embodies the considerable 
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difficulties in fitting all of the parameters. One possible explanation for the inaccurate forecast is 

that there aren't enough data points provided for proper calibration as there are only 200 data 

points for the time series on December 5, 2013. This is one of the limitations of the model as the 

predictive power greatly decreases with a smaller data set.  

A B C β  ϕ ω 

120.8351   -89.91533 0.5958553  0.02  3.25 2.8 
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On June 17, 2016, the cryptocurrency market cap hit a critical point at $14,722,699,945 

and within the next six days proceeded to crash to a low of $11,027,234,949. The catalyst of the 

crash was the hacking of DAO (distributed autonomous organization) which held $150 million 

worth of Ethereum that was raised from the crowdsourcing of ICOs. Due to a technical issue 

surrounding code a hacker was able to steal $55 million successfully. The event caused a sell-off 

within cryptocurrencies as the security of the blockchain was questioned (Siegel, 2016). The 

incident caused a decrease in the price of 25 percent. The LPPL model was accurately able to 

forecast the crash and predicted the peak critical point four days later on June 21, 2016. The 

model reached a peak value of $9,777,086,284 at the critical point. This a difference of 33 

percent between the actual critical point. It is important to note that although the model wasn’t 

accurate in regards to amplitude, it proceeded to forecast the same price action trend line.  

A B C β  ϕ ω 

23.01592  -0.001476193  0.001254859  1   4.75  3.5 
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The critical peak point of $21,305,249,756 was reached on January 5, 2017. Within the 

following seven days on January 12, 2017, the cryptocurrency market cap index recorded a 

bottom price of $14,688,029. The sell-off that resulted in a price decrease of 31 percent is 

speculated to be linked with China’s central bank releasing a statement to investors to exercise 

extreme caution among participating in cryptocurrencies. This potential catalyst of the crash is 

further backed up by the fact that the Chinese renminbi had the biggest two day gain ever 

recorded. It is speculated that the appreciation in renminbi was due to the conversion of Bitcoin 

back into the Chinese currency (Williams-Grut, 2017). The LPPL model forecasts the same 

critical crash date as the actual time series. While the actual peak price point was at 

$21,305,249,976, the model predicted a price of $16,134,318,393 signifying a difference of 24 

percent. The divergence in forecasting amplitude may have been a result of the calibration as 

these parameters had an R squared of .73.  

A B C β  ϕ ω 

23.57095  -0.001900589  0.001075538  1   4.75  1.4 

The final critical point of the time series was on January 7, 2018 where a peak price of 

$815,100,000,032 was reached. On January 14, 2018, a low was recorded at $433,553,000,000 
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consisting of a decrease in cryptocurrency market cap of 47 percent. The massive fluctuation in 

price was not attributed to a single factor. The LPPL model failed to detect this critical point and 

greatly overpredicted the peak without forecasting a crash. The parameters produced an R 

squared value of .86. Thus the fit between the actual data was satisfactory. The same problem 

was experienced at the first critical point on December 5, 2014. One of the key similarities 

between the two parameter sets is that both the β is extremely low at .02. β may be the nonlinear 

parameter that is the limiting factor and needs further calibration. Given that the R square value 

was relatively high in both scenarios this is not an easy fix as when dealing with six parameters it 

is difficult to pinpoint causation.   

 

A B C β ϕ ω 

107.7739 -74.30387 0.2880415 0.02 6.25 5 
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B. Crash Hazard Rate Analysis  

To further investigate the chosen critical points and the corresponding LPPL fit that was 

calibrated the crash hazard rate was analyzed. The hazard rate provides the probability per unit of 

time that the crash will take place. Once the LPPL parameters are obtained it is with relative ease 

that the hazard rate can be computed. As examined in the theoretical framework, equation 9 

provides the LPPL model fitting.  

(9) 

Equation 10 provides the context of the hazard rate. Based on the work of Sornette et al. (2011) 

equation 9 can be substituted into equation 10 to provide the following constraint listed in 

equation 11.  

𝐿𝑜𝑔
𝑝(𝑡)

𝑝(𝑡0)
= 𝐾 ∫ ℎ(𝑡′)𝑑𝑡′

𝑡

𝑡0
  (10) 

 

                                                      (11)  

The constraint must be greater than or equal to zero as the probability of a crash must be within 

these ranges. Constraint b provides for the crash hazard rate and the variables within the 

constraint equation are obtained from the process of finding the LPPL parameters. The variable b 

is then scaled from 0 to 1 to indicate the probability of a crash occurring.  

The LPPL model parameters were computed every 60-day period of the data set, in each 

60-day interval the search process described above was conducted. Given that the time series of 

the cryptocurrency market index spans from March 4, 2013, to January 11, 2018, there was a 

total of 27 sets of parameters created for the 60-day time window of the model. Thus, for each 
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60-day interval, there was a separately fitted LPPL model within the 60-day time frame. The 

parameters were then plugged into equation 11 to obtain the corresponding hazard rate of each 

60-day time interval. The same process was utilized when computing a 2-day average hazard rate 

for each of the critical points.  

The following table below includes the hazard rates computed for both the global 60-day 

period and the critical points.  

Time 
Global Hazard 
Rate 60 day 

December 2013 
Hazard Rates 

June 2016 
Hazard Rate  

January 2017 
Hazard Rate  

January 2018 
Hazard Rate  

1 0.994582329 0.994542929 0.999219815 0.999681077 0.979985884 

2 0.994398643 0.53686037 0.999251078 0.999754221 0.970418496 

3 0.994713807 0.983531871 0.999283156 0.999780594 0.97396675 

4 0.995000905 0.987691751 0.999316314 0.999807985 0.973851592 

5 0.994764941 0.990309332 0.999224572 0.99974256 0.974204488 

6 0.994952357 0.991360846 0.999255852 0.999767357 0.971203828 

7 0.99513759 0.990671101 0.999288405 0.999792452 0.967683435 

8 0.995071004 0.99061799 0.999321889 0.999818416 0.967500828 

9 0.974443171 0.99058226 0.99918535 0.999845692 0.959036922 

10 0.816068424 0.990877079 0.999215005 0.999873572 0.954257652 

11 0.770468608 0.996658138 0.999245451 0.999772538 0.942793692 

12 0.719225824 0.996203047 0.99927699 0.999796169 0.942430871 

13 0.645257181 0.998786617 0.999361119 0.999820887 0.935859576 

14 0.651003773 0.999249171 0.999389722 0.999846282 0.920151546 

15 0.712127576 0.999421362 0.999419412 0.999872295 0.911113078 

16 0.695785423 0.99908117 0.999450029 0.999899605 0.900040094 

17 0.553252052 0.999329675 0.999329675 0.999836701 0.888735139 

18 0.263640218 0.999241344 0.999356562 0.999860982 0.874368079 

19 0.221240098 0.99952687 0.999384652 0.999886333 0.862960056 

20 0.200472737 0.999767357 0.999413855 0.999912487 0.8455757 

21 0.128179341 0.999920878 0.999443809 0.999939698 0.829101254 

22 0 1 0.999364056 0.99990685 0.809904391 

23 0.498632846 0.829485088 0.999390113 0.999931796 0.806122647 

24 0.517557486 0.869905532 0.999417179 0.999957276 0.807101151 

25 0.420621034 0.942683595 0.999444665 0.999867516 0.80580796 

26 0.452810499 0.970352552 0.999324025 0.999887062 0.80774358 

27 0.458572294 0.748338381 0.99934733 0.999907366 0.788315098 

28   0.408000873 0.999372124 0.999927791 0.807528306 

29   0.4294441 0.999396844 0.999949463 0.788526619 
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30   0.577768376 0.999318058 0.999893781 0.749203108 

31   0.633782441 0.999338207 0.999910402 0.749176457 

            

Min 0 0.408000873 0.99918535 0.999681077 0.749176457 

Max 0.99513759 1 0.999450029 0.999957276 0.979985884 

Mean 0.653999265 0.898193293 0.99933372 0.999853136 0.885957041 

Std 0.311131993 0.182216273 7.43327E-05 6.86633E-05 0.077413384 

Stde  0.05987738 0.032727009 1.33505E-05 1.23323E-05 0.013903854 

 

The global hazard rate was confined to a 60-day time frame due to computational power 

constraints as each 60-day parameters results in 23,331 multilinear regressions. To find the 

hazard rate of the entire time series required 629,937 multilinear regressions. Running a 2-day 

time frame on the global time series would equate to 20,251,308 multilinear regressions—which 

is far beyond the scope of my computer’s capacity.  

Since the critical points were known within the time series, this allowed the search 

algorithm to be further granular within the parameters by limiting the time frame to 2 days. The 

entire search process outlined in empirical specifications was completed using a 2-day window 

60 days before the critical point. The 2-day time frame allowed for greater accuracy as the 

parameters were further calibrated. The obtained parameters for all four critical points are 

referenced in the appendix under hazard rate parameters section. 

Figure 6 below shows the average crash hazard rate of the global LPPL model that used 

the 60-day time interval along with the critical points that used a 2-day time interval. The global 

average hazard rate for the time series is .65, while the critical points where the LPPL model 

identified a crash are significantly higher, this further proves the robustness of the model. 

 The model was able unable to forecast the critical point for December 5, 2013 and 

January 7, 2018. The 2-day average hazard rates for these time frames are .89 and .88 



 
 

 
39 

 

respectively. These hazard rates are significantly lower than the hazard rates computed for June 

17, 2016 and January 5, 2017. On June 17, 2016 and January 5, 2017 the LPPL model was able 

to predict the critical point accurately, and as a result the hazard rates are both within the .99 

range. The high hazard rates correspond to the fact that the model was detecting a critical point 

and thus forecasted that a crash was imminent. For the two critical dates where the model failed 

to identify the crash the hazard rate is lower at approximately .89 as the model forecasted less of 

a probability that a crash will occur. Given that the model for these critical points continued to 

trend upwards the lower hazard rates makes logical sense.  

To test the statistical significance between the global hazard rate and the critical point 

hazard rates an analysis of variances was done to test the differences between the means. The 

summary of the ANOVA test are referenced in the appendix on p.49. The p-value is 2.38^-14 

well below the accepted standard of .05. Since the ANOVA test returned an overly statistically 

significant p-value the Tukey’s test was ran to see the differences between the global hazard rate. 

The results of the Tukey’s test are referenced in appendix. Tukey’s test returned that the values 

between the global and all the critical point hazard rates were significantly different.    
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Conclusion 

The blockchain framework is a revolutionary technology that has the potential to one day 

greatly disrupt current industries as it aims to bring forth increased convenience, efficiency and 

security protocols. Cryptocurrencies are the forefront of this innovation and attempt to unlock the 

full potential of the blockchain. Although the technology behind cryptocurrencies is incredibly 

enticing, my main hypothesis was that there is a degree of euphoria that is characteristic of an 

asset bubble. Due to the explosive growth rates of cryptocurrencies, this paper aimed to 

empirically show that as a whole the cryptocurrency asset class was within an asset bubble. One 

of the main challenges in reaching such a conclusion was the lack of an index that properly 

characterized the price action of the entire cryptocurrency market. An index was created that 

tracked the cumulative change in market capitalization of all cryptocurrencies being traded in a 

four year period. Within the time series, four critical points were chosen based on the specific 

guideline to determine if the following crashes were the result of an asset bubble.  

After calibrating the LPPL model to the data set, I was successfully able to forecast two 

of the four critical points where a crash occurred. Since the model finds periods of growth that 

are faster than exponential, it is appropriate to conclude that the accurate forward forecast of the 

model signifies an asset bubble within the time series. The model failed to identify two of the 

crashes. The failure of the forecast is most likely due to the difficulty with calibrating six 

parameters as the model greatly overestimated the time series and did not produce a critical 

point. Further investigation in utilizing different search methods for finding nonlinear parameters 

can be explored to determine if those critical points indicate a bubble. The hazard rate analysis 

further supported the basis of the LPPL findings for the 4 critical points. 
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Future work using different methodologies on asset bubbles within the cryptocurrency 

market cap index would provide a more comprehensive overview of bubbles within this new 

asset class. This paper discussed price manipulation and a lack of regulation as key factors that 

are potentially contributing to further amplification of asset bubbles within the cryptocurrency 

sector. Since the model predicted two of the critical points, there clearly exists some degree of an 

asset bubble and the contributing factors should be evaluated. Further investigation into the 

discussed factors would potentially allow for policy makers to create appropiate regulatory 

frameworks that provides a degree of stabilization within this new asset class. 
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Appendix 

Critical Points Statistics  

December 5, 2013 

A B C β  ϕ ω 

120.8351   -89.91533 0.5958553  0.02  3.25 2.8 

 

Residual standard error: 0.1562 on 219 degrees of freedom 
 
Multiple R-squared:  0.9394, Adjusted R-squared:  0.9389  
 
F-statistic:  1699 on 2 and 219 DF, p-value: < 2.2e-16 
 

June 17, 2016 

A B C β  ϕ ω 

23.01592  -0.001476193  0.001254859  1   4.75  3.5 

 

Residual standard error: 0.3244 on 1144 degrees of freedom 

Multiple R-squared:  0.7382, Adjusted R-squared:  0.7377  

F-statistic:  1613 on 2 and 1144 DF,  p-value: < 2.2e-16 

Janaury 5, 2017 

A B C β  ϕ ω 

23.57095  -0.001900589  0.001075538  1   4.75  1.4 

 

Residual standard error: 0.3192 on 1346 degrees of freedom 

Multiple R-squared:  0.7814, Adjusted R-squared:  0.7811  

F-statistic:  2406 on 2 and 1346 DF,  p-value: < 2.2e-16 
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January 7, 2018 

A B C β  ϕ ω 

107.7739  -74.30387  0.2880415  0.02   6.25    5 

Residual standard error: 0.4872 on 1713 degrees of freedom 

Multiple R-squared:  0.8691, Adjusted R-squared:  0.869  

F-statistic:  5689 on 2 and 1713 DF,  p-value: < 2.2e-16 

 

Hazard Rate Parameters  

Global 60 day  

A B C m omega phi 

21.27254 -0.00367 0.002418 1 4 1.2 

24.70735 -1.11117 -0.13265 0.26 2 1 

23.31973 -0.01073 -0.00505 1 3 2.1 

22.93739 -0.00284 -0.00599 1 3 3.7 

22.71857 -0.00118 -0.00481 1 3.5 1.2 

22.92661 -0.00219 0.003303 1 4.5 4.7 

22.96062 -0.00208 -0.00277 1 5.75 3.5 

22.85734 -0.00154 0.002456 1 6.75 1 

22.77525 -0.00122 0.002124 1 8 3.4 

22.64139 -0.00081 -0.0019 1 9 1.2 

22.52385 -0.00271 0.003769 1 2 5.4 

22.59285 -0.00312 0.003828 1 2 5.7 

22.46893 -0.00136 -0.00229 1 3 2.7 

22.47816 -0.00102 0.001815 1 3.75 4.7 

22.58165 -0.00105 -0.00156 1 4.25 5.2 

22.81636 -0.00175 0.001789 1 3.5 3.8 

22.90875 -0.00164 -0.00153 1 4 4.3 

23.11966 -0.00191 0.001496 1 4 1.5 

23.17702 -0.00168 0.001247 1 4.75 0.6 

23.38669 -0.00203 0.001315 1 4 2 

23.51807 -0.00203 0.0012 1 4.25 4 

23.68221 -0.00207 -0.00111 1 4.5 2.9 

25.15792 -0.33442 -0.02551 0.32 4 0.5 

25.80825 -0.19831 -0.03623 0.44 2 4.6 

25.98347 -0.0626 -0.01735 0.62 2 5 

26.13691 -0.0282 0.009061 0.74 2.25 3.7 

28.03642 -0.3754 0.05137 0.4 3 2.8 
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December 5, 2013 

A B C m omega phi 

21.27407 -0.00355 0.002302 1 4.25 2.5 

21.27588 -0.0035 -0.00224 1 4.5 0.6 

21.27874 -0.00343 -0.00217 1 4.5 0.7 

21.28224 -0.00336 -0.00211 1 4.5 0.8 

21.28733 -0.00335 0.002066 1 4.75 5.2 

21.29485 -0.00333 0.002024 1 4.75 5.3 

21.30198 -0.00331 0.001984 1 4.75 5.4 

21.31798 -0.00341 -0.00198 1 4.75 2.3 

21.37896 -0.01268 -0.00616 0.74 4.5 1.3 

21.68087 -0.15596 -0.03684 0.32 4.75 2.6 

21.83246 -0.24827 -0.04766 0.26 4.5 1.5 

22.08378 -0.45664 -0.06871 0.18 3.75 4.4 

22.44585 -0.73989 0.081025 0.14 4 2.5 

22.37897 -0.64249 -0.07483 0.16 4.25 0.6 

22.13877 -0.40012 -0.05783 0.22 4.5 1.8 

22.21187 -0.42583 0.057681 0.22 4.75 6.2 

22.88923 -0.97019 0.080203 0.14 5 1.2 

33.48797 -11.3461 -0.13071 0.02 5 4.5 

34.9081 -12.6418 0.129126 0.02 5.25 2.5 

35.94185 -13.5775 -0.13025 0.02 5.25 5.7 

36.9993 -14.532 0.13645 0.02 5.5 4 

38.73037 -16.1153 -0.13397 0.02 6.5 5.5 

41.55813 -18.6988 -0.11389 0.02 2 1.2 

28.92585 -5.97979 0.110223 0.06 2 4 

33.73513 -10.5529 -0.13606 0.04 2 0.9 

27.03258 -3.78063 -0.13885 0.1 2 0.9 

25.9332 -2.56848 0.144496 0.14 2 4.1 

26.3401 -2.77765 -0.1598 0.14 2 1 

25.71053 -2.03664 -0.15798 0.18 2 1 

24.47054 -0.86452 0.122908 0.3 2 4.2 

24.26808 -0.61471 0.108357 0.36 2 4.3 
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June 17, 2016 

A B C m omega phi 

22.85621 -0.00168 0.001654 1 3.75 5.6 

22.85387 -0.00167 0.001648 1 3.75 5.6 

22.85168 -0.00165 0.001642 1 3.75 5.6 

22.84948 -0.00164 0.001635 1 3.75 5.6 

22.87578 -0.0017 -0.00165 1 3.75 2.5 

22.87362 -0.00169 -0.00164 1 3.75 2.5 

22.87137 -0.00168 -0.00163 1 3.75 2.5 

22.86918 -0.00166 -0.00163 1 3.75 2.5 

22.90692 -0.00176 0.001644 1 3.75 5.7 

22.90477 -0.00175 0.001638 1 3.75 5.7 

22.90274 -0.00173 0.001632 1 3.75 5.7 

22.90069 -0.00172 0.001626 1 3.75 5.7 

22.87967 -0.00159 0.001537 1 4 1.1 

22.87777 -0.00158 0.001532 1 4 1.1 

22.87585 -0.00157 0.001526 1 4 1.1 

22.87398 -0.00156 0.00152 1 4 1.1 

22.90875 -0.00164 -0.00153 1 4 4.3 

22.90692 -0.00163 -0.00153 1 4 4.3 

22.90504 -0.00162 -0.00152 1 4 4.3 

22.90313 -0.00161 -0.00152 1 4 4.3 

22.90138 -0.00159 -0.00151 1 4 4.3 

22.92657 -0.00165 0.001522 1 4 1.2 

22.92574 -0.00164 0.001517 1 4 1.2 

22.92496 -0.00163 0.001512 1 4 1.2 

22.92452 -0.00162 0.001506 1 4 1.2 

22.96095 -0.00171 -0.00152 1 4 4.4 

22.96067 -0.0017 -0.00152 1 4 4.4 

22.9603 -0.00169 -0.00151 1 4 4.4 

22.96055 -0.00168 -0.00151 1 4 4.4 

22.98768 -0.00174 0.001514 1 4 1.3 

22.98899 -0.00173 0.00151 1 4 1.3 
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January 5, 2017 

A B C m omega phi 

23.22812 -0.00155 -0.00107 1 5.5 2.9 

23.3633 -0.00201 -0.00132 1 4 5.1 

23.36286 -0.002 -0.00132 1 4 5.1 

23.36235 -0.00199 -0.00131 1 4 5.1 

23.38715 -0.00204 0.00132 1 4 2 

23.38669 -0.00203 0.001315 1 4 2 

23.38641 -0.00202 0.00131 1 4 2 

23.38611 -0.00201 0.001304 1 4 2 

23.38561 -0.002 0.001299 1 4 2 

23.38517 -0.00199 0.001293 1 4 2 

23.42013 -0.00206 -0.00131 1 4 5.2 

23.41976 -0.00205 -0.0013 1 4 5.2 

23.41929 -0.00204 -0.0013 1 4 5.2 

23.41888 -0.00203 -0.00129 1 4 5.2 

23.41855 -0.00203 -0.00129 1 4 5.2 

23.41805 -0.00202 -0.00128 1 4 5.2 

23.44267 -0.00206 0.001287 1 4 2.1 

23.44239 -0.00205 0.001282 1 4 2.1 

23.44203 -0.00204 0.001277 1 4 2.1 

23.44168 -0.00203 0.001271 1 4 2.1 

23.44124 -0.00203 0.001266 1 4 2.1 

23.42277 -0.00194 -0.00122 1 4.25 0.7 

23.42256 -0.00194 -0.00122 1 4.25 0.7 

23.42247 -0.00193 -0.00121 1 4.25 0.7 

23.45538 -0.00199 0.001224 1 4.25 3.9 

23.45605 -0.00198 0.00122 1 4.25 3.9 

23.45679 -0.00198 0.001216 1 4.25 3.9 

23.45782 -0.00197 0.001212 1 4.25 3.9 

23.45872 -0.00196 0.001207 1 4.25 3.9 

23.48275 -0.002 -0.00121 1 4.25 0.8 

23.48467 -0.002 -0.00121 1 4.25 0.8 
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January 7, 2018 

A B C m omega phi 

26.05123 -0.02058 0.00692 0.78 2 2.2 

26.12822 -0.02815 0.009044 0.74 2.25 3.7 

26.10917 -0.02458 0.008153 0.76 2.25 3.7 

26.12621 -0.02467 0.008183 0.76 2.25 3.7 

26.13745 -0.02453 -0.00805 0.76 2.25 0.6 

26.17647 -0.02789 0.008732 0.74 2.25 3.8 

26.21932 -0.03186 -0.00955 0.72 2.25 0.7 

26.23966 -0.03201 -0.0096 0.72 2.25 0.7 

26.32017 -0.04198 0.011575 0.68 2.25 3.9 

26.3688 -0.04809 -0.01266 0.66 2.25 0.8 

26.46613 -0.06351 0.015271 0.62 2.25 4 

26.4904 -0.06385 0.015365 0.62 2.25 4 

26.55004 -0.07345 -0.01682 0.6 2.25 0.9 

26.67316 -0.09781 0.020313 0.56 2.25 4.1 

26.74876 -0.11307 -0.02227 0.54 2.25 1 

26.83908 -0.11858 0.024119 0.54 2.5 5.6 

26.94093 -0.15312 0.027147 0.5 2.25 4.2 

27.06845 -0.17998 0.030329 0.48 2.25 4.2 

27.14245 -0.1859 -0.03161 0.48 2.5 2.6 

27.2843 -0.21872 -0.03529 0.46 2.5 2.6 

27.40937 -0.25507 0.038458 0.44 2.5 5.8 

27.55553 -0.29909 -0.04221 0.42 2.5 2.7 

27.61515 -0.30341 0.043263 0.42 2.5 5.8 

27.62658 -0.30295 -0.04288 0.42 2.5 2.7 

27.66035 -0.30476 -0.04319 0.42 2.5 2.7 

27.59877 -0.26781 0.042135 0.44 2.75 1 

27.74942 -0.31305 0.04556 0.42 2.75 1.1 

27.65268 -0.26941 -0.04197 0.44 2.75 4.2 

27.79743 -0.31442 -0.04526 0.42 2.75 4.3 

27.95089 -0.37145 0.051553 0.4 3 2.7 

27.98704 -0.37299 -0.05136 0.4 3 5.9 
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SUMMARY      

Groups Count Sum Average Variance   

Column 1 27 17.65798 0.653999 0.096803   
Column 2 31 27.84399 0.898193 0.033203   
Column 3 31 30.97935 0.999334 5.53E-09   
Column 4 31 30.99545 0.999853 4.71E-09   

Column 5 31 27.46467 0.885957 0.005993   

       

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.249044128 4 0.562261 22.23008 2.38E-14 2.433633 

Within Groups 3.692749427 146 0.025293    

       

Total 5.941793555 150         

       

n 151 Dem df 147 
QU 
Value 3.68  

Factor Levels 4 num df 4 S Pooled 0.025293  

 Comparison 
Absolute 
Difference 

Critical 
Range Result    

 Global to 1 0.28825 0.112633 
Significantly 
different  

 Global to 2 0.63782 0.112633 
Significantly 
different  

 Global to 3 0.15071 0.112633 
Significantly 
different  

 Global to 4 0.302527 0.112633 
Significantly 
different  
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