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Abstract 

 Previous research has shown that ambient temperature affects human metabolism and 

behavior. Inspired by these findings, this study examines the effect of lagged annual 

temperatures in the United States on average reported BMI. The results indicate that higher 

temperatures in the future will lead to increases in average BMI. A conservative estimate 

suggests that a 1 °C increase in temperature sustained for 10 years would result in a 0.15 unit 

increase in average BMI and an additional $15.5 billion in annual health care expenditure. 

JEL classification: Q5; Q54; I1; I10 

Keywords: Climate Change; Global Warming; Obesity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4	

I. Introduction 

 Empirical studies have predicted that rising temperatures due to climate change will have 

wide–ranging effects in the coming decades, including increased prevalence of civil wars in 

Africa, changes in infectious disease occurrence, and widened global income inequality (Burke, 

Hsiang, & Miguel, 2015; Wu, Lu, Zhou, Chen, & Xu, 2016; Burke, Miguel, Satyanath, Dykema, 

& Lobell, 2009). Some evidence suggests that rising temperatures may also affect average 

human body composition, in particular body fat percentage, because of the influence of ambient 

temperature on human metabolism and behavior. Obesity is among the leading causes of global 

morbidity and mortality, and a greater understanding of how climate change will affect its 

prevalence will potentially improve efforts to combat it (Abdelaal, Roux, & Docherty, 2017). 

The empirical strategy utilized in this study exploits the exogenous nature of annual fluctuations 

in air temperature to capture the causal effect of ambient temperature on body mass index (BMI). 

This strategy is used to test the hypothesis that, on average, higher temperatures in the United 

States cause increases in BMI.  

 The remainder of the paper is organized as follows: Section II reviews the relevant 

literature, Section III describes the data used, Section IV outlines the empirical methods, Section 

V describes the results, and Section VI includes a discussion of the results and some concluding 

remarks.  

II. Literature Review 

 Several biological studies have explicitly demonstrated that human metabolism responds 

to changes in ambient temperature. Dauncey (1981) confined subjects to a whole-body 

calorimeter for periods of thirty hours at a time and found that setting the temperature to 22 

degrees Celsius (°C) resulted in greater energy expenditure than a temperature of 28 °C. Over the 

last few decades, this finding that exposure to a mildly cold environment results in a higher 
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metabolic rate has been replicated in controlled, experimental settings over a wide range of 

temperatures for subjects of varying gender, age, and body composition (Vanooijen, 

Vanmarkenlichtenbelt, Vansteenhoven, & Westerterp, 2004; Warwick & Busby, 1990; 

Westerterp-Plantenga, Lichtenbelt, Cilissen, & Top, 2002; Westerterp-Plantenga, Lichtenbelt, 

Strobbe, & Schrauwen, 2002; Wijers, Saris, & Lichtenbelt, 2007). Lans et al. (2013) found that 

cold acclimation among subjects over a period of ten days resulted in an increase in the rate of 

nonshivering thermogenesis, along with an increase in brown adipose tissue (BAT) activity. 

BAT is a thermogenic tissue, and its primary function is endogenous heat production. Yoneshiro 

and Saito (2014) and Hanssen et al. (2016) found similar effects of temperature on energy 

expenditure and BAT recruitment. These experimental findings suggest a specific biological 

mechanism through which mild cold exposure increases energy expenditure, namely increased 

BAT activity.  

 Thermoregulation is energetically costly, and colder temperatures require that the body 

generate additional heat to maintain homeostasis. Conversely, exposure to warmer temperatures 

mitigates the need for endogenous heat production. On average, humans must maintain a core 

temperature within a narrow range of 0.2 °C above and below 37 °C , and approximately two-

thirds of the energy expended as part of the average human's resting metabolic rate—and 40% of 

all energy expenditure—is devoted to heat production (Landsberg, 2012; Lam & Ravussin, 

2016). More specifically, an individual must face the cost of thermoregulation whenever the 

ambient temperature is outside of the thermoneutral zone (TNZ), the range of temperatures for 

which only minimal endogenous heat production is required to maintain a normal core 

temperature. For the average clothed person, the TNZ lies between 20.3 and 23 °C (Daly, 2013). 

Although there is evidence that energy expenditure increases after exposure to mild cold stress, 
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this can be compensated for by people adjusting their behavior to reduce their exposure, such as 

wearing winter clothes or increasing their home's heating. There is also evidence that people eat 

more when exposed to cooler temperatures in laboratory settings (Johnson, Mavrogianni, Ucci, 

Vidal-Puig, & Wardle, 2011). Thus, it is possible that all of the increased energy expenditure in 

cooler environments due to higher rates of thermogenesis is fully compensated for, resulting in 

no change in the overall energy balance.  

 Another mechanism through which ambient temperature affects body weight is by 

influencing the likelihood that people spend time outdoors for recreational activities. Obradovich 

and Fowler (2017) found that survey respondents report declines in physical activity during 

unusually cold and or unusually warm weather. In particular, participation in physical activities 

rises until approximately 28–29 °C, beyond which participation declines. Physical activity, of 

course, affects body weight by playing a central role in an individual's rate of energy 

expenditure.  

 Additionally, Bhattacharya, Deleire, Haider, and Currie (2013) found that low–income 

families living in the United States respond to unusually cold weather by reducing spending on 

food, and as a result consuming fewer calories, in order to increase spending on heating. Finally, 

ambient temperature has been shown to have effects on other factors that may potentially 

influence body weight at the population level, such as the level and rate of economic productivity 

and rates of migration (Dell, Jones, & Olken, 2012; Cattaneo & Peri, 2015). However, while 

these factors may affect body composition, they most likely do so indirectly, and it is not obvious 

what the mechanisms or directions of the effects would be.  

 In terms of the overall effect of ambient temperature on body weight, Yang et al. (2015) 

and Valdes et al. (2014) found that people who live in warmer regions of South Korea and Spain, 
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respectively, tend to have higher body mass indexes after controlling for various social, 

economic, and health indicators. Daly (2014) found that people who live with indoor 

temperatures above the thermoneutral zone, which he defined as above 23 °C, had lower body 

weights compared to those who lived in lower temperatures, suggesting that physiological 

cooling is also energetically costly. Voss, Webber, Scher, and Atkinson (2013) examined the 

correlation between mean temperature and the prevalence of obesity in the United States and 

found a positive correlation up to around 20 °C, after which they found a decrease in obesity 

rates. Scheffer et al. (2013) found no statistically significant association between indoor 

temperature and BMI among children between the ages of three months and 11 years. Bo et al. 

(2011) studied a cohort of individuals six years after an initial interview and found that people 

who lived with higher indoor temperatures were more likely to be obese. The current state of the 

literature suggests that temperature and body weight are positively associated with each other, 

although there are some studies that provide evidence that BMI begins to decline once the 

temperature exceeds approximately 20 °C. The most significant difference between the approach 

used in this paper and those used in the other studies described above is that this study exploits 

exogenous variation in annual temperatures within geographic regions, in this case U.S. states 

and territories. This general framework, which will be described in greater detail in Section IV, 

has been used in previous studies to examine how outcomes of interest are affected by 

temperature, including civil war in Africa, economic growth, and human mortality (Burke, 

Hsiang, & Miguel, 2015; Dell, Jones, & Olken, 2012; Shi et al., 2016;). The main benefit of this 

approach is that it does not have the same concerns of endogeneity that previous studies that 

have examined the relationship between temperature and BMI are subject to.  

III. Data  
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 The Behavioral Risk Factor Surveillance System (BRFSS) is a continuously conducted 

health survey administered by the Centers for Disease Control and Prevention (CDC) in the 

United States from 1984 to present. Each year, the CDC reports data regarding health conditions, 

behaviors related to health, and use of medical services. Respondents' heights and weights, 

which are reported in the survey, can be used to calculate BMI, which is strongly correlated with 

measures of body fat (Jelena et al., 2016; Luke et al. 1997; Ranasinghe et al., 2013). The first 

BRFSS survey in 1984 included respondents living in 15 states; since 1991, the number of states 

and territories represented has been between 48 and 54. Figure 1 below summarizes the number 

of respondents surveyed in the BRFSS each year. From 1984 to 2010, the CDC has used post-

stratification to weight the survey data such that it is representative of the state or territory 

population in terms of age, race, gender, and geographic region. In 2011, they changed their 

methodology from post-stratification to raking, which makes comparisons between data 

collected before 2011 to data from after problematic. For this reason, this study uses weighted 

survey data from 1984 to only 2010. In addition to height and weight, race, ethnicity, age, and 

sex of respondents are made available by the CDC.  
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Figure 1. Number of BRFSS respondents by year, 1984-2010 

 
 Survey data were collapsed to the state-year level and merged with collapsed temperature 

data from the Global Historical Climatology Network-Monthly (GHCNM) temperature dataset, 

which contains monthly data from 1,628 weather stations in the United States. The GHCNM is 

compiled from 31 source datasets, and its developers account for inhomogeneity in mean 

temperature series caused by non-climatic factors that could bias the observed data, such as 

station moves and instrument changes. The developers of the dataset also remove data of low 

quality if there are concerns that the source dataset is unreliable or incomplete. The resulting 

adjusted values for monthly mean temperature were used for this study. Finally, real GDP per 

capita for states and territories in the United States was obtained from the U.S. Bureau of 

Economic Analysis.  
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 Figure 2 depicts the mean temperature and BMI for each state and territory in 2010. The 

trend resembles the positive correlation between body mass index and temperature reported by 

Voss, Webber, Scher, and Atkinson (2013).  

 

 

Figure 2. Body mass index and temperature by state/territory, 2010 

 

 Figure 3 depicts changes in average BMI from 1984 to 2010. The clear upward trend has 

been written about extensively by others (Flegal, Carroll, Kuczmarski, & Johnson, 1997; 

Mokdad et al., 1991; Ogden et al., 2006). Figure 4 is a histogram of temperatures in the United 

States from 1984 to 2010. It appears that the vast majority of temperatures fall between 5 and 20 
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°C, which is below the average human TNZ. This suggests that increases in temperature, both 

small and large, should lead to higher BMIs if changes in thermoregulation costs are a significant 

factor in the relationship between ambient temperature and body composition. 

 

Figure 3. Average BMI in the United States, 1984-2010 
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Figure 4. Frequency of annual temperatures in the United States, 1984-2010 

IV. Empirical Strategy 

 The objective of the study is to measure the causal effect of temperature on BMI, and the 

empirical strategy outlined below achieves this by exploiting the fact that short-term fluctuations 

in temperature can be assumed to be exogenous. The baseline set of regressions are of the form 

(1) BMIi,t = β0 + β1Tempi,t−x + β2Temp2
i,t−x + β3,tθt + β4,iθi + eit  

They use a lagged annual temperature variable and its square as the main explanatory variables 

of interest and average annual BMI as the outcome variable. θt and θi are state and year fixed 

effects, respectively. In (1), i refers to the state or territory and t is the year. X is an integer 

between 1 and 10, and it signifies the number of years the temperature is lagged by. Finally, eit is 

the error term. Another set of regressions controls for racial and ethnic composition, sex, average 
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age, and GDP by adding the following variables to (1): percentage of respondents who are black, 

percentage of respondents who are white, percentage of respondents who are Hispanic, 

percentage of respondents who are male, the average respondent age, and the real GDP per 

capita of the state or territory. Controlling for these characteristics allows for a slight relaxation 

of the assumption that temperature fluctuations are exogenous and provides a robustness check. 

 The next set of regressions replaces lagged annual temperatures in (1) with lagged 

averages of temperatures over variable lengths of time. They are of the form 

(2) BMIi,t = β0 + β1Tempi,t,x + β2Temp2
i,t,x + β3,tθt + β4,iθi + eit 

where x is the number of years that the temperature is averaged over and ranges from 1 to 10. 

Thus, when x equals 1, the temperature used is the temperature from the previous year, and when 

x equals 10, the temperature used is the average temperature over the last 10 years. As with 

lagged variables, the regressions summarized in (2) were run again after adding the control 

variables for demographics and GDP described above.  

 The last set of regressions uses temperature leads, rather than lags. They are of the form 

(3) BMIi,t = β0 + β1Tempi,t+x + β2Temp2
i,t+x + β3,tθt + β4,iθi + eit  

where the temperature used is from x years in the future. X varies from 1 to 10. (3) provides a 

falsification test; by assumption, future temperature should not effect BMI, and if it does, this 

suggests a problem with the empirical framework or its execution. 

V. Results 

 Table 1 summarizes the results from (1) as described in Section IV. Standard errors are 

clustered at the state level. Coefficient estimates for the temperature and temperature-squared 

terms are both significant at the 0.05 level for lags between 5 and 8 years and for just the 

temperature-squared term for 3 and 4 year lags. These results suggest that there is a robust, 

causal relationship between temperature and BMI. Concavity of a quadratic function is 
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determined by the sign of the coefficient on the x2 term. In this case, all of the coefficients for 

temperature-squared terms are positive, which suggests that the relationship is concave up. A 

concave up quadratic function has a global minimum, and the value of the temperature that 

minimizes BMI is reported as x0 in Table 1. Values for x0 were calculated by setting the first 

derivative with respect to temperature of functions of the form 

BMI = β1Temp + β2Temp2 

equal to zero, where β1 and β2 are the calculated coefficients for temperature and temperature-

squared, respectively. X0 is the turning point for the concave up function that relates BMI and 

temperature, and thus these results suggest that deviations in temperature from x0  in either 

direction result in increases in BMI.
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Table 1. Effect of lagged annual temperature on BMI, 1 to 10 year lags 

Dependent	variable	is	BMI	 	
(1)	

	
(2)	

	
(3)	

	
(4)	

	
(5)	

VARIABLES	 1	Year	Lag	 2	Year	Lag	 3	Year	Lag	 4	Year	Lag	 5	Year	Lag	
	 	 	 	 	 	
Temperature	 -0.0311	 -0.0171	 -0.0533*	 -0.0467	 -0.0503**	
	 (0.0297)	 (0.0318)	 (0.0271)	 (0.0293)	 (0.0224)	
	(Temperature)2	 0.00187	 0.00121	 0.00261**	 0.00297**	 0.00340***	
	 (0.00152)	 (0.00136)	 (0.00113)	 (0.00118)	 (0.000935)	
x0	(°C)	
Observations	

8.32	
1,223	

7.07	
1,202	

10.2	
1,179	

7.86	
1,148	

7.40	
1,113	

R-squared	 0.967	 0.965	 0.964	 0.963	 0.963	
Number	of	States/Territories	 53	 53	 53	 53	 53	
Year	FE	 YES	 YES	 YES	 YES	 YES	

	
Dependent	variable	is	BMI	 	

(6)	
	

(7)	
	

(8)	
	

(9)	
	

(10)	
VARIABLES	 6	Year	Lag	 7	Year	Lag	 8	Year	Lag	 9	Year	

Lag	
10	Year	
Lag	

	 	 	 	 	 	
Temperature	 -0.0588**	 -0.0608***	 -0.0576***	 -0.0490**	 -0.0303	
	 (0.0222)	 (0.0211)	 (0.0211)	 (0.0244)	 (0.0278)	
(Temperature)2	 0.00298***	 0.00255**	 0.00286***	 0.00192	 0.000334	
	 (0.00110)	 (0.000992)	 (0.000996)	 (0.00126)	 (0.00114)	
x0	(°C)	
Observations	

9.87	
1,075	

11.9	
1,031	

10.1	
984	

12.8	
935	

45.4	
885	

R-squared	 0.961	 0.959	 0.955	 0.952	 0.947	
Number	of	
States/Territories	

53	 53	 53	 53	 53	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Robust	standard	errors	in	parentheses	

***	p<0.01,	**	p<0.05,	*	p<0.1	
 

 Table 2 summarizes the results from (3), which serves as a falsification test for the 

empirical model. The lack of statistically significant results in Table 2 suggests that the trends 

reported in Table 1 are not spurious but reflect a real causal relationship between ambient 

temperature and BMI. 
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Table 2. Effect of annual temperature leads on BMI, 1 to 10 year leads 

Dependent	variable	is	BMI	 	
(1)	

	
(2)	

	
(3)	

	
(4)	

	
(5)	

VARIABLES	 1	Year	
Lead	

2	Year	
Lead	

3	Year	
Lead	

4	Year	
Lead	

5	Year	
Lead	

	 	 	 	 	 	
Temperature	 -0.0457**	 -0.0129	 -0.0210	 -0.0324	 0.00997	
	 (0.0217)	 (0.0229)	 (0.0225)	 (0.0218)	 (0.0193)	
(Temperature)2	 0.00151	 0.000137	 -0.000126	 0.000544	 -0.00135	
	 (0.000993)	 (0.00108)	 (0.00104)	 (0.00111)	 (0.00102)	
Observations	 1,185	 1,132	 1,079	 1,026	 975	
R-squared	 0.966	 0.966	 0.965	 0.962	 0.960	
Number	of	
States/Territories	

53	 53	 53	 52	 52	

Year	FE	 YES	 YES	 YES	 YES	 YES	
 

Dependent	variable	is	
BMI	

	
(6)	

	
(7)	

	
(8)	

	
(9)	

	
(10)	

VARIABLES	 6	Year	
Lead	

7	Year	
Lead	

8	Year	
Lead	

9	Year	
Lead	

10	Year	
Lead	

	 	 	 	 	 	
Temperature	 -0.00317	 -0.0387*	 -0.0215	 -0.0261	 -0.00250	
	 (0.0182)	 (0.0206)	 (0.0230)	 (0.0172)	 (0.0253)	
(Temperature)2	 -0.000632	 0.000411	 -0.000245	 0.000180	 -0.00160	
	 (0.00120)	 (0.000940)	 (0.00101)	 (0.000738)	 (0.00135)	
Observations	 923	 872	 821	 770	 719	
R-squared	 0.956	 0.953	 0.949	 0.943	 0.934	
Number	of	
States/Territories	

52	 51	 51	 51	 51	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Robust	standard	errors	in	parentheses	

***	p<0.01,	**	p<0.05,	*	p<0.1	
 

 Tables 3 summarizes the results from the regressions described by (2) in Section IV. 

Rather than lagged annual temperatures, these regressions use averages of lagged temperatures 

over periods of time ranging from 1 to 10 years. The results are consistent with the trends seen in 

Table 1. These results provide some insight into how prolonged periods of elevated temperatures 

due to climate change will affect BMI.  
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Table 3. Effect of lagged moving averages of temperature on BMI, 1 to 10 year averages 

Dependent	variable	is	
BMI	

	
(1)	

	
(2)	

	
(3)	

	
(4)	

	
(5)	

	
VARIABLES	

1	Year	
Average	

2	Year	
Average	

3	Year	
Average	

4	Year	
Average	

5	Year	
Average	

	 	 	 	 	 	
Temperature	 -0.0311	 -0.0489	 -0.0922	 -0.133	 -0.167*	
	 (0.0297)	 (0.0487)	 (0.0713)	 (0.0963)	 (0.0992)	
(Temperature)2	 0.00187	 0.00353	 0.00573*	 0.00859**	 0.0115**	
	 (0.00152)	 (0.00225)	 (0.00322)	 (0.00427)	 (0.00441)	
Observations	 1,223	 1,199	 1,172	 1,139	 1,102	
R-squared	 0.967	 0.966	 0.966	 0.965	 0.965	
Number	of	
States/Territories	

53	 53	 53	 53	 53	

Year	FE	 YES	 YES	 YES	 YES	 YES	
 

Dependent	variable	is	
BMI	

	
(6)	

	
(7)	

	
(8)	

	
(9)	

	
(10)	

	
VARIABLES	

6	Year	
Average	

7	Year	
Average	

8	Year	
Average	

9	Year	
Average	

10	Year	
Average	

	 	 	 	 	 	
Temperature	 -0.225**	 -0.295**	 -0.361***	 -0.399***	 -0.387**	
	 (0.109)	 (0.121)	 (0.132)	 (0.139)	 (0.150)	
(Temperature)2	 0.0141***	 0.0179***	 0.0213***	 0.0227***	 0.0210***	
	 (0.00488)	 (0.00563)	 (0.00632)	 (0.00651)	 (0.00670)	
Observations	 1,062	 1,017	 969	 920	 870	
R-squared	 0.964	 0.963	 0.960	 0.957	 0.953	
Number	of	
States/Territories	

53	 53	 53	 53	 53	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Robust	standard	errors	in	parentheses	

***	p<0.01,	**	p<0.05,	*	p<0.1	
 

 Finally, Tables 4 and 5 constitute robustness checks for the main sets of regressions 

described above. The regressions summarized in Table 4 are the same as those in Table 1, except 

for the addition of variables for racial composition, age, sex, and GDP. Similarly, Table 5 adds 

these control variables to the regressions in Table 3. The addition of these control variables does 

not significantly affect the overall trends of the results, suggesting that the assumption of 

temperature fluctuations being exogenous was appropriate.  
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Table 4. Effect of lagged annual temperature on BMI, 1 to 10 year lags (with controls) 

Dependent	variable	is	BMI	 	
(1)	

	
(2)	

	
(3)	

	
(4)	

	
(5)	

VARIABLES	 1	Year	Lag	 2	Year	Lag	 3	Year	Lag	 4	Year	Lag	 5	Year	Lag	
	 	 	 	 	 	
Temperature	 -0.0385	 -0.0125	 -0.0409*	 -0.0293	 -0.0354	
	 (0.0260)	 (0.0309)	 (0.0240)	 (0.0295)	 (0.0230)	
(Temperature)2	 0.00211	 0.000548	 0.00171	 0.00210	 0.00253**	
	 (0.00131)	 (0.00135)	 (0.00106)	 (0.00125)	 (0.00100)	
x0	(minimum)	
Observations	

9.12	
1,165	

11.4	
1,165	

12.0	
1,166	

6.98	
1,133	

7.00	
1,096	

R-squared	 0.970	 0.970	 0.970	 0.969	 0.968	
Number	of	States/Territories	 51	 51	 51	 51	 51	
Year	FE	 YES	 YES	 YES	 YES	 YES	
Demographic	Controls	 YES	 YES	 YES	 YES	 YES	
	

Dependent	variable	is	BMI	 	
(6)	

	
(7)	

	
(8)	

	
(9)	

	
(10)	

VARIABLES	 6	Year	
Lag	

7	Year	Lag	 8	Year	Lag	 9	Year	
Lag	

10	Year	
Lag	

	 	 	 	 	 	
Temperature	 -0.0489**	 -0.0594***	 -0.0632***	 -0.0450*	 -0.0364	
	 (0.0214)	 (0.0196)	 (0.0202)	 (0.0242)	 (0.0236)	
(Temperature)2	 0.00239**	 0.00238**	 0.00284***	 0.00174	 0.000964	
	 (0.00103)	 (0.000944)	 (0.00103)	 (0.00124)	 (0.00101)	
x0	(minimum)	
Observations	

10.2	
1,056	

12.5	
1,011	

11.1	
963	

13.0	
914	

18.9	
864	

R-squared	 0.967	 0.965	 0.963	 0.960	 0.957	
Number	of	
States/Territories	

51	 51	 51	 51	 51	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Demographic	Controls	 YES	 YES	 YES	 YES	 YES	

Robust	standard	errors	in	parentheses	
***	p<0.01,	**	p<0.05,	*	p<0.1	
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Table 5. Effect of lagged moving averages of temperature on BMI, 1 to 10 year averages 

(with controls) 

Dependent	variable	is	
BMI	
	

	
(1)	

	
(2)	

	
(3)	

	
(4)	

	
(5)	

VARIABLES	 1	Year	
Average	

2	Year	
Average	

3	Year	
Average	

4	Year	
Average	

5	Year	
Average	

	 	 	 	 	 	
Temperature	 -0.0385	 -0.0442	 -0.0840	 -0.111	 -0.137	
	 (0.0260)	 (0.0450)	 (0.0650)	 (0.0887)	 (0.0952)	
(Temperature)2	 0.00211	 0.00250	 0.00431	 0.00628	 0.00851**	
	 (0.00131)	 (0.00209)	 (0.00297)	 (0.00397)	 (0.00420)	
Observations	 1,165	 1,164	 1,164	 1,131	 1,094	
R-squared	 0.970	 0.970	 0.970	 0.969	 0.969	
Number	of	
States/Territories	

51	 51	 51	 51	 51	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Demographic	Controls	 YES	 YES	 YES	 YES	 YES	

	
Dependent	variable	is	
BMI	

	
(6)	

	
(7)	

	
(8)	

	
(9)	

	
(10)	

	
VARIABLES	

1	Year	
Average	

7	Year	
Average	

8	Year	
Average	

9	Year	
Average	

10	Year	
Average	

	 	 	 	 	 	
Temperature	 -0.190*	 -0.268**	 -0.353***	 -0.387***	 -0.388***	
	 (0.108)	 (0.115)	 (0.117)	 (0.121)	 (0.132)	
(Temperature)2	 0.0108**	 0.0147***	 0.0186***	 0.0198***	 0.0189***	
	 (0.00475)	 (0.00517)	 (0.00531)	 (0.00536)	 (0.00568)	
Observations	 1,054	 1,009	 961	 912	 862	
R-squared	 0.968	 0.967	 0.965	 0.963	 0.959	
Number	of	
States/Territories	

51	 51	 51	 51	 51	

Year	FE	 YES	 YES	 YES	 YES	 YES	
Demographic	Controls	 YES	 YES	 YES	 YES	 YES	

Robust	standard	errors	in	parentheses	
***	p<0.01,	**	p<0.05,	*	p<0.1	

	

VI. Discussion 

 Figure 5 depicts functions of the form  

BMI = β1Temp + β2Temp2 
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where β1 and β2 are the reported coefficients for temperature and temperature-squared, 

respectively, in Table 1. The four curves correspond to the four regressions that had statistically 

significant coefficients at the 0.05 level for both temperature and temperature-squared. A 

constant was added to each function in order to make the value of BMI equal 0 when 

temperature equals x0.  

 

 Figure 5. Predicted changes in BMI due to changes in temperature 

 The shapes of these curves provide some insight into what mechanisms may be involved 

in the relationship between temperature and BMI. If the main mechanism through which 

temperature affects BMI were the fact that thermoregulation costs vary depending on ambient 

temperature, one would expect the relationship to be concave down. We would expect for BMI 

to be maximized around a narrow range of temperatures corresponding to the TNZ and for 
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deviations in temperature in either direction to result in higher BMIs. An opposite relationship is 

suggested by these findings, since the predicted curves are concave up. This is more consistent 

with a behavioral mechanism, such as the one described by Obradovich and Fowler (2017). If, as 

Obradovich and Fowler (2017) suggest, there is a range of temperatures in which people are 

most likely to spend time outside doing physical or recreational activities, and deviations in 

temperature in either direction result in decreases in outside activity, this would suggest that the 

opposite is true for BMI—that is, BMI is minimized at a range of temperatures and deviations in 

either direction result in higher BMIs.  

 The lagged nature of the relationship between temperature and BMI also supports a 

behavioral mechanism. For example, suppose that higher temperatures on average result in 

people spending less time outside. First, it is possible that these changes in behavior are lasting if 

people's behavior is habit-forming. Thus, even if the fluctuation in temperature were temporary, 

there could be effects on behavior, and thus BMI, several years into the future. The effect on 

BMI may not be apparent until several years in the future because small changes in behavior lead 

to small changes in BMI, and enough time must pass with the behavioral change in place in order 

to have any noticeable effect. Second, there might be network effects involved if an individual is 

more likely to exhibit a behavior if the people around them exhibit the behavior. For example, 

people may spend more or less time outside depending on how the people they interact with 

spend their time. If this is the case, then one would expect changes in behavior to diffuse among 

the population gradually over time even after the initial temperature fluctuation. While these 

results are suggestive of a behavioral mechanism, it is difficult to say with any confidence what 

the actual underlying mechanism is. Moreover, Obradovich and Fowler (2017) found that 

physical recreation does not begin to decrease until temperatures reach 28–29 °C. In contrast, 
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this study's findings suggest that the turning point lies significantly below this level, as seen by 

the reported values of xo in Table 1. Thus, while these findings are potentially consistent with a 

general behavioral mechanism, they do not align with either of the two major mechanisms 

proposed initially. Further research is needed to better understand the underlying mechanisms.  

 While it is unclear precisely through which mechanism temperature affects BMI based on 

the results of this study, it is possible to interpret the direction and magnitude of the overall effect 

in the context of rising temperatures due to climate change. The results suggest that higher 

temperatures in the future will lead to, on average, higher BMIs in the United States. The 

temperatures that minimize the estimated quadratic functions that are reported as xo in Table 1 

range from 7.4 to 11.9 °C for regressions that had statistically significant coefficients at the 0.05 

level for both temperature and temperature-squared. Since these quadratic functions are concave 

up, they predict that, in response to a uniform rise in temperatures, any person whose baseline 

average temperature is below xo is expected to lose weight, and anyone whose baseline 

temperature is above xo will gain weight. The average annual temperature in the United States 

from 1984 to 2010 was 12.2 °C, which suggests that more people would gain weight than lose 

weight in response to a rise in average temperature. 

 The results summarized in Table 3 also give some insight on the predicted magnitude of 

change in BMI in the United States due to sustained rises in temperature because of global 

warming. For example, using the results from regression 6 in Table 3, an increase of 1 °C would 

result in an increase in average BMI of  [β1(T+1) + β2(T+1)2] - [β1T+ β2T2],  where β1 and β2 are 

the reported coefficients for temperature and temperature-squared, respectively, and T is the 

average national temperature. Evaluating this expression for the appropriate values (β1 = -0.225, 

β2 = 0.0141, and T = 12.2), results in a predicted change in BMI of 0.13 units. Using coefficients 
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from regressions 7, 8, 9 and 10 in Table 3 results in estimated changes in BMI of 0.16, 0.18, 

0.19, and 0.15, respectively, for every 1 °C increase in temperature. Wang et al. (2006) 

demonstrated that a one unit increase in BMI is associated with a 4% increase in medical costs 

and a 7% increase in pharmaceutical costs, while Raebel et al. (2004) found a 2.3% increase in 

medical spending. For the purposes of rough calculation, one can assume that a unit increase in 

BMI results in a 3.15% increase in medical spending, the average of the two estimates. 

Assuming that a sustained increase of  1 °C over ten years would result in an increase in BMI of 

0.15 units, as predicted by regression 10 in Table 3, this implies a 0.47% increase in medical 

spending. According to the Centers for Medicare and Medicaid Services, total U.S. health care 

expenditure was $3.3 trillion in 2016, and thus a 0.47% increase would be equal to an annual 

cost of $15.5 billion. This analysis does not take into account the fact that health care costs are 

rising over time, making it an extremely conservative estimate. Based on a probability forecast of 

carbon dioxide emissions and temperature change, Raftery, Zimmer, Frierson, Startz, and Liu 

(2017) found that the likely range of the increase in average global temperature by the year 2100 

is 2.0–4.9 °C. Thus, even a conservative estimate of the temperature effects of climate change 

suggests an increase in annual health care spending of several tens of billions of dollars due to 

increases in BMI. The purpose of this calculation is not to provide a precise estimate, but rather 

to demonstrate that, based on the results of this study, the costs of rising obesity due to global 

warming will not be negligible and should be taken into account when assessing the effects of 

climate change and what policies should be enacted in response.  

 Additional research is needed to further elucidate the relationship between ambient 

temperature and BMI. As noted above, while these results provide some insight on the direction 

and magnitude of the effect of temperature on BMI, one can only speculate on what the 
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underlying mechanisms are. Additionally, it is likely that the effects vary depending on an 

individual's baseline BMI or other characteristics, as well as other weather changes that may 

accompany climate change. This also warrants further research. One potential methodology that 

would be appropriate for future research is the use of a distributed lag model to jointly test the 

effect of past and current temperatures on current BMI, rather than one lagged temperature at a 

time. Finally, this empirical model can be applied to study other health outcomes of interest. For 

example, Table 6 summarizes the results of a regression that tests the effect of annual 

temperature and annual temperature-squared on a measure of mental health. The results of 

regression 1 indicate that higher temperatures lead to reports of worse mental health, and these 

results appear to be robust to the addition of control variables for race, age, sex, and GDP. 

Additional research is required to better understand this relationship, as well as other ways in 

which global warming will affect human health.  

Table 6. Effect of annual temperature on days of poor mental health per month 

Dependent	variable	is	mental	
health	

	
(1)	

	
(2)	

VARIABLES	 Average	Annual	
Temperature	

With	Demographic	
Controls	

	 	 	
Temperature	 -0.103**	 -0.139***	
	 (0.0410)	 (0.0452)	
(Temperature)2	 0.00518**	 0.00695***	
	 (0.00240)	 (0.00253)	
Observations	 842	 834	
R-squared	 0.286	 0.319	
Number	of	States/Territories	 53	 51	
Year	FE	 YES	 YES	
Demographic	Controls	 NO	 YES	

Robust	standard	errors	in	parentheses	
***	p<0.01,	**	p<0.05,	*	p<0.1	
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