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Abstract

This paper develops a theoretical model to show the effects of

simultaneously having both a competition between groups and one

among the individuals of a tournament. The players are divided up

among teams and compete for a flat bonus for winning the team com-

petition. At the same time, their efforts also determine if they will

win another flat bonus from winning the individual game among all

the tournament’s players. With the use of a specific team produc-

tion function demonstrating substitution among the player’s efforts,

the individual award seems to garner more overall group output than

the group award. Under a specific production function demonstrat-

ing complementary efforts, players seem to be indifferent between the

group and individual award. Lastly, a general production function

that incorporates a variable measuring the degree of substitution was

analyzed. The analysis showed that an individual award was beneficial

to increasing overall team effort. The results imply that the payment

scheme should be structured in a way that allocates larger individual

rewards when the team efforts are more substitutable.
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1 Introduction

Team sports have been one of the major forms of entertainment since the ear-

liest of human civilizations. They successfully combine two of the most basic

interactions in human society, teamwork and competition, into one event.

Today, sports have become one of the largest and most lucrative businesses

in the market, with major sports leagues comprising a multi-billion dollar in-

dustry. However, the driving factor behind sports today is still the same as it

was in the past: competition. Generally speaking, the most exciting matches

are those that have teams playing all out. Therefore, when establishing the

rules of the game, the savvy businessmen behind these sports league aim to

create incentives for winning to motivate their players to play to the fullest

extent of their abilities.

Perhaps the most interesting of these incentives is the Most Valuable

Player, or MVP, award. As the name implies, this award is given to the

player who contributed the most to the team cause. A version of this prolific

award can be found in nearly every team sport ranging from college basketball

(NCAA Player of the Year) to World Cup Football (World Cup MVP). In

professional sports today, winning this award generally give the athlete a

financial bonus; however, the major bonus is the windfall of recognition that

the player receives from the media, audience, and fellow athletes alike. The

player can then use this instant recognition as a bargaining chip for future

endorsement deals, better contracts and all around superstar status.

The designation of an MVP is ironic given the collaborative nature of

team sports because it essentially hands out individual recognition for group

efforts. One would think that in team sports the team aspect should be
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emphasized along the lines of the popular idiom, ”There is no I in team”. The

question is raised of whether this added individual incentive will translate to

improved team play. If there are benefits, how should the organizer set up the

payments for winning the MVP award versus winning the team competition?

Since the MVP award is ubiquitous in most major sports leagues, perhaps

it has a positive effect on team competition. However, having the MVP award

may change the dynamics of a team sport. The players may no longer focus

solely on winning the group event; they might also take into consideration the

individual competition that they are facing from their own teammates and

their competitors. This may cause the player to focus his efforts on improving

his individual odds for the MVP at the expense of his team’s performance.

For example, in the sport of basketball a player motivated to win the MVP

may hog the ball and take ineffective shots himself instead of passing it off

to a teammate.

This paper will try to determine if awards for individual performances

in a group setting lead to better team play. A theoretical model will be

constructed to understand how an organizer of these competitions can create

awards that motivate the players to improve the competition among the

groups.

As an initial hypothesis, the MVP award probably does improve overall

team play since it is present in so many sports; thus organizers should include

an individual award to motivate the players to do better as a team. This

paper will attempt to provide insight as to whether there is a benefit to

the team effort from the inclusion of an individual award and if so, how the

organizer should structure payments to take advantage of it. First off, this
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paper will introduce some of the previous studies related to the topic of team

interactions. The following section will introduce the basic framework for

the original model while the section afterward will expand the analysis of

the model with specific examples. Lastly, the paper will conclude with some

answers to the proposed questions.

2 Literature Review

When individuals are working together in a group to produce an output,

there is an introduction of group interaction factors that are not present

when the individuals are working by themselves. Although some types of

group interactions such positive synergy are good, others actually hinder the

overall output. One of these factors is the classic economic problem of the

free-rider effect in which individuals within a group under-contribute to a

group’s public output.

Due to its wide variety of applications, the study of group interactions has

a rather elaborate array of research behind it. Most of the current literature

focuses on the type of reward scheme (and thus the interaction) that will

induce the largest amount of total effort from players working in a group

environment.

The idea of the winner takes all reward scheme in sports falls under the

study of tournaments. Under tournament compensation schemes, individ-

uals or groups are rewarded based on their relative performance to other

individuals or groups.

A major paper in this field of study was published by Edward Lazear and

8



Sherwin Rosen in 1981. In their research they showed that compensation

under rank-order tournaments can be optimal over traditional compensation

based on individual output levels (Lazear, Rosen, 1981). Their paper has

led to much other research within this topic as to how to structure multiple

players into tournaments. Specific organization schemes that have been the

focus of much of the research are intra-team competition and inter-team

competition.

There have been a number of experimental studies on the effects of intra-

team and inter-team competition. In 2002, Bornstein, Gneezy and Nagel de-

vised an empirical experiment that introduced competition between groups.

Their results showed that when groups were producing under the minimum

effort game (in which total effort of the group is equal to the minimum in-

dividual contribution), the inter-team competition helped encourage more

team member coordination than the just the regular team production (Born-

stein, Gneezy, Nagel, 2002). Along the same lines of thought, Fatas, Neuge-

bauer, and Perote, implemented an experiment that introduced competition

among fellow team members producing under the minimum effort game.

However, this time, the team member whose effort was the minimum of the

group earned a lower payoff than the other members. Their results showed

that this intra-team competition significantly increased the overall effort of

the group (Fatas, Neugebauer, Perote, 2006). Fatas and Neugebauer actu-

ally conducted another experiment that contrasted the difference in output

induced by inter-team competition versus intra-team competition. Inter-

estingly, it showed that intra-team incentives elicit more output than its

inter-team counterparts (Fatas, Neugebauer, 2007).
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Likewise, the theoretical field has taken the time to analyze the effects

of intra-team and inter-team competition. Ramakrishnan and Thakor devel-

oped a theoretical model which differentiated between the organizers benefits

from inducing cooperation versus competition among individual teams. Their

results indicated that the optimal team contract from the principal’s per-

spective depended on the correlation between the individual team members

outputs. For highly correlated outputs, competitive contracts were preferred

whereas cooperative contracts favored outputs with low correlation (Ramakr-

ishnan and Thakor, 1991). Similarly, Hideshi Itoh researched a model to fur-

ther understand the effects of team cooperation in hierarchical organizations.

His main question asked whether cooperation among certain members in an

organization could be beneficial to the organization as a whole. It dealt with

two types of cooperation: induced and delegated. From his model he con-

cluded that cooperation could be beneficial to the organization. Specifically,

he stated that induced cooperation was preferred by individuals who had

high productivity interaction. Likewise, induced cooperation was preferred

by individuals who are not risk-adverse (Itoh, 1992).

Along similar lines, McAfee and McMillan developed a theoretical model

to represent an optimal team contract from the principals perspective. How-

ever, theirs differs from Ramakrishnan and Thakor in the fact that they

tailor their model to handle the moral hazard that arises from incomplete

information between the principal and the team about each members abil-

ity. They concluded that the moral hazard problem can be minimized if the

principal allowed the team members to choose among contracts with differ-

ent compensation schemes. In choosing a contract, the members effectively
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reveal their abilities to the principal and thus minimize the incomplete infor-

mation (McAfee and McMillan, 1991). One of the best know papers dealing

with team interactions comes from Bengt Holmstrom’s research on the moral

hazard among teams. He showed that competition was an optimal way to

extract previously unknown information (Holmstrom, 1982).

Further research has gone into detail about how the payoffs for team

members should be structured efficiently. Eyal Winter constructed a payoff

structure for teams that produce their output under a perfect complements

production function; it suggested that due to externalities, even with sym-

metric team members, no two members should be paid the same (2004).

Dickinson and Isaac also focused on intra-team payoff structures; however,

a notable difference is that they assume that players have different initial

abilities. They compared giving absolute rewards to high contributing mem-

bers versus relative rewards based on the ratio of the member’s initial ability

and his contribution. Their experiment showed that the highest team pro-

duction and the lowest dispersion of individual contributions came from high

relative rewards as players of lower initial ability were not discouraged from

competing (Dickinson, Isaac, 1998).

Another notable collection of empirical literature focuses on the develop-

ment of hybrid compensation structures that include both a team component

and an individual component. Irlenbusch and Ruchala conducted an exper-

iment that compared the use of a hybrid compensation structure versus a

pure team payoff. Here, the pure team payoff gave each member the same

compensation amount which was proportional to the team’s output. In the

hybrid structure, the team member that contributed the most to the group
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event was also given a flat bonus. Their empirical results showed that a

pure team-based compensation motivates voluntary cooperation among team

members. Furthermore, the introduction of a high individual award caused

individual efforts to increase; however, it crowded out voluntary contributions

within the team (Irlenbusch, Ruchala, 2006). Similar results were found by

Wageman’s experimental study which showed that both pure team-based

compensations and pure individual-based compensations fared better than

hybrid compensation structures (1995).

This paper develops an original theoretical model to analyze two main

points. First, it aims to analyze the effects on total team production caused

by inducing a tournament among individuals already situated in a group

tournament setting. Second it aims to develop the optimal payment structure

under this situation.

3 Model

The model used for this game must incorporate the game’s various partici-

pants and stages. The underlying assumption within this model is that all

the participants are rational persons who make their decisions in an attempt

to maximize their individual payoff.

Let’s begin by laying out the setup of the game that the participants

will be playing in. Here, the players cooperate in teams to compete against

another team. In conjunction with this team competition, there is also a

separate individual award that the players are eligible for.
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3.1 The Basic Model

To start off, let’s begin with the simplest form of the model. There are two

types of participants in this game: the organizer and the player. The orga-

nizer is the individual who has set up the tournament rules and the payments

for the winners of the individual competition (MVP) and the team compe-

tition. For this basic model, there is one organizer. In order to maintain

consistency in the notations, let

r = payment to winner of individual competition

w = payment to each member of the winning team

The second type of participants, the players, are those who are competing

in the actual tournament set up by the organizer. Each player must be on a

team. This is a group that has a total of at least two players. This team will

be competing with all the other teams in the tournament. For this particular

model, let’s assume that there are two teams, X and Y . Furthermore, let’s

assume that each team consists of a total of two players, i = {1, 2}. In

regards to the individual players, each player is able to exert one type of

effort, ei, in an attempt to win both the group and individual contest. At

the same time, the player also incurs a cost, C(ei), which is a function that

is increasing in terms of ei. Thus in this simple model, let

xi = ei = effort of player i in team X

yi = ei = effort of player i in team Y

This is a sequential two-stage game in which the organizer moves in the

first stage and the players move in the second stage after observing the or-
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ganizer’s moves. As such, in order to find the optimal equilibrium moves for

all the participants in this game, we will use backwards induction.

The first step in this process is to find the equilibrium moves for the

second stage of this game. During this stage, the objective of each player

involved in the actual tournament is to maximize their total individual payoff.

They increase their overall payoff whenever they win the the individual or

team competition. In contrast, their payoff decreases as they expend more

effort at a cost. The strategy of each player is his individual choice of how

much effort to exert. Each player’s choice of effort level is unknown to the

other players since they all choose their efforts simultaneously.

First off, let’s construct the team competition’s payoff function. Each

team’s production function is given by QT = Q(e1, e2). There are certain

assumptions associated with this production function.

(i) Positive Marginal Product
∂

∂ei
QT > 0

This means that each additional unit of effort, ei, will increase the total

output of the group.

(ii) Diminishing Marginal Return
∂2

∂e2
i

QT < 0

Although each additional unit of effort increases the overall output of the

group, the amount by which the group output increases actually shrinks

as the amount of total effort goes up. For instance, if the third unit of

effort increases output by 100, the 50th unit of effort may only increase

output by 5.
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Furthermore, there are a couple of definitions that are essential to the

model. For the second order derivatives of the production function, if ∂2

∂e1∂e2
QT >

0, then the players’ efforts are by definition complementary. Notice that

∂2

∂e1∂e2
QT = ∂

∂e1

(
∂
∂e2
QT
)
> 0. This means that for complements, the marginal

product of player 1 actually increases the as the marginal product of player

2 increasses. A particular example of a complementary function that will be

used in the next section is QT =
√
e1e2. On the same note, if ∂2

∂e1∂e2
QT < 0,

the players’ efforts are substitutes. Once rewritten as ∂
∂e1

(
∂
∂e2
QT
)
< 0, it

can be seen that the marginal product of player 1 decreases as the marginal

product of player 2 increases and vice-versa. An example of a substitution

function is QT =
√
e1 + e2.

Using this information, the probability of team T winning the team com-

petition is

Pr(team T wins) =
QT

QX +QY
(1)

The construction of the individual contest’s payoff is very similar to that

of the group competition. Since each player’s efforts are contributed to the

group output, we need a method of measuring an individual’s value to the

team. Let’s define the value of the individual, V T
i as

V T
1 = QT (e1, e2)−QT (0, e2)

V T
2 = QT (e1, e2)−QT (e1, 0)

(2)

Based on this definition, the probability that a player wins the individual

competition is

15



Pr(player i of team T wins) =
V T
i

V X
1 + V X

2 + V Y
1 + V Y

2

(3)

Finally, with the cumulation of the previous information, the payoff func-

tion, πplayer, for each individual player i in team T can be written as

πplayer = Pr(team T wins)w + Pr(player i is MVP)r − C(ei) (4)

=
QT

QX +QY
w +

V T
i

V X
1 + V X

2 + V Y
1 + V Y

2

r − C(ei) (5)

Each player’s payoff is a function of the group award w, the individual

award r, the other players’ effort levels, and of course, his own effort level.

As the players are rational persons, the equilibrium effort levels are found

from solving

max
ei

πplayer =
QT

QX +QY
w +

V T
i

V X
1 + V X

2 + V Y
1 + V Y

2

r − C(ei) (6)

Once the equilibrium effort levels are found from the second stage, the

first stage equilibrium follows. Here, the organizer’s objective is to maximize

the total efforts of the players subject to his budget constraint. He is the

first mover in this game and is given no prior information on the movements

of the players. His payoff function, πorganizer, in this basic model is

πorganizer = x∗1 + x∗2 + y∗1 + y∗2 (7)

Since the cost to the organizer is his overall income, which is a constant, it is

not included in the payoff function. However, it does play into consideration
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when the organizer is determining his equilibrium strategy. Recall that the

organizer has to pay w to each member of the winning team and r to the

MVP winner. From this, his budget constraint is

2w + r = M (8)

where M is his overall income. Following this logic, the organizer uses his

strategy of choosing w and r to solve

max
w,r

πorganizer = x∗1 + x∗2 + y∗1 + y∗2

s.t. 2w + r = M

(9)

This is a constrained optimization problem involving two variables. Recall

that the equilibrium efforts, e∗, that were found from the previous stage are

functions of w and r. For this particular model, there are non-negativity

constraints on both the individual and group awards.

w ≥ 0

r ≥ 0
(10)

These constraints imply that there is no explicit punishment for losing either

of the contests. Likewise, they also impose a maximum value for both rewards

in which

w ≤ M

2

r ≤M

(11)
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4 Analysis

Now that the model for the tournament has been established, it yields some

results that can further our understanding of this game beyond our basic

intuition. Since the definition of the production function QT is so pivotal

to the model, I have broken down the analysis of the basic model into four

sections. The first introduces a general production function case to the model.

The latter three sections will extend the ideas of the general case with three

specific examples.

4.1 The General Case

In this case, the production function has not been explicitly stated and is left

in the general form of QT = Q(e1, e2). The individual’s problem (in terms of

team X’s first player) is

max
x1

πx1 =
Q(x1, x2)

Q(x1, x2) +Q(y1, y2)
w

+
Q(x1, x2)−Q(0, x2)

2Q(x1, x2) + 2Q(y1, y2)−Q(0, x2)−Q(x1, 0)−Q(0, y2)−Q(y1, 0)
r

− C(x1) (12)

A notable assumption that I made when solving for the equilibrium effort

levels of the players is that all players are symmetric. This means that they

all face the same production and cost functions. As such, their equilibrium

efforts are all be the same.

x∗1 = x∗2 = y∗1 = y∗2 (13)
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Using this assumption, the first order condition, ∂
∂x1

, of the payoff func-

tion, πx1 , is

∂

∂x1

πx1 |e=
Q1(e, e)

4Q(e, e)
w +

2Q1(e, e) +Q1(e, 0)

16[Q(e, e)−Q(e, 0)]
r − C ′(e) = 0 (14)

where Q1(e, e) is the partial of Q(x1, x2) taken with respect to x1 and then

evaluated at x1 = e

This general result will work for all production and cost functions that are

differentiable. From the properties of production functions, the coefficients of

equation (12) can be narrowed down. Let’s first look at the coefficient in front

of the team wage, w. It will always be positive due to the fact that the first

order derivative of a production function is always positive. By definition,

Q(e, e) > Q(e, 0); therefore, the coefficient in front of the individual reward

r is always positive as well. Lastly, as cost is increasing in terms of e, the

first order derivative of cost will always be positive.

4.2 A Substitution Example

The insights found from the general case can be further explored through the

analysis of specific examples of production functions. One extreme example

that can be explored is the substitution production function. Recall that the

production function of the team is defined as a substitute if, ∂2

∂e1∂e2
QT < 0.

Here is the specific function that we shall be analyzing.

QT =
√
e1 + e2 (15)

V T
1 =

√
e1 + e2 −

√
e2 (16)
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This type of production function can be used to describe team projects in

which the efforts of each individual team member are interchangeable with

the others. Going back to the sports example of an MVP, this production

function is more applicable when describing sports such as basketball, where

the team members’ roles in the game tend to overlap.

Finally, the last piece of information needed to obtain a concrete solution

to this problem is a cost function which will be defined as

C(ei) =
1

2
e2i (17)

This is a commonly used example of a cost function that is increasing with

respect to effort.

From the model developed in the previous section, the first step is to

solve for the players’ equilibrium efforts in the second stage of the game.

Each player’s objective is to solve the following maximization problem.

max
ei

πx1 =

√
x1 + x2√

x1 + x2 +
√
y1 + y2

w

+

√
x1 + x2 −

√
x2

2
√
x1 + x2 −

√
x1 −

√
x2 + 2

√
y1 + y2 −

√
y1 −

√
y2

r − 1

2
x2

1 (18)

By differentiating each of the player’s payoff function with respect to his

effort level, four best response functions can be found from the FOC. Once

again, in order to avoid solving this system of linear equations, we will be

using assumption of symmetry (11) to simplify the problem for now. In

the end, the individual equilibrium effort levels for all of the players can be

written as a function of w and r
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e∗ =
1

4

√
w +

r

6− 4
√

2
(19)

Notice the coefficients of w and r in this particular example. Effort is

increasing both in terms of w and r. This is expected because the higher

the reward for succeeding, the more likely an individual or a group will feel

motivated to try harder. Not only do the signs of the coefficient matter, the

magnitudes of the coefficients are important as well. Notice that r coefficient

is larger than w. This means that a unit increase in r has a greater positive

change in e∗ than the same unit increase in w.

Graphically, Equation(19) is shown below.

0.0 0.1 0.2 0.3 0.4 0.5
w

0.1

0.2

0.3

0.4

0.5
e

Following the theoretical model, this result can be used to solve the or-

ganizer’s problem in the first stage of the game.

w∗ = 0

r∗ = M
(20)

This result implies that the players are more motivated by individual rewards

than team rewards. This observation falls in line with the substitutability of
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the team efforts. By awarding a high individual award, the free-rider problem

that is common with interchangeable efforts within a group is minimized. In

order to increase his odds of winning the individual award, the individual

must increase his effort. Whereas, in the group contest, the individual has

the incentive to slack off and leave the work to the his teammate because

only the sum of their efforts matter to winning. As long as his teammate

increases his effort, the player feels the same benefit as if he himself has

worked harder. Therefore, increasing the group reward w is not the most

effective way to encourage the player to commit more effort since part of the

increase is lost to the free-rider inefficiencies. Therefore, in this particular

example, the organizer should allocate all of his budget to the individual

reward and disregard the team reward in this particular case.

4.3 A Complementary Example

On the other extreme end from the substitution case is the complementary

case. Here, each member of the team has a distinct role that must be com-

pleted for the overall team effort to be successful. In terms of sports, this is

perhaps a good model for baseball. Here, each team member is assigned a

very distinct role while on the field; for example, the pitcher generally does

not stray far from the mound and the first baseman does not go near third

base.

Recall that for the efforts of a production function to be complementary,

∂2

∂e1∂e2
QT > 0. The specific production function that will be the focus of this

analysis is
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QT =
√
e1e2 (21)

V T
1 =

√
e1e2 (22)

Likewise, the cost function will be the same as the one defined in equation

(15).

Following the theoretical model, the individual players once again face

the problem of maximizing their payoff function.

max
x1

πx1 =

√
x1x2√

x1x2 +
√
y1y2

w +

√
x1x2

2
√
x1x2 + 2

√
y1y2

r − 1

2
x2

1 (23)

For simplicity, once again the assumption of symmetry (11) is used to reduce

the system of equations to a single equation. Each individual’s equilibrium

efforts can be written as a function of w and r

e∗ =
1

4

√
2w + r (24)

The effort is increasing with respect to w and r; just like the substitution case,

it follows the intuition that higher rewards offer individuals higher incentives

to work harder. On the other hand, unlike the substitute case, the magnitude

of w’s coefficient is twice as large as that of r. This means that increasing the

group reward by a unit will have twice the positive effect on the individual’s

effort than the same unit increase of the individual award.

Graphically, Equation(24) is shown below.
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With this knowledge of the players’ equilibrium, the organizer wants to

maximize the total output of all the individuals subject to his limited and

finite income, M .

max
w,r

πorganizer = 4

√
w

8
+

r

16

s.t. 2w + r = M

(25)

This is yet another constrained maximization problem. The result of this

organizer’s problem is

w∗ =

[
0,

M

2

]
r∗ = M − 2w∗

(26)

The result from this particular example is rather interesting as it suggests

that the individual is indifferent between the individual and group awards.

Given the complementary nature of the production function, this result is

reasonable because a player’s effort is equally valuable in both the team and

individual competition when considering the structure of the payoffs. Unlike

the substitution case, the player’s effort does not suffer from the inefficiencies
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of the free-rider problem. In order to raise his probability of winning the

group award, the player must increase his own efforts when all other things

are held equal.

The specific results from the substitution and complementary cases high-

light some interesting points about this type of contest. The first thing to

note is the production function’s relation to the equilibrium points. In the

substitution case, an equilibrium for the organizer states that there should

only be an individual award in order to maximize efforts. At least with the

substitution case of the basic model, the MVP award is vital to the success

of organizer. Without the MVP award (r = 0) the utility of the organizer

will be lower; therefore, he would be worst off.

In contrast, the results of the basic model’s complementary case imply

that the players are indifferent to the actual size of each reward relative

to the other. This brings up an interesting question as to the purpose of

the MVP award in the first place when teams exhibit complementary efforts.

The MVP award does not add any extra value above the group award’s value

to the organizer or the players. Ironically, in this complementary case, the

MVP award is actually serving as a substitute for the group award. These

results only apply to these specific examples; nevertheless, they provide some

insight to the problems faced by employers when trying to developed an op-

timal incentive plans for their employees. Sports leagues keen on increasing

audience interests in their teams by making the competitions more competi-

tive can use these results as a springboard to develop a payoff structure that

is tailored to their own needs.
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4.4 A General Example

Ultimately we would like to understand whether there are situations in which

a team competition would benefit from an inclusion of an individual award.

The resulting outcomes of the two examples offers some insights on the ef-

fects of a game’s substitutability on the optimal reward structure. To further

understand the effects of substitution on the optimal reward structure, we

can utilize a production function which includes an added variable that mea-

sures the degree of substitution in a particular contest. Let this production

function be defined as

QT = α
√

(e1 + e2) + (1− α)
√
e1e2 (27)

V T
1 = α(

√
e1 + e2 −

√
e2) + (1− α)

√
e1e2 (28)

This production function includes a new variable, α, which represents the

degree of substitution among the team dynamics. For the purposes of this

model, α will be constrained to

0 ≤ α ≤ 1 (29)

As α increases, the production function of a team’s efforts become more

substitutable. Notice that this new production function encompasses both of

our previous examples. When α = 0, the production function is equivalent

to our complimentary case. Similarly, this new production function is the

same as our substitution case when α = 1.

This general production function can be used to describe a variety of team

interactions with different levels of substitution.

As with the previous two examples, the cost function is defined as
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C(ei) =
1

2
e2i (30)

Once again, each individual player aims to optimize his own payoff func-

tion. For player 1 on team X, his optimization problem is

max
x1

πx1 =

(
α
√

(x1 + x2) + (1− α)
√
x1x2

α
√

(x1 + x2) + (1− α)
√
x1x2 + α

√
(y1 + y2) + (1− α)

√
y1y2

)
w

+

(
α(
√
x1 + x2 −

√
x2) + (1− α)

√
x1x2)

α(
√
x1 + x2 −

√
x2) + (1− α)

√
x1x2) + α(

√
y1 + y2 −

√
y2) + (1− α)

√
y1y2)

)
r

− 1

2
x2

1 (31)

All the players are solving a symmetric version of player 1’s optimization

problem. Thus the optimal effort level in equilibrium, e, for all of the players

is the one that satisfies the following equation

∂

∂x1

πx1 |e=
1

16

(
α
√

2√
e

+ 2(1− α)
)
w

α
√

2e+ (1− α)e
+

1

16


(

1
2
α
√

2√
e

+ (1− α) + 1
2
α√
e

)
r

α
√

2e+ (1− α)e− α
√
e

−e = 0

(32)

Unlike the previous examples, the explicit function for e in terms of r,

w, and α cannot be simply computed. Thus it is not obviously clear what

effects the degree of substitution, α, and the rewards, w and r, have on e.

However, we can still gleam some information from this equation by uti-

lizing numerical analysis. For simplicity, let’s normalize the value of the

organizer’s budget, M , to

M = 1 (33)
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so that the individual prize, r, can be rewritten in terms of the team prize,

w. Now the function in (32) is reduced to a three variable function. To

guide the analysis, the following graphical representation of this production

function is helpful.

0.0

0.5

1.0

a

0.0

0.2

0.4

0.6

0.8

e

0.0 0.2 0.4

w

The illustrated surface shows the different combinations of w, α, and e

that causes the function (32) to equal zero and thus making it optimal. As a

reference, the horizontal axis indicates the values of w. The axis on the top

indicates the α values while the remaining axis are the various e values. In

this particular graph, the domains are as follows
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0 ≤ w ≤ 0.5

0 ≤ α ≤ 1

0 ≤ e ≤ 0.8

(34)

In order to start the numerical analysis, the equilibrium effort levels at

various combinations of w and α were calculated (Table 1). The maximum

effort level occurs when w = 0 and α = 1 while the minimum effort level

occurs when w = 0.5 and α = 1. Notice that when α = 0 the effort stays

constant at e = 0.25 regardless of the w value. This falls in line with our

complementary example in which all possible combinations of the team and

individual rewards were optimal.

As with the other examples, it will be helpful to see how the equilibrium

effort levels change with respect to changes in the other variables. Looking at

the equilibrium efforts at the various game structures, it seems that generally

speaking, effort is increasing with respect to α. Likewise, when α is held

constant, the effort is decreasing in w for all α > 0. In particular, we would

like to see how w’s effects on effort differ depending on the α levels. By

holding α constant, the percentage change of the effort levels when the team

prize value changes was found (Table 1).

The more interesting results come to play when taking a look at the

percentage changes of effort. A sample of the results is shown here.

Table: Sample Numerical Results from General Example
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α w e Change in Effort

0.2 0 0.286 N/A

0.2 0.1 0.275 -0.038

0.2 0.2 0.264 -0.043

0.2 0.3 0.251 -0.048

0.2 0.4 0.237 -0.055

0.2 0.5 0.222 -0.065

α w e Change in Effort

0.8 0 0.387 N/A

0.8 0.1 0.357 -0.076

0.8 0.2 0.323 -0.093

0.8 0.3 0.286 -0.117

0.8 0.4 0.241 -0.157

0.8 0.5 0.183 -0.240

First off, when α > 0 and is constant, the magnitude of the effort’s per-

centage change increases when the team reward increases. Let’s remember

that as the team reward increases, the individual reward simultaneously de-

creases. This results hints at a couple of observations. This implies that

when there is a substitution element within a team’s production function,

the team is faced with a free rider problem which requires a component of

an individual reward to counter it.

The most noteworthy result is that the magnitude of the percentage

change of effort for the same changes in w increases as alpha increases as

shown in the table above. This implies that as the team efforts become more

substitutable, the free rider effect becomes more prominent in an individual’s

effort decision. The individual team reward value becomes more significant

to the motivation of an individual player in order to limit the negative effects

of the free rider problem. With smaller α the size of the individual reward

is not as influential to the overall effort production as it is when α is higher.

Overall, the numerical analysis of this general example implies that the

equilibrium efforts are inversely related to the team reward when the game

has a positive degree of substitution. Likewise the inverse relationship be-
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tween the efforts and team rewards become higher in magnitude as the degree

of substitution increases. Based on this result, organizers of team competi-

tions should include an individual reward in their compensation structure

when the game includes a positive degree of substitution. Furthermore, they

should really focus on increasing the size of the individual reward for games

with higher degrees of substitution.

5 Conclusion

The main result of this study is that including a reward for an individual

within a team competition can be beneficial to the organizer. Furthermore,

based on the analysis of the general example, it seems that this benefit is

correlated with the degree of substitution within an individual teams pro-

duction function. Teams whose efforts exhibit higher levels of substitution

are more motivated by the inclusion of an individual reward than those who

have more complementary efforts.

These results offer some interesting suggestions to organizers who are

trying increase the overall effort within a competition. For instance, the or-

ganizer of a baseball game, where efforts are complementary, should offer a

lower individual prize than an organizer of the more substitutable basketball

game in order to induce the optimal amount of total effort. These results can

be extended beyond sports to topics such as management in the workforce.

For instance, an award found in the workforce that is similar to the MVP

award is the Employee of the Month. Here, even if the employee was working

with other team members to succeed in their division, they are also eligible
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to gain additional individual recognition. Managers can use these results as

a way to effective structure their employees’ compensation scheme. In fact,

team interactions play a role in many industries ranging from the entertain-

ment to the political world. It goes to show that although there is no ”I” in

team there is certainly a ”me”.

An interesting caveat arises when the general example is applied to sports.

Recall that the highest equilibrium effort level came when α = 1 and w = 0.

If the total effort is representative with the overall entertainment value of a

sport, then this result implies that sports with higher degrees of substitution

are more entertaining.

Further research can extend these results to more realistic scenarios. For

instance, the current model only deals with symmetric players. However, in

reality, most players in a team competition are not symmetric. Most sports

teams generally have a superstar player among its regular players. Future

research can examine the superstar’s impact on the competition payment

structure. Likewise, future research can extend the model to an n-player case

to see whether the addition of players will change the optimal environments.
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Appendix

Substitution Example

FOC for Player 1 in Team X

∂π

∂x1

=

√
y1 + y2

2
√
x1 + x2

(
√
x1 + x2 +

√
y1 + y2)2

w

+


√
y1 + y2√
x1 + x2

−
√
x1 +

√
x2 −

√
y1 −

√
y2

2
√
x1 + x2

+

√
x1 + x2 −

√
x2

2
√
x1(

2
√
x1 + x2 + 2

√
y1 + y2 −

√
x1 −

√
x2 −

√
y1 −

√
y2

)2
 r−x1 = 0

(35)

Complementary Example

FOC for Player 1 in Team X

∂π

∂x1

=

x2
√
y1y2

2
√
x1x2

(
√
x1x2 +

√
y1y2)2

w +

x2
√
y1y2√
x1x2

(2
√
x1x2 + 2

√
y1y2)2

r − x1 = 0

General Example

Equilibrium Effort

∂

∂x1

πx1 |e=
1

16

(
α
√

2√
e

+ 2(1− α)
)
w

α
√

2e+ (1− α)e
+ 1

16


(

1
2
α
√

2√
e

+ (1− α) + 1
2
α√
e

)
r

α
√

2e+ (1− α)e− α
√
e

−e = 0
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Table 1: General Example Numerical Results

α w e Change in Effort

0 0 0.25 N/A

0 0.1 0.25 0

0 0.2 0.25 0

0 0.3 0.25 0

0 0.4 0.25 0

0 0.5 0.25 0

0.2 0 0.286 N/A

0.2 0.1 0.275 -0.038

0.2 0.2 0.264 -0.043

0.2 0.3 0.251 -0.048

0.2 0.4 0.237 -0.055

0.2 0.5 0.222 -0.065

0.4 0 0.319 N/A

0.4 0.1 0.301 -0.057

0.4 0.2 0.281 -0.066

0.4 0.3 0.259 -0.078

0.4 0.4 0.234 -0.098

0.4 0.5 0.203 -0.130

α w e Change in Effort

0.6 0 0.352 N/A

0.6 0.1 0.328 -0.068

0.6 0.2 0.301 -0.081

0.6 0.3 0.271 -0.100

0.6 0.4 0.236 -0.130

0.6 0.5 0.191 -0.189

0.8 0 0.387 N/A

0.8 0.1 0.357 -0.076

0.8 0.2 0.323 -0.093

0.8 0.3 0.286 -0.117

0.8 0.4 0.241 -0.157

0.8 0.5 0.183 -0.240

1 0 0.427 N/A

1 0.1 0.39 -0.087

1 0.2 0.349 -0.105

1 0.3 0.303 -0.133

1 0.4 0.248 -0.181

1 0.5 0.177 -0.287
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