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Abstract

Conventional measurements of equity return volatility rely on the asset’s previous day closing price to infer
the current level of volatility and fail to incorporate information concerning intraday fluctuations. Realized
measures of volatility, such as the realized variance, are able to integrate intraday information by utilizing
high-frequency data to form a very accurate measure of the asset’s return volatility. These measures can be
used in parallel with the traditional definition of the Capital Asset Pricing Model (CAPM) beta to better
predict the time-varying systematic risk of an asset. In this analysis, realized measures were added to the
General Autoregressive Conditional Heteroskedastic (GARCH) framework to form a predictive model of beta
that can quickly respond to rapid changes in the level of volatility. The findings suggest that this predictive
beta is better able to explain the stylized characteristics of beta and is a more accurate forecast of the realized
beta than the GARCH model or the benchmark Autoregressive Moving-Average (ARMA) model used as a
comparison.

JEL classifications: C03, C32, C53, C58
Keywords: Beta, GARCH, GARCHX, Realized Variance, High-Frequency Data
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1 INTRODUCTION

1 Introduction

In exchange for holding a security, investors expect to be compensated based upon the inherent systemic risk

in the held asset as well as the time-varying opportunity cost of their invested money. This opportunity cost,

referred to as the time value of money, implies that money available at the present time is worth more than

the same amount in the future due to its potential earning capacity. This core principal of finance holds

that, provided money can earn interest, any amount of money is worth more the earlier it is received. The

opportunity cost of money also changes over time due to any combination of factors including the availability

of potential earnings through alternative investments, decreases in relative value due to inflation, or the

potential of unrealized earnings from interest.

When analyzing the potential return of a security, investors typically compare the investment’s expected

return relative to the guaranteed rate of return they could receive from an investment with zero risk. This

albeit theoretical rate of return is known as the risk-free rate and represents the interest an investor would

expect from an absolutely risk-free investment over a specified period of time. In practice, however, the

risk-free rate does not exist because even the safest investments carry a small degree of risk. Thus, assuming

that governments are free from the possibility of default, the interest rate of a short-term treasury bill is

often used as a proxy for the risk-free rate of return. Given the minimal risk inherent with this type of

investment, the associated return is similarly quite low. There exists a wealth of assets with greater inherent

risk than the guaranteed rate of return that are attractive due to their potential to yield returns exceeding

the risk-free rate. The ratio of relative risk between potential risky assets and the risk-free rate is captured in

the statistical coefficient referred to as beta.

Beta is a frequently employed statistical measure that characterizes the volatility of an asset’s returns in

relation to the volatility of the market’s returns. Specifically, beta represents the systemic risk present in an

asset that can not be avoided through portfolio diversification. The beta of the market itself is always one,

because, by definition, the covariance of the market when compared with itself is equal to one. Alternatively,

a beta less than one indicates less movement by an asset compared to the market, and a beta larger than one

designates a higher degree of movement. Finally, a beta of zero indicates that the returns of an asset are

independent of the market’s returns.

Within security analysis and valuation, as well as portfolio management, beta is central in determining

the pricing of equities and managing the risk of investment portfolios. One of the fundamental principals of

asset pricing theory, as noted by Andersen et al. [2006], is that only systematic risk should be priced. In the

one-factor capital asset pricing model (CAPM), for example, systematic risk is determined by the measure

beta [Sharpe, 1963; Lintner, 1965a,b], which is central in calculating the cost of equity for a particular security.

Forecasting Beta Using Conditional Heteroskedastic Models 5



1 INTRODUCTION

The cost of equity is used to calculate a firm’s discount rate, which is in turn utilized to compute the present

value of future cash flows and determine a valuation of the firm and the equity. Despite much criticism over

the last 50 years, the CAPM remains at the forefront of academic research and industrial application.

This paper focuses on the use of beta within the CAPM and whether the systemic risk of an asset,

measured by beta, is constant over time or evolves continuously. Beta, defined as the covariance between an

asset’s returns and the market’s returns divided by the variance of the market’s returns, has traditionally been

assumed to be time invariant within the CAPM. Numerous pieces of literature including Bos and Newbold

[1984], Jagannathan and Wang [1996], Groenewold and Fraser [1999], and Choudhry [2002] state that the

static CAPM is unable to adequately explain the cross section of average returns on stocks and is unable to

accurately capture the dynamics of volatility. However, several publications on economic volatility such as

Bollerslev et al. [1988], Kim and Nelson [1989], Bollerslev and Engle [1993], Andersen et al. [2002], and Ewing

and Malik [2005] have presented extensive evidence for time-varying fluctuations in conditional variances of

stocks and their conditional covariances with the market. Thus, from a purely statistical standpoint, beta,

comprised of these conditional variances and covariances, should be expected to inherit the fluctuations

present in its constituent components.

Multiple time-varying beta models have been proposed to estimate the true underlying beta of an asset

[Ebner and Neumann, 2005; Morana, 2009; Caporale, 2012]. Of these, most employ coarsely sampled daily

returns (or more often squared daily returns) to extract information about the current degree of volatility and

then utilize this information to forecast the next period’s expected volatility. These betas are often slow to

react and fail to capture the full dynamics of equity betas during periods of rapid movement in volatility. To

address this issue, Andersen et al. [2006] presented a comprehensive framework which utilizes high-frequency

data to estimate beta.

High-frequency data, measured at generally one- or five-minute intervals, fundamentally provides more

information regarding the dynamics of the true underlying volatility. Andersen et al. [2006] introduced

measures of the variance of an asset’s returns as well as its covariance with market returns which utilize high-

frequency data. These measures, which are known as realized measures, are more informative concerning the

current level of volatility than observed daily square returns because these measures integrate new information

almost instantly. Combining measures of variance and covariance, Andersen et al. [2006] developed a similar

beta model computed from high-frequency intraday returns, which they call realized beta. Their results

indicated that the use of high-frequency data and realized measures within the realized beta calculation

allows for a more dynamic measurement of an asset’s true underlying beta.

It has long been accepted that daily asset returns are essentially unpredictable, while on the other hand

return volatility has been shown to be highly persistent and thus predictable. Therefore, because volatility

Forecasting Beta Using Conditional Heteroskedastic Models 6



1 INTRODUCTION

is predictable and extremely important in financial market transactions and risk management, forecast

models are both feasible and meaningful. There are two main approaches to modeling volatility. The first is

parametric modeling such as stochastic volatility models. The second approach is to use volatility implied

by derivative prices. Both methods have certain flaws. Traditional parametric models utilize the previous

day’s closing price of an asset and fail to incorporate intraday information. Implied volatility models have an

advantage being derived directly from market prices; however, they rely on the validity of their underlying

pricing models. The introduction of more informative realized measures of volatility has lead to a shift in

volatility measurement, modeling, and forecasting and given increased robustness to parametric modeling.

Because beta is defined as the ratio of the covariance of an asset’s and the market’s returns over the variance

of the market’s returns, these same methodologies can be adapted to form predictive models of beta utilizing

high-frequency intraday data.

This paper provides a framework for a model to forecast time-varying conditional beta utilizing high-

frequency data. The model developed in this paper builds on the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) framework of Bollerslev [1986] to calculate the time-varying conditional variances

of equity and market returns and to combine these to form a framework for measuring and forecasting

time-varying conditional beta. The structure of the paper is the following. In Section 2, the theory concerning

the traditional time-invariant beta is reviewed. From there, the complementary theoretical continuous-time

beta is developed and its lack of observability is illustrated. Finally, the realized measures used to approximate

the theoretical continuous-time beta are presented and the concept of realized beta is introduced. In Section 3,

the parametric models used to fit and forecast the constituent components of realized beta are developed and

the final modified GARCH model with an exogenous variable (GARCHX) is presented, which incorporates

realized measures as an exogenous explanatory variable in forecasting the conditional volatility. Section 4

provides the background on the Autoregressive Moving Average (ARMA) model used as a benchmark for the

calculated betas from the GARCH and GARCHX models. Section 5 provides the criteria for the evaluation

of the proposed GARCHX model. Finally, Section 6 summarizes the main results from the analysis and

illustrates that the GARCHX model performs as well if not better than both the GARCH model and the

baseline ARMA model. Some concluding remarks are offered in Section 7 as well as suggestions for future

research.
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2 BETA

2 Beta

2.1 Static Beta

The coefficient beta (β) is a key component of the CAPM and is a mathematical measure of the sensitivity of

the rate of return of a portfolio or given security compared with the rate of return of the market portfolio1.

According to asset pricing theory, beta represents the type of risk, know as systematic risk, that can not

be minimized or removed by the diversification provided by the portfolio of several risky assets, due to the

correlation of an asset’s returns with the returns of all other assets within the portfolio. Beta is derived from

the regression analysis of the returns of a specific asset against those of the market portfolio over a given

time period. The results of this regression yield the Security Characteristic Line (SCL)

ri,t − rf = αi + β × (rm,t − rf ) + εi,t, (1)

where ri,t is the rate of return of the asset at time t, rm,t is the rate of return of the market at time t, and rf

is the risk-free rate typically taken as the rate of return on a short-term treasury note. Alpha (αi) measures

the excess return that a portfolio or security makes over and above what would be predicted by an equilibrium

model such as the CAPM. Simply stated, alpha often is considered to represent the value that a portfolio

manager adds to (or subtracts from) a fund’s return. However, if it is assumed that markets are efficient and

that investors are subsequently only compensated for the systematic risk of an asset, then the expected value

of excess returns is zero for all assets (E(αi) = 0). Additionally, throughout this analysis high-frequency data

sampled at discrete time intervals of one or five minutes is used. With the use of such finely sampled data, it

can be assumed that the risk-free rate does not change significantly from one period to the next. Therefore,

it is taken to be zero resulting in the following simplified equation for the SCL:

ri,t = β × rm,t + εi,t. (2)

Equation 2 illustrates the relationship of the return of an asset i at time t with the return of market.

Moreover, it explicitly portrays the characteristic of beta as a factor of the response of an asset’s returns to

those of the market. The linear regression analysis used to calculate the SCL and determine beta seeks to fit

the best fit line to the data set such that the line minimizes the sum of the squared residuals of the linear

regression model. The value corresponding to the best fit for the coefficient beta in Equation 2 can be shown

mathematically to be the covariance of the asset and market returns scaled by the variance of the returns of

1The market portfolio should in theory include all types of assets that are held by anyone as an investment (including works
of art, real estate, human capital, etc.) In practice, such a market portfolio is unobservable and people usually substitute a stock
index such as the S&P500, as a proxy for the true market portfolio.
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2 BETA 2.1 Static Beta

the market. Beta is therefore defined as

β =
Cov(ri,t, rm,t)

V ar(rm,t)
(3)

where ri,t is the return of an asset i at time t and rm,t is the return of the market at time t. By definition

the market has a beta of one because the covariance of the market with itself is equal to the market variance.

A positive beta indicates that an asset generally follows the market benchmark in that it tends to increase

and decrease with the market. Conversely, a negative beta means that an asset moves opposite the market.

Finally, an asset has a beta of zero if its price moves are completely uncorrelated with those of the market.

To compute the variance and covariance of market and asset returns, the change in security prices must

first be measured. This analysis will utilize logarithmic prices and geometric returns in order to provide

an accurate comparison between data points and to standardize the measurement scale. Suppose the price

process is sampled equally S times per period, we then define the time interval S period geometric return as

ri,t,j = p(t+
j

S
)− p(t+

j − 1

S
), j = 1, 2, ..., S (4)

where p is the logarithm of the asset price and t is the specified time period. Using this definition of returns

and the above equation for beta, the constant beta of a security over a specified time interval is able to be

computed.

The beta discussed above and traditionally used within the CAPM is a static measure. Within financial

economics, there has been significant amounts of research questioning whether the beta of a security is constant.

Andersen et al. [2006] presents several pieces of evidence that indicate that betas are in fact time-varying.

First, several publications assert this fact including Huang and Litzenberger [1988] and Andersen et al. [2006].

Second, in the absence of an explicitly defined time-varying framework, betas are typically estimated over

moving time intervals of generally five or ten years, presumably to account for the variation of beta over the

measurement period (see Fama [1976] and Campbell et al. [1997]). Finally from an empirical perspective,

there has been extensive research within the field of financial econometric volatility on the presence of wide

fluctuations and high persistence in individual equity conditional variances and covariances with the market

[Andersen et al., 2002]. Betas, which are the ratios of time-varying variances and covariances, should be

expected to display similar time-varying properties as discussed by Bollerslev et al. [1988]. In fact, unless

there is a systematic cancellation between the variance and covariance terms, betas will inherit the features

that are present in their constituent components [Andersen et al., 2006]. Therefore, it is necessary to shift

from a static representation of beta to a model of beta based upon the time-varying nature of its underlying

Forecasting Beta Using Conditional Heteroskedastic Models 9



2 BETA 2.2 Continuous-Time Beta

variance and covariance.

2.2 Continuous-Time Beta

In order to model beta as a continuous-time measurement, similar models for the prices of individual assets

and the market are required. Throughout this paper the underlying theory and related empirical strategies

developed in Andersen et al. [2001a,b, 2003] and by Barndorff-Neilson and Shephard [2004] will be followed.

A stochastic model of returns is assumed where the efficient price process for an asset (pi(t)) and the market

(pm(t)) are given by the following differential equations:

dpi(t) = µi(t)dt+ σi(t)dwi(t) (5)

dpm(t) = µm(t)dt+ σm(t)dwm(t) (6)

where µi(t) and σi(t) give the instantaneous drift2 and the volatility of an asset, respectively, and dwi(t) is a

Weiner increment3 for the standard diffusion process wi(t). Both σi(t) and µi(t) are strictly stationary4 and

are jointly independent of wi(t). The previous also holds true for µm(t), σm(t), dwm(t), and wm(t) concerning

the market process. These equations imply that the efficient price of a security follows a general diffusion

process. Therefore, the continuous-time beta can be defined as the instantaneous covariance of the change in

price of both the market and the asset over the instantaneous variance of the change in market price,

βt =
Cov(dpi(t), dpm(t))

V ar(dpm(t))
. (7)

However, instantaneous price movements cannot be observed; and therefore, the continuous-time beta of an

asset is unable to be calculated for a singular point in time. As an alternative, the continuous-time volatility

can be modeled over a fixed period and approximated using discrete measurements.

For a fixed interval of time, Andersen and Bollerslev [1998b] and Barndorff-Nielsen and Shephard [1998]

developed the concept of the so-called integrated variance and integrated covariance as an approximation of

the continuous-time processes. It follows that the interval-based beta of an individual security be defined

as the ratio of the integrated covariance of the asset’s and market’s returns over the integrated variance of

the market’s returns. If the instantaneous volatility (σ(t)) were known, then the integrated variance and

2The drift (or drift rate in this case) is an adjustment that leads to the extension of the random walk model to include the
tendency to move or “drift” in one direction or the other. In a random walk with drift model, the best forecast of the series
tomorrow is the value of the series today plus the drift [Tsay, 2010].

3A Weiner increment is a special stochastic process with zero drift and variance proportional to the length of the time interval.
As a result, the rate of change in expectation is the drift rate (µ) and the rate of change in variance is σ2 [Tsay, 2010].

4A stationary process (or strictly stationary process) is a stochastic process whose joint probability distribution does not
change when shifted in time or space. Consequently, parameters such as the mean and variance, if they exist, also do not change
over time or position.
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2 BETA 2.3 Realized Beta

covariance could be calculated by computing the integrals

Integrated V ariancet ≡
∫ t

t−1
σ2
m(τ)dτ (8)

Integrated Covariancet ≡
∫ t

t−1
σm,i(τ)dτ (9)

βi,t ≡
∫ t
t−1 σi,m(τ)dτ∫ t
t−1 σ

2
m(τ)dτ

. (10)

From an empirical perspective, various trading frictions5 limit the frequency at which returns can be sampled,

making the extraction of instantaneous volatility estimates infeasible for a large number of points within

an individual day [Andersen and Bollerslev, 1998b]. However, given that it is possible to observe prices at

specific time periods, discrete measures of variation can be used to numerically approximate the integrated

variance and covariance.

2.3 Realized Beta

Conceptually, assets are able to be traded at any point in time during which markets are open. Therefore,

returns and corresponding volatilities should, in principle, be able to be obtained over arbitrarily short time

intervals. The common method for approximating the ex-post instantaneous volatility is to use the squared

return innovation as a proxy over the relevant time period. While the squared returns provide an unbiased

estimate for the latent volatility factor, there is significant inherent noise in generating returns and they

as a result are an extremely noisy measure of ex-post volatility. To address this concern, Andersen and

Bollerslev [1998b] developed an alternative framework and demonstrated how high-frequency data allows

for the construction of markedly improved ex-post volatility measurements via cumulative squared intraday

returns.

Andersen and Bollerslev [1998b] proposed the ideas of quadratic variation and covariation as alternatives

to the conditional variance and covariance measures of volatility. In contrast to conditional variance and

covariance, the quadratic variation and covariation for asset prices depend solely upon the realization of

squared returns. Moreover, regardless of the specific price process, the quadratic variation and covariation

are obtained by summing the instantaneous squares and cross-products of returns. Therefore, unlike the

conditional variance and covariance, the quadratic variation and covariation can theoretically be observed

using high-frequency returns.

5Trading frictions, also referred to as microstructure noise, include frictions such as non-synchronous trading, liquidity effects,
bid/ask bounce and misrecording spreads. One case detailing how such frictions distort prices is Roll [1984] which illustrates
how the presence of bid-ask spread leads to a negative correlation in observed price changes.

Forecasting Beta Using Conditional Heteroskedastic Models 11



2 BETA 2.3 Realized Beta

If an adequately high sampling frequency is set and the intraday squared returns are summed over the

period of interest, it is possible to approximate the theoretical quadratic variation. This observed measure

is formally known as the realized variance. Given a set of geometric returns over a specified time frame,

Andersen and Bollerslev [1998b] define the realized variance as follows:

RVt(S) =

S∑
j=1

r2
t+ j

S

. (11)

From the definition of the realized variance, it follows that the integrated covariance between an asset’s and

market’s returns can be similarly estimated using the realized covariance defined as the sum of the products

of the intraday asset and market returns according to the following equation:

RCOVi,m,t(S) =

S∑
j=1

ri,t+ j
S
� rm,t+ j

S
. (12)

Therefore, for any sampling frequency, the realized variance and covariance are directly observable in contrast

to their underlying theoretical counterparts, the quadratic variation and covariation. Andersen and Bollerslev

[1998b] also point out that for all t as the sampling frequency of the returns increases, the realized variance

converges to the integrated variance. As a result, it is possible to construct ex-post realized measures of the

underlying integrated variance that are asymptotically free of measurement error by summing sufficiently

finely-sampled high-frequency returns [Andersen et al., 2006].

It is widely known that the efficient price processes for assets do not always follow a continuous path.

Empirical evidence suggests that asset prices display infrequent large movements, too large to be normal

shocks. Therefore, the time series of asset and market prices, given respectively by Equation 5 and Equation 6,

will exhibit discontinuities which are referred to as jumps. To incorporate jumps into these equations, a new

term J(t) is simply introduced to arrive at

dpi(t) = µi(t)dt+ σi(t)dwi(t) + dJi(t) (13)

dpm(t) = µm(t)dt+ σm(t)dwm(t) + dJm(t) (14)

where J(t)− J(s) =
∑
s<τ≤t κ(τ) and κ(·) is the magnitude of a jump. Various nonparametric estimators

have been developed to measure the integrated variance and variance of the jumps. The most common is the

aforementioned realized variance. Andersen et al. [2002] first showed that

RVt(S) =

S∑
j=1

r2
t+ j

S

→
∫ t

τ=t−1
σ2(τ)dτ +

∑
t−1<τ≤t

κ2(τ), (15)

Forecasting Beta Using Conditional Heteroskedastic Models 12



2 BETA 2.3 Realized Beta

where the first term in Equation 15 is the Integrated Variance given by Equation 8. Thus, the realized variance

converges in probability to the integrated variance plus the sum of the squares of the jumps that occur within

a day, termed the total variance TVt
6. In addition to validating the realized variance measurement, Huang

and Tauchen [2005] confirmed that the realized variance is an accurate estimator of the integrated variance

even in the presence of jumps. Besides the realized variance, there has been extensive research into jump

robust estimators of realized volatility, which seek to better address the presence of jumps in the asset price

process.

Barndorff-Nielsen and Shephard [2004] proposed a jump robust estimator, known as the bipower variation,

which enables the impact of the presence of volatility to be separated from rare jumps. The bipower variation

is expressed as

BVt(S) = µ−11

S

S − 1

S∑
j=2

|rt,j | |rt,j−1| (16)

where µ−11 is a scale factor usually taken to be π/2. It can be similarly shown that the bipower variation

converges to the integrated variance and that in the absence of jumps the difference between the realized

variance and the bipower variation converges to zero. The principle underlying the bipower variation is that

if jumps are a rare occurrence, the probability of observing jumps in two consecutive returns approaches

zero sufficiently fast as the sampling frequency increases. Consequently, the product of any two consecutive

returns will be asymptotically driven by the diffusion component, thereby eliminating the contribution of

jumps [Barndorff-Nielsen and Shephard, 2004].

Building upon the bipower variation of Barndorff-Nielsen and Shephard [2004], Mancini [2009] developed

a technique for identifying instances where jumps larger than a suitably defined threshold occurred. This

allowed for the development of the threshold estimator of the integrated variance known as the truncated

variance. The truncated variance is denoted as

TVt(S) =

S∑
j=1

|rt,j |2 × I[|rt,j | ≤ cutofft], (17)

where I[·] is a binary indicator equal to one if true and zero if false. The cutoff value is then defined based

upon a latent measure of the previous day’s volatility. In order to limit the impact of jumps, the series

cutofft utilizes the bipower variation, Equation 16, and is defined as

cutofft = ϕ×
√

1

S
BVt−1, (18)

6Since intraday returns are only used to calculate the realized variance, the overnight return is not taken into consideration.
Since the majority of the jumps happen overnight as the closing price from previous day is very different from the opening price
on the following day because of overnight announcements or macroeconomics policies, this specification excludes those jumps
from realized variance calculations.
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2 BETA 2.3 Realized Beta

where ϕ is the minimum return magnitude relative to BVt to be classified as a jump7. Therefore, three

potential realized measures of volatility are available: the realized variance, the bipower variation, and the

truncated variance. Throughout the remainder of this paper, the realized variance will be used. However, it

is important to note that any of the three measures may be utilized and substituted for the realized variance

in these equations.

Using the definition of time-invariant static beta given by Equation 3, the realized beta can be calculated

by replacing the static variance and covariance with the realized variance and covariance. The equation for

realized beta is subsequently defined as

Rβi,t =
RCOVi,m,t
RVm,t

, (19)

where RVm,t and RCOVi,m,t are, respectively, the realized variance of the market returns and the realized

covariance between the returns of asset i and the market over a specific time interval, at some sampling

frequency S. In order to forecast both the market and asset components of beta in Section 3, beta is expressed

in terms of the realized variance of the market and the realized variance of an asset, which can be accomplished

by utilizing the definition of correlation.

Correlation is defined as the ratio of the covariance of an asset’s and market’s returns over the product

of the square root of the variance of the asset’s returns and the square root of the variance of the market’s

returns. Realized correlation is similarly defined using realized measures as

Rρi,m,t =
RCOVi,m,t√
RVi,t ·

√
RVm,t

. (20)

By rearranging the terms of Equation 20 to solve for the realized covariance and substituting this definition

into Equation 19, a formula for the realized beta that is a factor of the realized variances of the market and

individual equity returns as well as their realized correlation is derived.

Rβi,t =
Rρi,m,t ·

√
RVi,t ·

√
RVm,t

RVm,t

=
Rρi,m,t ·

√
RVi,t√

RVm,t
(21)

Finally, based on the underlying assumptions of Equation 5 and Equation 6, this realized beta measure is

consistent for the underlying integrated beta

7The minimum magnitude in relation to the lagged bipower variation to be considered a jump is typically between 2 and 5.
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Rβi,t → βi,t ≡
∫ t
t−1 σi,m(τ)dτ∫ t
t−1 σ

2
m(τ)dτ

, (22)

for all t as S approaches infinity where σ2
m is the market variance and σi,m is the individual stock covariance

with the market. For more details on realized beta and realized correlation, see Andersen et al. [2006] and

Vortelinos [2010], respectively.

It is now possible to calculate the ex-post beta of an individual asset based upon its realized variance,

the realized variance of the market, and the realized correlation between the asset’s and market’s returns.

However, it is desired to have information regarding future values of beta, which is accomplished by forecasting

its three constituent components. For the purpose of simplification, the observable realized correlation of one

period prior to the current is used as the forecasted input to Equation 21. Furthermore, the existence of

volatility clustering between time periods is ubiquitous and has been a particularly active area of research.

Many of these studies, including Ballie and Bollerslev [1989], Bollerslev [1987], and Engle and Bollerslev [1986]

, found that the GARCH(1,1) model provides a good approximation for forecasting conditional volatility.

Therefore, the GARCH(1,1) is a logical base measurement for forecasting the future market and asset realized

variances.

3 Forecasting Beta

3.1 Characteristics of Volatility

As previously stated, a fundamental characteristic of stock volatility is that it is not directly observable.

However, stock volatility has several stylized characteristics. First, there exists volatility clusters. For example:

if an asset price changed significantly in the previous period, it is more likely to make a large move in the

current period. Second, volatility evolves over time in a continuous manner implying that jumps in volatility

are rare [Tsay, 2010]. These volatility characteristics are exemplified by the October 1987 stock market crash

where the market value fell twenty percent in one day. Prior to the crash, the standard deviation of returns

was approximately one percent per day. The crash resulted in a twenty standard deviation change and would

not have been expected to occur in over 4.5 billion years if returns were normally distributed. In four of the

five following days, the market moved over four percent. Therefore, volatility appeared to increase after the

crash rather than remaining at one percent per day [Reider, 2009]. Volatility not only spikes up during a crisis,

it eventually falls to approximately the same pre-crisis level. Additionally, volatility tends to fluctuate within

a fixed range and is, therefore, said to be stationary. Finally, volatility is impacted differently by a large price

increase as opposed to a large price decrease, referred to as the leverage effect. These properties play a vital
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role in the development of volatility models, which must seek to capture these stylized characteristics. The

foundation for incorporating these factors into volatility models was first proposed by Engle [1982].

3.2 Autoregressive Conditional Heteroskedastic (ARCH) Model

The Autoregressive Conditional Heteroskedastic (ARCH) model is the basis for an entire class of volatility

forecasting models and provides a systematic framework for volatility modeling. The name ARCH is derived

from its main properties, the first of which is that it is an autoregressive model in squared returns. These

models also utilize information from the previous period to model the current period’s volatility. In other

words, these models form an expectation of the volatility in the next period conditional upon the information

currently available. Finally, heteroskedasticity implies that ARCH models allow for time-varying volatility

over the estimation and forecast period.

The basic concept of the ARCH model is that the returns of an asset are serially uncorrelated8, but

dependent, and that such dependency can be described by a simple quadratic function of lagged values. Given

a series of returns rt, the shock of an asset is defined as the difference between the return of an asset at time

t and the mean function µt of the return series. Specifically, an ARCH(m) model assumes that

at = rt − µt, at =
√
hARCHt · εt, (23)

hARCHt = α0 + α1a
2
t−1 + ...+ αma

2
t−m, (24)

where εt is a sequence of independent and identically distributed (iid) random variables with a mean of zero

and a variance of one and is often assumed to follow a normal or standardized Student-t distribution [Tsay,

2010]. From the structure of the model, it can be seen that large shocks in a previous period will imply a

large conditional variance σ2
t for the current period. Therefore, under the ARCH framework, large shocks

tend to be followed by large shocks. As a result, the ARCH model successfully captures a number of stylized

facts of financial assets such as time-varying volatility and volatility clustering.

Although the ARCH model is able to capture certain characteristics of volatility, it also has some

weaknesses. The model assumes that positive and negative shocks have the same effect on volatility because

it depends on the square of the previous shocks. In practice, it is well known that the price of a financial asset

responds differently to positive and negative shocks. Additionally, ARCH models are conditional exclusively

on the previous period returns. Therefore, ARCH models respond slowly to large isolated shocks in the return

series and likely overestimate volatility following such shocks [Tsay, 2010].

8Serial correlation is the relationship between a given variable and itself over various time intervals. Serial correlations are
often found in repeating patterns when the level of a variable affects its future level.
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3.3 General Autoregressive Conditional Heteroskedastic (GARCH) Model

Building upon the initial ARCH framework proposed by Engle [1982], Bollerslev [1986] introduced the

GARCH model. The GARCH model extended the ARCH framework to allow for both a longer memory and

more flexible lag structure. In ARCH processes, the conditional variance is specified as a linear function

of past sample variances only, whereas the GARCH process allows lagged conditional variances to enter as

well. Like ARCH, the GARCH model is also a weighted average of past squared residuals but also includes

declining weights for the residuals that never reach zero. The most widely used GARCH specifications assert

that the best predictors of the variance in the next period are the weighted average of the long-run average

variance, the variance in the predicted period, and the new information captured in the current period by the

most recent squared returns. In this way, the GARCH model exhibits adaptive or learning behavior as it

progresses.

Standard GARCH models utilize lagged returns, typically in the form of squared returns, to model current

volatility and to extrapolate this information to predict the expected volatility of the next period. Although

the model lends itself to directly forecasting one-period in advance, a two-period forecast can be made by

repeating the one-period process with the original forecast as the input for the previous day’s input parameter.

This process can be repeated indefinitely with the forecast moving toward the long-run average variance.

This distant horizon forecast is the same for all periods and is merely the unconditional variance. Thus, the

GARCH model is mean reverting with a constant unconditional variance.

For a log return series rt, let at = rt − µt be the innovation at time t. Then, the GARCH(m,s) model for

at is specified as

at =
√
hGARCHt · εt, hGARCHt = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

θjh
GARCH
t−j (25)

where again εt is a sequence of iid random variables with mean zero and variance of one. Moreover, the model

implies that αi = 0 for all i > m and θj = 0 for all j > s. As with the ARCH model, εt is also assumed to

follow a normal or standardized Student-t distribution [Tsay, 2010].

There has been an enormous amount of literature concerning the GARCH model and its ability to describe

and forecast the volatility of asset returns. Despite encountering the same weaknesses as the ARCH model,

such as a lagged response to isolated shocks and equal treatment of positive and negative shocks, Hansen and

Lunde [2005] showed that the most basic GARCH model, GARCH(1,1), performed at least as well as 330

more complicated models. Therefore the GARCH(1,1) model given by

hGARCHt = α0 + α1 · a2t−1 + θ1 · hGARCHt−1 (26)
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will form the basis for the proposed model in this paper. Equation 26 illustrates the strengths and weaknesses

of the GARCH model. A large a2t−1 or hGARCHt−1 will give rise to a large estimate of the conditional variance.

This will again generate the well-known behavior of volatility clustering in financial time series. It also can

be illustrated that, similar to the ARCH model, the tail distribution of the GARCH(1,1) process is heavier

than a normal distribution. However, the model provides a simple parametric function that can be used to

describe the evolution of volatility for financial time series [Tsay, 2010].

Several studies have evaluated GARCH models using intraday returns or their residuals (Andersen and

Bollerslev [1997a], Andersen and Bollerslev [1997b], and Andersen and Bollerslev [1998a]) and support its use

as an accurate estimator of volatility. Jorian [1995] and Figlewski [1997], however, questioned the usefulness

of the GARCH model. They argued that such models were unable to explain much of the variability in

squared returns when evaluated out-of-sample, despite the fact that the GARCH models had good in-sample

fit, and concluded that GARCH models were of little value. By using the realized variance, which is a more

accurate measure of volatility than squared returns, Andersen and Bollerslev [1998b] illustrated that the

standard GARCH model performs very well. The apparent poor performance of the models can be attributed

to the fact that squared returns are an extremely noisy proxy for the conditional variance.

While the GARCH model itself remains sound, its reliance on squared returns implies that standard

GARCH models are not as well suited for periods characterized by rapid fluctuations in volatility. This is

attributed to the fact that the GARCH model is slow to respond to sudden changes in the level of volatility

and will take many periods for the conditional variance implied by the GARCH model to reach this new

level as illustrated by Andersen et al. [2003]. The success in the ability of realized measures to better

characterize the dynamic properties of volatility, this has prompted the development of GARCH type models

that incorporate a realized measure as a parameter for forecasting conditional variance.

3.4 GARCH Model with Exogenous Variable (GARCHX)

While most ARCH and GARCH type models have been univariate, relating the volatility of a time series only

to information contained in its own past history, additions of supplemental economic variables as covariates

have been made to enhance the modeling of economic and financial time series volatility. Many of these

works directly build upon the success of the GARCH(1,1) model and simply add a covariate as follows:

hGARCHXt = α0 + α1 · y2t−1 + θ1 · hGARCHXt−1 + γ1 · xt−1, (27)

where yt is a degraded time-series, hGXt is the variance conditional on the information available at time t− 1,

and xt is the covariate exogenous to the model.
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Given the relative ease required to incorporate the covariate into the model, a variety of different variables

have been added in several studies in an attempt to better explain volatility. Glosten et al. [1993], Brenner

et al. [1996], Gray [1996], Engle and Patton [2001], and Staikouras [2006] introduced interest rate levels as a

covariate. Similarly, forward spot spreads and interest rate spreads were used respectively by Hodrick [1989]

and Hagiwara and Herce [1999] as the covariates to the model. Moreover, the GARCHX model was also

considered by Han and Park [2008] who employed the yield spread between bonds as the covariate. For

current studies utilizing the GARCHX framework see Apergis and Rezitis [2011], Han and Kristensen [2012],

Mulyadi and Anwar [2012], and Ben Sita and Abosedra [2012].

Most of the covariates used in GARCHX models are economic variables, but various realized volatility

measures constructed from high-frequency data have recently been adopted with the rapid development

seen in the field of realized volatility. As previously stated, realized measures of volatility such as the

realized variance provide significantly stronger and more informative estimates concerning the current level

of volatility than squared returns. Consequently, realized measures are very attractive for modeling and

forecasting future volatility. The multiplicative error model (MEM) proposed by Engle [2002] was the first to

use realized variance as the covariate to forecast conditional variance using the GARCHX model framework.

Barndorff-Neilson and Shephard [2007] included both the realized variance and the bipower variation in

their specification (See also Engle and Gallo [2006], Cipollini et al. [2009], Shephard and Sheppard [2010],

and Hansen et al. [2012]). In particular, the high-frequency based volatility (HEAVY) model developed by

Shephard and Sheppard [2010] and the Realized GARCH model of Hansen et al. [2012] included realized

measures based on high-frequency data into their specification for the conditional variance.

In the end, the addition of the realized variance measure to Equation 26 is a simple method to enhance

the conventional GARCH model. The generalized GARCHX(m,s,n) model is given below, where m, s, and

n indicate the degree of lagged terms for the squared residuals, conditional variance, and realized measure,

respectively. This is followed by the base GARCHX(1,1,1), where the realized variance, RVt, is treated as an

explanatory variable.

at =
√
hGARCHXt · εt (28)

hGARCHXt = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

θjh
GARCHX
t−j +

n∑
k=1

γk ·RVt−k (29)

hGARCHXt = α0 + α1 · a2t−1 + θ1 · hGARCHXt−1 + γ1 ·RVt−1 (30)

The relative contributions of the parameters within the model have been examined by many authors. Engle

[2002] found that the coefficient for the squared return, α1, was insignificant once the realized variance was

included in the model. Barndorff-Neilson and Shephard [2007] arrived at the same conclusion if the bipower
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variation was used as the realized measure. Using ten years of U.S. and U.K. daily price data, Hwang and

Satchell [2005] also illustrated that the return volatility of an individual stock can be better specified with

GARCHX models than with GARCH models. There is strong evidence as a result that γ1 6= 0, implying

that the realized measure is a useful predictor for the conditional variance. Furthermore, it is well known

that the asymptotic properties of the GARCH(1,1) model are not fully appropriate in explaining the stylized

facts in financial time series even though it is extensively used in practice. Both Han [2011] and Han and

Kristensen [2012] illustrate that the stylized facts in financial time series can be significantly better, if not

fully explained, in the framework of the GARCHX model.

3.5 GARCH and GARCHX Forecasted Beta

Recall from Equation 19 that the realized beta is given as the ratio of the realized covariance over the realized

variance. Using GARCH and GARCHX models, the conditional variance for both the market’s and asset’s

returns can be forecasted. Assuming that the conditional variances calculated with the model are accurate

forecasts of the realized variance, we substitute these values for the realized variances in Equation 21 to arrive

at the following forecasting estimate for beta:

β̂i,t+1 =
ρ̂i,m,t+1 ·

√
ĥi,t+1√

ĥm,t+1

, where (31)

ĥm,t+1 = hGARCHXm,t+1 = αm,0 + αm,1 · a2m,t + θm,1 · hGARCHXm,t + γm,1 ·RVm,t, (32)

ĥi,t+1 = hGARCHXi,t+1 = αi,0 + αi,1 · a2i,t + θi,1 · hGARCHXi,t + γi,1 ·RVi,t, (33)

ρ̂i,m,t is the realized correlation between the market’s and asset’s returns at time t and is taken to be ρi,m,t

via the no-change model, ĥi,t is the conditional variance of the asset, and ĥm,t is the conditional variance of

the market. The realized correlation between the market’s and asset’s returns is assumed to remain virtually

unchanged from one period to the next. Given that the realized correlation is calculated directly from the

realized covariance and the realized variances of an asset and the market, the realized correlation is expected

to be highly sensitive to isolated shocks in the realized variance of the market or asset. As a consequence, a

measurable degree of noise is anticipated to be introduced into the forecasted betas and is a noted limitation

of the current model. Vortelinos [2010] explores in depth the properties of realized correlation and provides

several alternative frameworks, including a heterogeneous autoregressive model, for examining the realized

correlation that could be implemented in conjunction with the current model of beta in further research.
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3.6 Beta Specification

As noted earlier, the realized beta is a measure of the factored response of an asset’s returns to the returns

of the market. However, this measure alone should not simply be used as the market beta because it is

subject to extreme fluctuation. Due to the daily measurement period that is used within this study, there is

reasonable variability when approximating the constituent components of the forecasted conditional beta in

addition to the computed realized beta. For example, a large negative realized beta can be obtained for a

trading day on which negative news for a specific equity is released despite positive market gains. Therefore,

if the realized beta obtained on day t is simply used as the market beta, the results will be misleading. The

useful information and significant noise both contained in the realized beta measurement must be reconciled.

To accomplish this, a filter method similar to the GARCH model is employed. In other words, the realized

beta is treated as an innovation on the latent underlying beta, which is specified as the market beta. The

market beta is given by

βi,t+1 = ϕ0 +

t−1∑
j=t−4

ϕjβi,j + ϕtβ̂i,t (34)

where βi,j is the market beta of security i at time t, β̂i,t is the calculated (or model forecasted) realized beta

for asset i at time t, and ϕ0 is a constant. For the sake of simplicity, an equal weighting is assigned to each of

the coefficients ϕi and ϕt and the constant ϕ0 is taken to be equal to zero. Therefore, the above equation

reduces to the following and is a simple moving average of the previous market betas in addition to the

realized beta of the current period.

βi,t+1 =
1

5
(

t−1∑
j=t−4

βi,j + β̂i,t) (35)

The choice for including five parameters is straightforward and follows from the desire to model the previous

trading week. It is also recognized that each lagged term likely has a different weight in the ideal calculation,

and that it is quite possible to calculate the optimal regression coefficients using a maximum likelihood

estimator. However, the equal weighting approach was chosen for its simplicity while still allowing the realized

beta to be an innovation on the market beta and limiting the exposure to large sudden changes in volatility.

4 Benchmark ARMA Model

In order to provide a benchmark for the betas calculated by the aforementioned framework, an ARMA model

was used to forecast the realized betas and provide a comparison to the GARCH and GARCHX forecasts. As
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previously mentioned, there are several stylized characteristics of financial time series, namely the clustering

of volatility and mean reversion, that must be considered when fitting such data to a model. The ARMA

framework is a natural fit for such a time series and addresses precisely those two characteristics. Furthermore,

given that the risk profile facing an individual asset is not expected to dramatically shift from one day to the

next, an ARMA model is well suited to forecast the beta of an asset one period ahead. The ARMA model is

a natural choice to compare the GARCH and GARCHX forecasts as the GARCH model can actually be

written as an ARMA model itself. Descriptions of ARMA models can be found across financial volatility

literature; however, this study will employ the definition given by Tsay [2010], which provides a description

of a stochastic process in terms of two polynomials, one for the auto-regression (AR) and the second for the

moving-averages (MA).

Given a time-series Xt with a statistically significant first-order autocorrelation, Xt−1 may be useful in

predicting Xt. A simple AR model that makes use of such predictive ability is as follows:

Xt = ϕ0 + ϕ1 ·Xt−1 + εt, (36)

where εt is assumed to be a serially independent series with mean zero and variance σ2
ε . This model is similar

in form to a simple linear regression model in which Xt is the dependent variable and Xt−1 the explanatory

variable. Equation 36 is referred to as an AR model of order one or simply an AR(1) model [Tsay, 2010].

Furthermore, the AR(1) model implies that

E(Xt|Xt−1) = ϕ0 + ϕ1 ·Xt−1 and V ar(Xt|Xt−1) = V ar(εt) = σ2
ε . (37)

Given the past data point Xt−1, the current value is centered around ϕ0 +ϕ1 ·Xt−1 with a standard deviation

of σε. In other words, this indicates that, conditional on Xt−1, the value at Xt is not correlated with Xt−i

for any i greater than one [Tsay, 2010].

Of course, there are circumstances in which Xt−1 alone is not satisfactory to determine the conditional

expectation of Xt. Therefore, it is necessary to provide a more flexible model. A straightforward generalization

of the AR(1) model is the AR(p) model:

Xt = ϕ0 +

p∑
i=1

ϕi ·Xt−i + εt, (38)

where {ϕ0...ϕp} are parameters to the model and p is a nonnegative integer. The AR(p) is of the same form

as a multiple liner regression model with lagged values serving as its explanatory variables [Tsay, 2010].
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There is no particular reason, besides simplicity, to assume that the order of an AR model is finite. In fact,

such a model is easily illustrated by allowing the integer p in Equation 38 to be replaced by infinity. However,

such a model is unrealistic in practice because it is not possible to estimate infinitely many parameters. The

model can be made more practical by assuming that the coefficients {ϕ0, ϕ1, ..., ϕp} are determined by a

finite number of parameters [Tsay, 2010].

Another class of simple models that are useful in financial time series analysis are moving-average (MA)

models. The simplest example of these models says that, except for the constant term, Xt is a weighted

average of shocks at and at−1. Therefore, the model is called a MA model of order one or MA(1) model. The

general form of a MA(1) model is

Xt = ϕ0 − θ1at−1 + at, (39)

where ϕ0 is a constant and at is also a serially independent series [Tsay, 2010]. Taking into account the

expectation and variance of the model, it follows from Equation 39 that

E(Xt) = ϕ0 and V ar(Xt) = σ2
a + θ21σ

2
a, (40)

given that at and at−1 are uncorrelated and both E(Xt) and V ar(Xt) are time invariant [Tsay, 2010].

As was the case for the AR model, the MA(1) may not be adequate to fully describe the time series, but

it can be similarly expanded to include q lagged periods as follows:

Xt = ϕ0 +

q∑
i=1

θi · at−i + at, (41)

where {θ1...θq} are the model parameters, ϕ0 is the expectation of Xt, and {at, at−1, ..., at−q} are noise terms

[Tsay, 2010].

In some cases, the AR and MA models discussed above become cumbersome and often require high

orders of lagged parameters to accurately describe a dynamic time series. Therefore, the two models can be

combined in a compact form, known as an ARMA model, so that the number of parameters used remains

small [Tsay, 2010]. The simplest ARMA(1,1) model is trivial to derive as it is a simple juxtaposition of the

AR(1) and MA(1) models above. The expanded ARMA(p, q) equation is denoted as follows:

Xt = ϕ0 + εt +

p∑
i=1

ϕi ·Xt−i +

q∑
i=1

θi · εt−i, (42)

where εt is a white noise series9 and p and q are nonnegative integers. For more information on the

9A white noise series is a random signal or process characterized as a sequence of serially uncorrelated random variables with
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characteristics of ARMA models, the determination of their orders, and illustrative examples see Tsay [2010].

5 Methodology and Evaluation Framework

5.1 Data

In practice, the discreteness of actual securities prices can cause continuous time models to be poor approxi-

mations when sampled at very high frequencies. For example, discrete prices are generally only available

at unevenly spaced points in time. High-frequency returns must then be calculated based upon a form

of interpolated prices. The theory of quadratic variation implies the necessity of sampling at very high

frequencies in order to model the ideal of continuously-observed prices. On the other hand, the reality of

trading frictions suggests not sampling too frequently. Within this study, a sampling frequency of 288 times

per day is used. This data is then converted into five-minute returns. This frequency is seemingly high

enough such that the realized measures are free from measurement error, yet low enough such that biases

from trading frictions are not of great concern.

This paper utilizes five-minute geometric returns data for eight stocks in the S&P 500. These stocks were

chosen in order to represent the various major industry sectors—technology, finance, and food/agricultural,

automotive, and retail. Each trading day contains returns from 9:40 AM to 4:00 PM, leading to 76 intra-day

observations. Most stock data runs from 1997 to 2010, although data for certain securities are available for

only a subset of that time period.

Ticker Industry Start Date End Date Number of Days

AAPL Tech 4/16/97 12/30/10 3408
EXC Energy 10/23/2000 12/30/10 2524

F Automotive 4/9/97 12/30/10 3405
IBM Tech 4/9/97 12/30/10 3413
JPM Finance 4/9/97 12/30/10 3411
KFT Food/Agricultural 6/13/01 12/30/10 1949
PG Manufacturing 4/9/97 12/30/10 3412

WMT Retail 4/9/97 12/30/10 3409

Table 1: Stocks used in the analysis, with start and end dates and the number of days included in the data.

5.2 Calculating Beta Predictions

In order for the GARCH and GARCHX forecasts to be calculated, realized betas were computed by calculating

the realized variances and correlations of Equation 21. These realized betas were computed for the eight

chosen equities over their respective time periods at the selected five-minute optimal sampling frequency.

mean zero and finite variance.
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These realized measures were requisite for the subsequent steps in the analysis. With these calculations,

the GARCH and GARCHX frameworks, given by Equation 26 and Equation 31, respectively, were used to

estimate the GARCH and GARCHX forecast models for the conditional variance of the asset and market.

These forecasts were then combined with the previously computed realized correlation to arrive at a calculation

of the daily realized beta time series.

Once the realized betas were computed, the market beta was calculated using the framework in Equation 35.

First, the market beta was calculated using the realized beta of the asset in question as the innovation on the

current period’s market beta. Then similar series were computed utilizing the conditional betas forecasted by

the GARCH and GARCHX models to arrive at the one-day forward beta predictions.

In order to provide a benchmark to compare the proposed GARCHX model, an ARMA model was

calculated using the daily market betas as its parameter for the model. As noted earlier, the realized beta

time series had high, positive, first-order autocorrelations and partial autocorrelations, promoting the use of

an ARMA(1,1) model. The calculated ARMA process is represented by the following:

β̂ARMA
t = α+ θ · βt−1 + ϕ · εt−1 + εt (43)

εt = βt − β̂ARMA
t (44)

where βt is the market beta at time t and εt is the error of the forecast at time t. Table 4 denotes the

coefficients that were calculated for each of the eight stocks in the data set (see Appendix).

5.3 Root Mean Squared Error

There is a wide spectrum of measures designed to evaluate ex-post forecasts. These include mean squared

error (MSE), root mean squared error (RMSE), mean error (ME), mean absolute error (MAE), mean squared

percent error (MSPE), and root mean squared percent error (RMSPE). The most common of these, MSE

and MSPE, are defined as follows:

MSE =
1

n

n∑
t=1

e2t (45)

MSPE =
1

n

n∑
t=1

p2t (46)

where e is the forecast error term defined as the difference between the actual value and the forecasted value

and p is the percentage form of the forecast error.

Examination of two measures of the forecast accuracy are of interest. The first is the degree to which the
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models are able to directly forecast the next day’s realized beta. The second is the accuracy in forecasting

the market beta as specified by Equation 35. The MSE measure of beta forecast accuracy from the predicted

beta is defined as

MSEβ =
1

n

n∑
t=1

(Rβi,t − β̂i,t)2 (47)

where n is the number of days in the estimation interval, Rβi,t is the underlying realized beta of asset i at

time t, and β̂i,t is the forecasted beta of asset i at time t. The MSPE is similarly defined as

MSPEβ =
1

n

n∑
t=1

(
Rβi,t − β̂i,t

Rβi,t

)2

. (48)

The MSE and MSPE can be converted into the RMSE and RMSPE, respectively, to standardize the results

and to convert the MSE and MSPE into more easily interpreted standard deviation units, known as the

Root Mean Squared Error (RMSE) and Root Mean Percent Squared Error (RMPSE). MSE, MSPE, RMSE,

and RMSPE were used as measures of accuracy and comparison for the predictive betas of the GARCH,

GARCHX, and ARMA models against the true underlying beta. However, for simplicity, only the MSE’s of

the forecasts are presented.

6 Results

Table 2 summarizes the variances of the estimated realized betas (shown graphically in Figure 5) for the

eight equities using the five-minute sampling frequency. If beta were constant with respect to time, the

covariance between an asset’s returns and the market’s returns would not be expected to statistically deviate

over time; however, the average variance of realized beta across the equities is 0.1396. Furthermore each of

Equity Variance 95% Confidence Interval

AAPL 0.3441 0.3283 - 0.3610
EXC 0.0912 0.0864 - 0.0965

F 0.2084 0.1988 - 0.2186
IBM 0.0710 0.0678 - 0.0745
JPM 0.1371 0.1308 - 0.1438
KFT 0.0643 0.0604 - 0.0685
PG 0.0907 0.0865 - 0.0951

WMT 0.1102 0.1051 - 0.1156

Average 0.1396 —

Table 2: Analysis of the Variance of Realized Beta

the equities has a non-zero variance which is statistically significant at the 95% confidence level. Therefore,

the hypothesis that realized beta has a variance of zero and is time-invariant can be rejected. Analysis
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of the values in Table 2 also reveals interesting characteristics concerning the variance of betas for stocks

in different industries. The betas with the higher variances belong to firms in historically more volatile

industries. For instance, the beta with the highest variance belongs to Apple Inc. (AAPL) within the highly

volatile technology sector. However, equities such as Exxon Corp. (EXC) and Kraft Foods Inc. (KFT) have

considerably lower variance in their betas. This is likely due to the consistency of demand in the energy and

food industries. Therefore, not only does beta fluctuate over time but the degree to which it does so appears

to vary across stocks and industry sectors10.

The proposed model relies on the forecasts of the realized variance given in Figure 1 in order to construct

a predictive model for the conditional beta. Table 3 presents the GARCH and GARCHX model coefficients11

and is informative concerning the statistical significance of the parameters and the performance of the two

models. Additionally, The forecasted conditional variances pertaining to these GARCH and GARCHX

coefficients are presented in Figure 3.

GARCH Coefficients GARCHX-RV Coefficients

Equity α0 α1 θ1 R2 α0 α1 θ1 γ1 R2

AAPL 0.0306 0.0577 0.9392 0.2994 0.1967 0.0277 0.7015 0.2008 0.4153
(0.4485) (0.1430) (0.0000) (0.1811) (0.2875) (0.0000) (0.0000)

EXC 0.0285 0.1061 0.8833 0.3952 0.0585 0.0927 0.6533 0.1910 0.4694
(0.3937) (0.0297) (0.0000) (0.2780) (0.0396) (0.0000) (0.0000)

F 0.0571 0.0730 0.9155 0.2363 0.1566 0.0215 0.6862 0.2101 0.3212
(0.4464 ) (0.3121) (0.0000) (0.3481) (0.4393) (0.0000) (0.0000)

IBM 0.0075 0.0698 0.9285 0.3138 -0.0026 0.0210 0.7838 0.1739 0.4365
(0.4634) (0.0327) (0.0000) ( 0.5140) (0.2700) (0.0000) (0.0000)

JPM 0.0152 0.0976 0.9048 0.3416 -0.0059 0.0289 0.7412 0.2252 0.4639
(0.4670) (0.0820) (0.0000) (0.5141) (0.3241) (0.0000) (0.0000)

KFT 0.0247 0.0522 0.9295 0.2566 0.0470 0.0078 0.6843 0.2325 0.3755
(0.3727) (0.0704 ) (0.0000) (0.2585) (0.4049) (0.0000) (0.0000)

PG 0.0053 0.0514 0.9455 0.2191 0.0160 0.0260 0.5094 0.3481 0.2946
(0.4728) (0.1143) (0.0000) (0.4141) (0.2607) (0.0000) (0.0000)

WMT 0.0066 0.0620 0.9364 0.2716 0.0010 0.0232 0.8257 0.1176 0.3369
(0.4712) (0.0713) (0.0000) (0.4954) (0.2833) (0.0000) (0.0000)

Average 0.0219 0.0712 0.9228 0.2917 0.0584 0.0311 0.6982 0.2124 0.3892

The GARCH model and GARCHX model equations for an asset are defined respectively as follows:
hGARCH
i,t+1 = αi,0 + αi,1 · a2i,t + θi,1 · hGARCH

i,t and hGARCHX
i,t+1 = αi,0 + αi,1 · a2i,t + θi,1 · hGARCHX

i,t + γi,1 ·RVi,t.

Table 3: Coefficients of the GARCH and GARCHX Equations

It has been mentioned several times throughout this paper that daily squared returns, corresponding to

α1, are poor predictors for the conditional variance. The results presented in Table 3 reinforce this statement.

The average value for the GARCH and GARCHX estimations of α1 across the eight equities examined are

0.0712 and 0.0311, respectively. The regression thus indicates that the squared returns are able to explain

10Given that only one stock from each sector is utilized in this analysis, the findings from this small subset of equities may not
apply to other equities. Therefore, stocks in similar sectors as those employed in this analysis may exhibit different characteristics.
Further research regarding the variance of equity realized betas is needed to form a substantive conclusion.

11The coefficients were estimated using maximum likelihood. The likelihood equation used to calculate both the GARCH and
GARCHX parameters is presented in the Appendix.
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little of the conditional variance. The p-values of each coefficient, given in parentheses under each respective

parameter in Table 3, detail the statistical significance of each of the regressors. For the GARCH estimates,

only two of the equities have α1 coefficients that are significant at the five percent level and none significant

at the one percent level. Even more so, under the GARCHX model, only one of the eight equities has a

coefficient α1 that is statistically significant at the five percent level. Therefore, it is evident that the shocks

from daily squared returns offer little utility in forecasting volatility.

Table 3 also illustrates the statistical significance of the coefficient for the lagged conditional variance

θ1 (also called the GARCH coefficient) as well as the coefficient for the realized measure γ1 included in

the GARCHX model. For the GARCH model, the lagged conditional variance explains nearly all of the

information concerning the future conditional variance, as expected. With an average θ1 value of 0.9228, this

illustrates the well known volatility clustering characteristic in financial time series. Additionally, all eight

of the θ1 coefficients are highly significant, as measured by their p-values of effectively zero. Moreover, the

coefficient results agree with those given by Hansen et al. [2010] who stated that parameter values of α0 = 0,

α1 = 0.05, and θ1 = 0.95 are in line with typical estimates for the GARCH(1,1) model, when estimated with

daily returns.

The inclusion of the realized variance as a covariate has a considerable impact on the weights of the lagged

conditional variance coefficients. Hansen et al. [2010] also indicated that typical estimates for the GARCHX

coefficients are α0 = 0, α1 = 0, θ1 = 0.5, and γ1 = 0.5. The coefficients calculated for the GARCHX model

in this analysis are noticeably different from these specified parameters. Across the examined equities, the

average θ1 coefficient for the GARCHX model drops to 0.6982, in comparison to the GARCH model average

of 0.9228 , with each individual stock’s θ1 coefficient remaining highly significant. For all stocks, the null

hypothesis that the coefficient γ1 is equal to zero is rejected at the one percent significance level, indicating

that the realized measure provides a measurable degree of information concerning the future values of the

conditional variance. The average γ1 coefficient for the realized variance in the GARCHX model is 0.2124,

which is significantly lower than the 0.5 suggested by Hansen et al. [2010]. One possible explanation may have

to do with the stocks used in this analysis. All of the stocks, with the exception of AAPL, have average betas

less than one over the time period (see Table 6 in the Appendix). A beta below one indicates that the equity

is less volatile than the market and exhibits a diminished response to market fluctuations. Consequently, the

security is less prone to sudden changes in volatility making the current value of the conditional variance

rely more heavily on the previous day’s variance and less on the realized measure of volatility. Table 3

also presents the R2 of the GARCH and GARCHX forecasts indicating the overall performance of the two

models. With an increase in R2 from an average of 0.291 to 0.389, the GARCHX model clearly represents a

better fit for the true conditional variance. Finally, the sum of the coefficients across each of the regressions
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is approximately equal to one, indicating the persistence of the regression coefficients and supporting the

accuracy in the resulting beta predictions.

Table 4 summarizes the results of the first-order ACF and PACF for the entire sample interval. Positive

Equity First-Order Autocorrelation ACF 95% CI First-Order Partial Autocorrelation PACF 95% CI

AAPL 0.4232 ±0.0664 0.4233 ±0.0343
EXC 0.3572 ±0.0662 0.3575 ±0.0399

F 0.3867 ±0.0615 0.3867 ±0.0343
IBM 0.3187 ±0.0536 0.3187 ±0.0343
JPM 0.4603 ±0.0672 0.4606 ±0.0343
KFT 0.2054 ±0.0598 0.2056 ±0.0454

P 0.5483 ±0.0846 0.5484 ±0.0343
WMT 0.4716 ±0.0722 0.4720 ±0.0343

Average 0.3964 — 0.3966 —

Table 4: First-Order Autocorrelations and Partial Autocorrelations of Realized Beta

first-order autocorrelations suggest the persistence in the realized beta. The average first-order autocorrelation

is 0.396, which substantiates the predictability in the time-varying beta. Similarly, the average partial first-

order autocorrelation is 0.397, which indicates that realized beta is linearly related to its first lagged value.

Plots of the ACF and PACF (Figure 7) indicate that the realized beta time-series has significant autocorrelation

for up to five or even ten lagged terms. Therefore, an ARMA model with at least order five is likely optimal

for fitting the realized beta series. However, an ARMA(1,1) model is used for simplicity. Due to the variance

of the realized beta from one period to the next, the application of an ARMA(1,1) model directly on this time

series yields nothing more than a series of noise with no meaningful information. The ARMA(1,1) is therefore

applied to the market beta given by Equation 35. The autoregressive nature of the market beta is similar to

the higher order ARMA process fit to the lagged realized beta and, therefore, more accurately models the

optimal ARMA process. When determining the joint order of an ARMA model, Tsay [2010] state that the

ACF and PACF are not well suited to calculate the optimal orders. They suggest an alternative approach

using the extended autocorrelation function (EACF), which is significantly more intensive. Therefore, despite

their short-comings, the more basic ACF and PACF were employed to specify the order of an ARMA process.

Table 5 presents the MSE of the three forecast models examined in this paper each of which are evaluated

for their ability to forecast two different values. The first of these is the daily realized beta given by

Equation 21. Because both the GARCH and GARCHX models are proven to be accurate forecasters of

volatility, these models are expected to outperform the ARMA model when forecasting the next period’s

realized beta. Moreover, because the GARCHX model incorporates the previous period’s realized volatility,

it is similarly expected to outperform the GARCH model, which is indeed what the results illustrate.

Utilizing the GARCH and GARCHX model, the MSE is reduced by an average of 11.03% and 11.39%,

respectively, when compared to the ARMA model. Similarly, the GARCHX results in a limited average
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Realized Beta Market Beta

Equity GARCH GARCHXRV ARMA GARCH GARCHXRV ARMA

AAPL 0.2898 0.2866 0.3159 0.0374 0.0338 0.0186
EXC 0.0835 0.0832 0.0927 0.0103 0.0096 0.0056

F 0.1793 0.1782 0.1961 0.0217 0.0199 0.0118
IBM 0.0740 0.0738 0.0858 0.0095 0.0087 0.0047
JPM 0.1260 0.1263 0.1428 0.0162 0.0144 0.0080
KFT 0.0625 0.0628 0.0672 0.0068 0.0064 0.0042
PG 0.0597 0.0593 0.0700 0.0082 0.0075 0.0040

WMT 0.0879 0.0870 0.1025 0.0118 0.0113 0.0058

Average 0.1203 0.1197 0.1341 0.0152 0.0140 0.0078

Table 5: Mean Squared Error for GARCH, GARCHX, and ARMA Forecasts of Daily Realized Beta and Market Beta

reduction in MSE of 0.42% when compared with the GARCH model. While a reduction in MSE is observed

for six of the eight individual equities when moving from the GARCH model to the GARCHX model, the

MSE of two of the stocks, KFT and IBM, increased. However, both the GARCH and GARCHX model still

resulted in a decrease in MSE for these two stocks when compared to the ARMA model.

The second value against which the forecasted betas are compared is the market beta defined by Equation 35,

which utilizes the calculated realized beta (or forecasted realized beta) as an innovation on the true underlying

market beta. Overall, the GARCHX model forecasts perform systematically better than the GARCH model

when predicting future values of the specified market beta. Table 5, however, suggests that the ARMA model

in fact outperforms both the GARCH and GARCHX models. This is, however, not surprising, given that

the ARMA process uses the market beta as its time series to forecast the next period’s beta. The GARCH

and GARCHX models both aim to model the daily realized variances of asset and market returns (given in

Figure 1), which are known to vary extensively from one period to the next. Furthermore, the simplification

of the model to use the previous day’s realized correlation as a proxy for a forecasted conditional correlation

introduces a measurable degree of variability to the GARCH and GARCHX predicted betas. However, the

ARMA process is based upon the market beta, which by its nature is a smoother time series. Because the

ARMA model is fit to the market beta, its coefficients are optimized for that series versus the GARCH and

GARCHX models where the coefficients are derived from the actual realized beta. Therefore, less variability is

expected in the forecasted ARMA beta, which over the large data set leads to lower MSE. Equally weighting

the terms in the specification of the market beta is likely to be a significant factor in the relatively better

performance of the ARMA model for this specific scenario. If optimized, rather than equally weighted,

coefficients for the beta specification were used for each equity, the GARCH and GARCHX models are likely

to produce results comparable to the ARMA model. Moreover, the specification for the market beta is a

conceptual measure used within this analysis and is not a robust measure to the same degree as realized beta,

which was shown to be most accurately forecasted using the proposed GARCHX framework.

Forecasting Beta Using Conditional Heteroskedastic Models 30



7 CONCLUSION

7 Conclusion

Extensive research has centered on exploring alternatives to the constant beta traditionally used in the CAPM.

There is significant data supporting the fact that beta can indeed be better represented as a continuous-time

process. This paper generates further evidence that beta is indeed time-varying and provides a model for

explaining its underlying nature. The development of realized measures of volatility enables the use of

high-frequency data to extract more information concerning intraday equity returns and more appropriately

model an asset’s volatility. The GARCH model provides a simple parametric equation for modeling and

forecasting the conditional variance of an asset. Realized measures of volatility can then be incorporated

into the GARCH model as a covariate, forming a GRCHX model, to more accurately measure and forecast

volatility. The GARCHX framework yields predictive betas with 6.55% to 15.29% less mean squared error

than the benchmark ARMA model used in this analysis.

It is important to note a few key limitations to the proposed GARCHX model. The first, as previously

mentioned, is the assumption of equal weighting on the lagged terms in the specification for the market beta.

It is likely that, rather than being equal, the coefficients for the regressors vary considerably and, moreover,

have different values for each stock. By assuming equal weighting, the information from the GARCHX model,

namely from the inclusion of the realized measure of variance, is not appropriately incorporated into the

value for the market beta. This limits the ability of the market beta to adjust to abrupt changes in the

level of volatility. Optimizing the values for the market beta coefficients is likely to significantly improve the

prediction accuracy of the GARCHX model in comparison to both the GARCH and ARMA processes.

The use of maximum likelihood and ordinary least squares analyses in calculating and determining the

coefficients for the GARCH and GARCHX frameworks are also potential weaknesses. The maximum likelihood

function used in this analysis assumes that the GARCH process follows a standard normal distribution12.

However, extensive research has shown that this is not the case and that the tail distribution of a GARCH(1,1)

process is heavier than a normal distribution. In addition, ordinary least squares analysis is inherently weak

when dealing with outliers, which may lead to inaccurate estimates of R2 and give imprecise representation

of the actual fit of the regression. Due to the capacity of volatility to exhibit sudden movements, this may be

of particular concern. This issue may be partially addressed in future research by using a logarithmic scale to

normalize the data points.

Finally, while the proposed model forecasts the realized volatility of both asset and market returns, it

assumes a no-change model for the realized correlation. The expected realized correlation should theoretically

not change significantly from one day to the next. However, because the realized correlation is calculated

12For the statistical properties of the GARCH and GARCHX models see Han [2011]
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each day from realized variances and covariances, sudden changes in these measures will result in a similar

change in the realized correlation. There is, therefore, a certain level of variability expected to be present in

the realized correlation, as illustrated in Figure 4. This is likely to introduce a measurable degree of noise

into the forecasts for the conditional beta (Figure 6). This limitation may be addressed in future research by

modeling the realized correlation with a GARCH or GARCHX forecast model itself. Alternatively, rather

than represent the realized beta in terms of the asset’s and market’s respective realized variances and the

realized correlation between the two, the definition of realized beta as the ratio of the realized covariance

between the asset’s and market’s returns over the realized variance of the market’s returns may be employed.

The proposed GARCHX model could then be adapted to forecast the realized covariance.

Overall the results of this paper illustrate the time-varying dynamics of beta and the need to move away

from its traditional static definition within the CAPM. Realized measures computed with high-frequency

data enable intraday information to be instantaneously integrated into the calculation of the conditional beta.

The GARCHX framework, utilizing these realized measures, has been illustrated to be a better predictor

of the daily realized beta when compared to either the base GARCH model or benchmark ARMA model.

These more accurate forecasts of the realized beta can be instrumental in company valuation and portfolio

management and allow investors to better analyze the dynamic, underlying volatility of risky assets.
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8.1 Tables

Equity Variance 95% Confidence Interval

AAPL 0.3441 0.3283 - 0.3610
EXC 0.0912 0.0864 - 0.0965

F 0.2084 0.1988 - 0.2186
IBM 0.0710 0.0678 - 0.0745
JPM 0.1371 0.1308 - 0.1438
KFT 0.0643 0.0604 - 0.0685
PG 0.0907 0.0865 - 0.0951

WMT 0.1102 0.1051 - 0.1156

Average 0.1396 —

Table 1: Analysis of the Variance of Realized Beta

GARCH Coefficients GARCHX-RV Coefficients

Equity α0 α1 θ1 R2 α0 α1 θ1 γ1 R2

AAPL 0.0306 0.0577 0.9392 0.2994 0.1967 0.0277 0.7015 0.2008 0.4153
(0.4485) (0.1430) (0.0000) (0.1811) (0.2875) (0.0000) (0.0000)

EXC 0.0285 0.1061 0.8833 0.3952 0.0585 0.0927 0.6533 0.1910 0.4694
(0.3937) (0.0297) (0.0000) (0.2780) (0.0396) (0.0000) (0.0000)

F 0.0571 0.0730 0.9155 0.2363 0.1566 0.0215 0.6862 0.2101 0.3212
(0.4464 ) (0.3121) (0.0000) (0.3481) (0.4393) (0.0000) (0.0000)

IBM 0.0075 0.0698 0.9285 0.3138 -0.0026 0.0210 0.7838 0.1739 0.4365
(0.4634) (0.0327) (0.0000) ( 0.5140) (0.2700) (0.0000) (0.0000)

JPM 0.0152 0.0976 0.9048 0.3416 -0.0059 0.0289 0.7412 0.2252 0.4639
(0.4670) (0.0820) (0.0000) (0.5141) (0.3241) (0.0000) (0.0000)

KFT 0.0247 0.0522 0.9295 0.2566 0.0470 0.0078 0.6843 0.2325 0.3755
(0.3727) (0.0704 ) (0.0000) (0.2585) (0.4049) (0.0000) (0.0000)

PG 0.0053 0.0514 0.9455 0.2191 0.0160 0.0260 0.5094 0.3481 0.2946
(0.4728) (0.1143) (0.0000) (0.4141) (0.2607) (0.0000) (0.0000)

WMT 0.0066 0.0620 0.9364 0.2716 0.0010 0.0232 0.8257 0.1176 0.3369
(0.4712) (0.0713) (0.0000) (0.4954) (0.2833) (0.0000) (0.0000)

AVERAGE 0.0219 0.0712 0.9228 0.2917 0.0584 0.0311 0.6982 0.2124 0.3892

Table 2: Coefficients of the GARCH and GARCHX Equations

Equity First-Order Autocorrelation ACF 95% CI First-Order Partial Autocorrelation PACF 95% CI

AAPL 0.4232 ±0.0664 0.4233 ±0.0343
EXC 0.3572 ±0.0662 0.3575 ±0.0399

F 0.3867 ±0.0615 0.3867 ±0.0343
IBM 0.3187 ±0.0536 0.3187 ±0.0343
JPM 0.4603 ±0.0672 0.4606 ±0.0343
KFT 0.2054 ±0.0598 0.2056 ±0.0454

P 0.5483 ±0.0846 0.5484 ±0.0343
WMT 0.4716 ±0.0722 0.4720 ±0.0343

Average 0.3964 — 0.3966 —

Table 3: First-Order Autocorrelations and Partial Autocorrelations of Realized Beta
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Equity θ ϕ

AAPL 0.9946 -0.0963
EXC 0.9937 -0.1120

F 0.9929 -0.1032
IBM 0.9969 -0.0770
JPM 0.9967 -0.1325
KFT 0.9881 -0.0116
PG 0.9959 -0.0917

WMT 0.9962 -0.0842

Average 0.9944 -0.0886

Table 4: ARMA Model Coefficients

Realized Beta Market Beta

Equity GARCH GARCHXRV ARMA GARCH GARCHXRV ARMA

AAPL 0.2898 0.2866 0.3159 0.0374 0.0338 0.0186
EXC 0.0835 0.0832 0.0927 0.0103 0.0096 0.0056

F 0.1793 0.1782 0.1961 0.0217 0.0199 0.0118
IBM 0.0740 0.0738 0.0858 0.0095 0.0087 0.0047
JPM 0.1260 0.1263 0.1428 0.0162 0.0144 0.0080
KFT 0.0625 0.0628 0.0672 0.0068 0.0064 0.0042
PG 0.0597 0.0593 0.0700 0.0082 0.0075 0.0040

WMT 0.0879 0.0870 0.1025 0.0118 0.0113 0.0058

Average 0.1203 0.1197 0.1341 0.0152 0.0140 0.0078

Table 5: MSE for GARCH, GARCHX, and ARMA Forecasts of Daily Realized Beta and Market Beta

GARCH Model-Implied Beta GARCHX-BV Model-Implied Beta

Equity Mean Median Min Max Std. Dev. Mean Median Min Max Std. Dev.

AAPL 1.1044 1.1061 0.0688 2.0850 0.3778 1.1071 1.1239 0.1765 2.0776 0.3440
EXC 0.5674 0.5447 0.2043 1.1217 0.1666 0.5686 0.5421 0.1850 1.0607 0.1544

F 0.7399 0.6916 0.1605 1.6989 0.2616 0.7524 0.7123 0.1475 1.6500 0.2670
IBM 0.7420 0.7177 0.4432 1.3027 0.1965 0.7453 0.7248 0.4878 1.1537 0.1517
JPM 0.9901 0.9713 0.5388 2.0896 0.2794 0.9965 0.9510 0.5550 2.3172 0.2813
KFT 0.3051 0.3051 0.0226 0.6015 0.0991 0.3159 0.3076 0.0558 0.5995 0.1122
PG 0.5381 0.4755 0.2029 1.1945 0.2148 0.5371 0.4844 0.2069 1.1225 0.1929

WMT 0.6947 0.6828 0.1631 1.3329 0.2571 0.6949 0.7018 0.2622 1.2411 0.2143

GARCHX-RVModel-Implied Beta Realized Beta

Equity Mean Median Min Max Std. Dev. Mean Median Min Max Std. Dev

AAPL 1.1008 1.1156 0.1823 2.0261 0.3349 1.1303 1.1087 0.1284 2.1516 0.3724
EXC 0.5662 0.5449 0.1944 1.0394 0.1507 0.5817 0.5634 0.1146 1.1530 0.1699

F 0.7478 0.7066 0.1493 1.6585 0.2568 0.7712 0.7247 0.1380 1.8923 0.2747
IBM 0.7440 0.7208 0.4828 1.1811 0.1523 0.7678 0.7510 0.4899 1.2409 0.1419
JPM 0.9939 0.9555 0.5393 2.3279 0.2762 0.9753 0.9404 2.1437 0.5809 0.2334
KFT 0.3147 0.3073 0.0573 0.5942 0.1075 0.3256 0.3159 .0226 0.6980 0.1206
PG 0.5377 0.4777 0.2031 1.1537 0.1997 0.5941 0.5399 0.2007 1.3209 0.2224

WMT 0.6951 0.6995 0.2594 1.2590 0.2158 0.7567 0.7816 0.2400 1.2698 0.2218

Table 6: Descriptive Statistics of Realized Beta and GARCH and GARCHX Conditional Betas
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8.2 Figures
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Figure 1: Equity Realized Variances
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Figure 2: GARCH and GARCHX Forecasted Conditional Variances

Forecasting Beta Using Conditional Heteroskedastic Models 36



8 APPENDIX 8.2 Figures

Apr 16, 1997 Apr 21, 1999 Apr 19, 2001 Apr 30, 2003 May 02, 2005 May 02, 2007 May 06, 2009
10

0

10
1

GARCH Conditional Variance

Apr 16, 1997 Apr 21, 1999 Apr 19, 2001 Apr 30, 2003 May 02, 2005 May 02, 2007 May 06, 2009
10

0

10
1

GARCHX Conditional Variance

(a) AAPL

Oct 23, 2000 Nov 06, 2002 Nov 10, 2004 Nov 09, 2006 Nov 12, 2008 Nov 17, 2010

10
0

10
1

GARCH Conditional Variance

Oct 23, 2000 Nov 06, 2002 Nov 10, 2004 Nov 09, 2006 Nov 12, 2008 Nov 17, 2010

10
0

10
1

GARCHX Conditional Variance

(b) EXC

Apr 09, 1997 Apr 15, 1999 Apr 20, 2001 May 05, 2003 May 05, 2005 May 07, 2007 May 11, 2009

10
1

10
2

GARCH Conditional Variance

Apr 09, 1997 Apr 15, 1999 Apr 20, 2001 May 05, 2003 May 05, 2005 May 07, 2007 May 11, 2009

10
1

10
2

GARCHX Conditional Variance

(c) F

Apr 09, 1997 Apr 13, 1999 Apr 11, 2001 Apr 23, 2003 Apr 25, 2005 Apr 25, 2007 Apr 29, 2009

10
0

10
1

GARCH Conditional Variance

Apr 09, 1997 Apr 13, 1999 Apr 11, 2001 Apr 23, 2003 Apr 25, 2005 Apr 25, 2007 Apr 29, 2009

10
0

10
1

GARCHX Conditional Variance

(d) IBM

Apr 09, 1997 Apr 13, 1999 Apr 11, 2001 Apr 24, 2003 Apr 27, 2005 Apr 27, 2007 May 01, 2009

10
0

10
2

GARCH Conditional Variance

Apr 09, 1997 Apr 13, 1999 Apr 11, 2001 Apr 24, 2003 Apr 27, 2005 Apr 27, 2007 May 01, 2009

10
0

10
2

GARCHX Conditional Variance

(e) JPM

Jun 13, 2001 Jun 24, 2003 Jun 24, 2005 Jun 26, 2007

10
0

10
1

GARCH Conditional Variance

Jun 13, 2001 Jun 24, 2003 Jun 24, 2005 Jun 26, 2007

10
0

10
1

GARCHX Conditional Variance

(f) KFT

Apr 09, 1997 Apr 13, 1999 Apr 12, 2001 Apr 24, 2003 Apr 26, 2005 Apr 26, 2007 Apr 30, 2009

10
0

10
1

GARCH Conditional Variance

Apr 09, 1997 Apr 13, 1999 Apr 12, 2001 Apr 24, 2003 Apr 26, 2005 Apr 26, 2007 Apr 30, 2009

10
0

10
1

GARCHX Conditional Variance

(g) PG

Apr 09, 1997 Apr 14, 1999 Apr 12, 2001 Apr 24, 2003 Apr 29, 2005 May 01, 2007 May 05, 2009

10
0

10
1

GARCH Conditional Variance

Apr 09, 1997 Apr 14, 1999 Apr 12, 2001 Apr 24, 2003 Apr 29, 2005 May 01, 2007 May 05, 2009

10
0

10
1

GARCHX Conditional Variance

(h) WMT

Figure 3: GARCH and GARCHX Forecasted Conditional Variances (Logarithmic Scale)
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Figure 4: Equity Realized Correlations with S&P500
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Figure 5: Realized Beta and Model Specified Market Beta
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Figure 6: GARCHX and ARMA Forecasted Beta
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Figure 7: Autocorrelations and Partial Autocorrelations of Realized Beta
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8.3 Maximum Likelihood Estimation of GARCH and GARCHX Parameters

Index the observations as

t = 0, 1, ..., T − 1

Let βt, ht be the market beta and conditional variance for time t so their values are determined at time t− 1.

Other variables are the following:

rt : open-to-close return at day t of the asset under study

β̂t : the realized beta at day t of the asset under study

RVt : the realized variance at day t of the asset under study

The dynamics of ht and βt are described in the following equations:13

at = rt − µ

hGARCHXt = α0 +
∑m
i=1 αia

2
t−i +

∑s
j=1 θjh

GARCHX
t−j +

∑n
k=1 γk ·RVt−k

Then define

ω = (α0, α1, ...αm, θ1, ..., θs, γ1, ..., γn)

zt = (1, µ2
t , ..., µ

2
t−m+1, ht, ..., ht−m+1,RVt,...,RVt−k+1

)

Then the dynamics of ht can be written as

ht = ω′zt−1

The log likelihood function is

L(ω) =

T−1∑
t=0

lt(ω) =

T−1∑
t=0

[
−1

2
ln(2π)− 1

2
loght −

1

2

a2t
ht

]
(49)

Since the first term ln(2π) does not involve any parameters, the log likelihood function becomes

L(ω) =

T−1∑
t=0

lt(ω) =

T−1∑
t=0

[
−1

2
loght −

1

2

a2t
ht

]
(50)

The estimates obtained by maximizing the prior log likelihood function are referred to as the conditional

maximum likelihood estimates under normality.

13This specification is for the GARCHX framework. Removing the RVt summation above will result in the standard GARCH
equation for the conditional variance. This can be similarly optimized using the following likelihood estimation.
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