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Abstract

The median voter theorem, first formalized by Duncan Black in 1948, is the result

of a classic model used to describe the positioning of candidates in majority-rule

elections, eponymously stating that candidates will converge to the median. The goal

of this paper is to describe how the median voter theorem fails to hold in more general

cases. Specifically, when multi-contest majority rules elections (such as the United

States presidential election) are considered, the median voter theorem fails in the

presence of even one winner-take-all constituency; this failure provides opportunities

for individual constituencies to skew the equilibrium candidate position toward the

position of their median voter.
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1 Introduction

The median voter theorem is a powerful result that models behavior in two-candidate

elections. This paper explores how, though this result holds in the presence of any

combination of contests allocating their votes according to a proportional allocation

rule, can fail to hold when even one contest allocating votes according to a winner-

take-all rule is included. A failure in median voter theory implies that constituencies

holding local elections relevant to larger elections, such as the United States presiden-

tial election, may skew results away from the median voter of the total population,

toward the median voter of the local election. Generally, constituencies may always

exploit this skewing, by allocating votes according to a winner-take-all rule, to make a

majority of their constituents at least as well off as they would be under a proportional

allocation rule.

2 The Model

Suppose that we have a set of constituencies i ∈ I = {1, · · · , I}, assigned to which

we have a smooth distribution of favorite positions of voters, di(ρ), over the unit

interval in single-issue space, scaled so that
∫ 1

0
di(ρ) dρ = ci, the proportion of the

total population constituency i contains. We add the additional assumption that all
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di(ρ) are strictly positive on the open support.1 Suppose further that the combined

population distribution of favorite positions is n(ρ) =
∑

i∈I di(ρ), with the median

denoted M . We index the constituencies so that for i, j ∈ I, i < j if and only if mi ≤

mj, where mi denotes the median of the distribution di(ρ), and M denotes the median

of the combined population n(ρ). Voters vote according to the standard Hotelling

model with single-peaked preferences. We suppose that there are two candidates,

j ∈ {1, 2} who compete by simultaneously choosing a position, so that pj ∈ [0, 1] is

candidate j’s position in all constituencies i ∈ I. The candidates do not receive any

payoff for their performance in the individual constituencies, though the candidate

who gains the largest proportion of the overall population receives a payoff b > 0, and

ties are settled with both candidates winning with probability 1
2
. We now consider

the two different vote allocation rules available to each of the constituencies.

Definition Constituency i ∈ I, is said to allocate its votes according to a winner-

take-all rule if the candidate gaining the majority of constituency i’s vote is awarded

ci. We further define the subset W ⊆ I to be the subset of all winner-take-all con-

stituencies in I.

Definition Constituency i ∈ I is said the allocate its votes according to a propor-

tional assignment if candidates are awarded a proportion of ci equal to the proportion

of the vote received in constituency i. We further define the subset P ⊆ I to be the

subset of all constituencies utilizing a proportional assignment rule in I.

For reference, an adaptation of the median voter theorem (Black, 1948, and Os-

bourne, 2004, pp. 261):

Median Voter Theorem. For a two-candidate contest occurring in single-issue

1While this is not a strict necessity, it allows for the median to be uniquely defined.
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space with majority rules and single-peaked preferences, both candidates will assume

the position of the median voter in equilibrium.

Example 1 Suppose that we have a population uniformly distributed with n(ρ) =

1{ρ∈[0,1]} and a winner-take-all constituency with distribution taken from that of

dw(ρ) = ρ
2
· 1{ρ∈[0,1]}, implying that the remaining, proportional constituency will

have distribution dp(ρ) = 2−ρ
2
·1{ρ∈[0,1]}. We seek the Nash equilibrium position in the

two-candidate voting contest for this arrangement.

According to the median voter theorem, the median position in the population,

M = 1
2

would be the Nash equilibrium, however this is not the case. Instead, the

pure strategy Nash equilibrium candidate position is π∗ = 2−
√

2 ≈ 0.586. We come

upon this solution by considering the effects of capturing the entire proportion of

votes assigned to constituency w, in this case cw = 1
4
. If candidate 1 is located at

p1 = 2−
√

2, she will capture at least
∫ p1

0
dp(ρ) dρ = 1

2
if candidate 2 is on (p1, 1]. If

candidate 2 is on [0, p1), candidate 1 will capture a proportion of the overall vote of

at least cw +
∫ 0

ρ1
dp(ρ) dρ = 1

4
+ 1

4
= 1

2
. As a simple majority of the vote is ensured

by assuming the position p = 2−
√

2, symmetry implies that this will be the unique

best reply for both candidates, and therefore the Nash equilibrium in the combined

contest.

The above example violates the median voter theorem, and we posit that it is part

of a larger class of examples that also lead to Nash equilibria which are skewed from

the median.

Proposition 2.1. If I= {w, p}, w ∈ W and p ∈ P are winner-take-all and propor-

tional allocation contests, respectively, mw 6= M, and
∫M

0
dw(ρ) dρ < cw <

1
2
, then M

is not a Nash equilibrium position of a winning candidate.

Proof. See appendix.
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We see immediately from proposition 2.1 that the Nash equilibrium position of the

candidates as predicted by the median voter theorem, M, does not necessarily hold

as a Nash equilibrium when #(I)> 1. Specifically, if we apply proposition 2.1 to our

motivating example, we see that M = 1
2
, mw = 1√

2
and that

∫M
0
dw(ρ) dρ = 1

16
< 1

4
=

cw, so it must be that M is not a Nash equilibrium position for the candidates. This

conclusion motivates more general conditions under which the median voter theorem

does not apply.

Proposition 2.2. M, the median of n(ρ), is not a Nash equilibrium if and only if

∑
{i∈W:mi<M}

ci +

∫ M

0

∑
i∈P

di(ρ) dρ ≤ 1

2

and ∑
{i∈W:mi>M}

ci +

∫ 1

M

∑
i∈P

di(ρ) dρ ≤ 1

2
.

Proof. See appendix.

Proposition 2.2 shows that the median voter theorem only holds for a subset

of all elections consisting of finite combinations of winner-take-all and proportional

allocation constituencies. Specifically, the median voter theorem may not always

correctly model elections using anything but a combination of proportional allocation

constituencies. An commonly cited example of median voter behavior is the United

States presidential election wherein representation in an electoral college determined

through winner-take-all elections are used to formally name a president, however

proposition 2.1 shows that such a contest may be very sensitive to the presence of

the individual winner-take-all votes, and so the population median may, in fact, not

be the equilibrium candidate position.
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3 Equilibria

Now that we have considered a simple example, and conditions under which the

standard median voter result fails to hold, we are interested in establishing a more

general Nash equilibrium for combined contests.

Proposition 3.1. For one winner-take-all allocation constituency with distribution

dw(ρ), population proportion cw, and the remainder of the population cp = 1 − cw

allocated according to a proportional allocation implying a distribution of dp(ρ) =

n(ρ)− dw(ρ), the Nash equilibrium position in the two candidate contest is

π∗ =


l mw < l

mw l ≤ mw ≤ l

l mw > l

,

where

l = inf{p :

∫ p

0

n(ρ)− dw(ρ) dρ ≥ 1

2
− cw},

and

l = sup{p :

∫ 1

p

n(ρ)− dw(ρ) dρ ≤ 1

2
− cw}.

Proof. See appendix.

Proposition 3.1 is our most basic description of the Nash equilibrium arising from

the presence of both winner-take-all and proportional allocation contests. We note

that it has is a very nice description in terms of the cumulative distributions (denoted

by caps, so
∫ p

0
f(ρ) dρ = F (p), for example). We see

l = inf{p :

∫ p

0

n(ρ)− dw(ρ) dρ ≥ 1

2
− cw}

= inf{p :

∫ p

0

n(ρ) dρ+ cw ≥
∫ p

0

dw(ρ) dρ+
1

2
}

= inf{p : N(p) + cw ≥ Dw(p) +
1

2
},
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and similarly that,

l = sup{p :

∫ 1

p

n(ρ)− dw(ρ) dρ ≥ 1

2
− cw}

= sup{p : 1− cw −
∫ p

0

n(ρ)− dw(ρ)dρ ≥ 1

2
− cw}

= sup{p :
1

2
+

∫ p

0

dw(ρ) dρ ≥
∫ p

0

n(ρ)dρ}.

= sup{p :
1

2
+Dw(p) ≥ N(p)},

implying that l is the position furthest to the left a candidate who captures the

winner-take-all vote allocation, cw, may assume and still have captured the votes of

one-half of the total population, and that l is the rightmost position a candidate who

captures the winner-take-all vote allocation, cw, may take and still have captured the

votes of one-half of the total population.

Just for reference, recall that

mw = {p :

∫ p

0

dw(ρ) dρ =
cw
2
}

= {p : Dw(p) =
cw
2
},

so if we consider our motivating example, we see that N(ρ) = ρ · 1{ρ∈[0,1]} as n(ρ) =

1{ρ∈[0,1]}, and Dw(ρ) = ρ2

4
· 1{ρ∈[0,1]} as dw = ρ

2
· 1{ρ∈[0,1]}, which, in turn, implies that

l = inf{p : N(p) + cw ≥ Dw(p) +
1

2
}

= {p ∈ [0, 1] : ρ+
1

4
=
ρ2

4
+

1

2
},

l = sup{p : Dw(p) +
1

2
≤ N(p)}

= {p ∈ [0, 1] :
ρ2

4
+

1

2
= ρ− 1

4
}
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and mw = {p ∈ [0, 1] : ρ2

4
= 1

8
}, all displayed in Figure 1 (see appendix B). l =

2 −
√

3 ≈ 0.268, mw = 1√
2
≈ 0.707 and l = 2 −

√
2 ≈ 0.586, so l < l < mw, so the

Nash equilibrium of the two-candidate game will be l according to proposition 3.1.

Proposition 3.1 is very limited in scope as it only tells us what the equilibrium

position of two candidates is in the event that there is only one winner-take-all con-

stituency with the remainder of the population’s vote being assigned to candidates

according to a proportional allocation rule. We now consider a more general descrip-

tion of the equilibrium candidate position when our total population is allocated to

candidates according to any finite combination of winner-take-all and proportional

allocation contests.

Proposition 3.2. For any finite combination of contests utilizing winner-take-all and

proportional allocation rules, and two additional, vacant winner-take-all constituen-

cies {0, I + 1} ⊂ W so that m0 = 0, mI+1 = 1, and c0, cI+1 = 0,

π∗ = min
i∈W
{inf{p ≥ mi :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:j≤i}

cj ≥
1

2
}}

= max
i∈W
{sup{p ≤ mi :

∫ 1

p

n(ρ)−
∑
k∈W

dk(ρ) dρ+
∑

{j∈W:j≥i}

cj ≥
1

2
}}

is the pure strategy Nash equilibrium position for two-candidates.

Proof. See appendix.
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Proposition 3.2 provides a very general description of the Nash equilibrium can-

didate position, though there is simple intuition behind it. We see that

π∗ = min
i∈W
{inf{p ≥ mi :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:j≤i}

cj ≥
1

2
}}

= min
i∈W
{inf{p ≥ mi : N(p)−

∑
i∈W

Di(p) +
∑

{j∈W:j≤i}

cj ≥
1

2
}}

= min
i∈W
{max{mi, inf{p : N(p)−

∑
i∈W

Di(p) +
∑

{j∈W:j≤i}

cj ≥
1

2
}}},

and that the terms in the set

K := {inf{p : N(p)−
∑
i∈W

Di(p) +
∑

{j∈W:j≤i}

cj ≥
1

2
}}i∈W (1)

are very similar to the term l = inf{p : N(p) + cw ≥ Dw(p) + 1
2
} from proposition

3.1. Recall that l the leftmost position that a candidate may assume given that he

has captured the winner-take-all vote allocation, while still being allocated at least

one-half of the overall vote. In a similar manner, we see that ki ∈ K is the leftmost

position that a candidate who has been been given the vote allocations of the winner-

take-all constituencies j with medians mj ≤ mi by the indexing of I. Therefore,

when we call for max{mi, ki}, we are insisting that the candidate who relies on only

the votes to the left of his position be to the right of any winner-take-all medians

whose votes he claims. Given this, we see that mini∈W ki is merely the leftmost of

the positions ki.
2

Now that we have an idea of the intuition behind this, we see the equilibrium

description from proposition 3.2 reduces to the description provided in proposition

3.1in the single winner-take-all constituency case. We have thatW = {0, 1, 2}, where

2This makes intuitive sense because any competing candidate may get arbitrarily close to this
candidate from the right.
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constituencies 0, 2 ∈ W are vacant and constituency 1 ∈ W is the single constituency

with c1 ≥ 0, so

π∗ = min
i∈W
{inf{p ≥ mi :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:j≤i}

cj ≥
1

2
}}

= min{inf{p :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ ≥ 1

2
},

inf{p ≥ m1 :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+ c1 ≥
1

2
}}

=


l m1 ≤ l

m1 l < m1 < l

l l < m1

as inf{p ≥ m1 :
∫ p

0
n(ρ) −

∑
i∈W di(ρ) dρ + c1 ≥ 1

2
} = min{m1, l}, and inf{p :∫ p

0
n(ρ)−

∑
i∈W di(ρ) dρ ≥ 1

2
} = l for l and l defined in proposition 3.1, which further

subsumes the median voter theorem result when the conditions of proposition 2.2

hold.

Example 2 This example uses the same general set-up as example 1 with the excep-

tion that the distribution of voters represented in a winner-take-all contest dw(ρ) = ρ
2
·

1ρ∈[0,1] is now subdivided into three winner-take-all constituencies with the equal pop-

ulation proportions c1, c2, c3 = 1
12
d1(ρ) = ρ

2
· 1{ρ∈[0, 1√

3
)}, d2(ρ) = ρ

2
· 1{ρ∈[ 1√

3
,
√

2
3
)}, and

d3(ρ) = ρ
2
·1{ρ∈[

√
2
3
,1]}. Therefore, by proposition 3.2, we see that π∗ = mini∈W{inf{p ≥

mi :
∫ p

0
n(ρ)−

∑
i∈W di(ρ) dρ+

∑
{j∈W:j≤i} cj ≥

1
2
}}, and so we see that for the set K

as defined in equation 1, we have

K = {inf{p : N(p)−
∑
i∈W

Di(p) +
∑

{j∈W:j≤i}

cj ≥
1

2
}}i∈W

= {inf{p : ρ− ρ2

4
+

∑
{j∈W:j≤i}

cj ≥
1

2
}}i∈W ,
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Table 1: Computed Values for Example 2

i ∈ W mi ki max{mi, ki}

0 0 2−
√

6
3

2−
√

6
3

1
√

1
6

2−
√

7
3

2−
√

7
3

2
√

3
6

2−
√

8
3

√
3
6

3
√

5
6

2−
√

9
3

√
5
6

4 1 0 1

whose elements are displayed in table 1, and pictorial description of which we have in

figures 2 and 3 (see appendix B). We see from table 1 that inf {max{mi, ki}i∈W} = 2−
√

7
3
≈ 0.472,

and is our Nash equilibrium by proposition 3.2. Just as a check, we see that this is,

in fact, not the same as the Nash equilibrium candidate position that we found in

example 1, 2−
√

2 ≈ 0.586 so we see that equilibria are distinct from each other, and

that dividing the winner-take-all population has a significant effect on the equilibrium

candidate position.

We have seen from example 2 how the Nash equilibrium candidate position may

be found in practice. We now are interested in the properties of the equilibrium point,

namely its position in certain cases.

Corollary 3.3. For a median of the combined distribution, M, if
∑
{j∈W:mj≥M} cj ≥

1
2
, or

∑
{j∈W:mj≤M} cj ≥

1
2
, then π∗ ∈ {mi}i∈W .

Proof. See appendix.

Corollary 3.3 states that if more than one-half of the total population is repre-

sented in winner-take-all constituencies whose medians fall on one side of the me-

dian of the combined distribution, M, then the Nash equilibrium position in the

two-candidate game will be the median of one of the winner-take-all contests. We
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note that the above result is a multiple winner-take-all contest analog to the case in

proposition 3.1 where l < mw < l, giving a Nash equilibrium of mw. Specifically, if we

consider a contest consisting mainly of winner-take-all contests, such as the election of

members of the electoral college for the United States presidential election, corollary

3.3 in conjunction with the median voter theorem states that the Nash equilibrium

position of both candidates (and so the winner) should have assumed the position of

the median voter of one of the states.

4 Skewing

Corollary 3.3 raises an interesting question about the role of different combinations

of winner-take-all and proportional allocation contests, specifically, we would like to

determine how far it is possible for the Nash equilibrium candidate to be skewed

from the median of the combined populations, M . We are capable of finding this

result exactly (it is given in proposition 3.2) given perfect information including the

exact combination of winner-take-all and proportional allocation constituencies and

their distributions, though in the absence of this kind of knowledge we would like to

determine boundaries on equilibrium behavior given a proportion of the population

represented in contests of both types.

Lemma 4.1. If we have a distribution d0(ρ) with median M, and set of distributions

{di(ρ)}i∈K so that
∑

i∈K di(ρ) = d0(ρ), then if the median of a distribution di(ρ) for

i ∈ K is denoted mi, there exists at least one j ∈ K so that mj ≥M.

Proof. See appendix.

Proposition 4.2. If |π∗ −M | is at a maximum given cw <
1
2
, then either mi = mj

for all i, j ∈ W or
∑

i∈W di(ρ) is taken to be a single winner-take-all constituency.
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Proof. See appendix.

The purpose of proposition 4.2 is to allow us to simplify our analysis of the bound-

aries of the equilibrium behavior by stating that, given a proportion of the population

represented by winner-take-all contests, for the boundaries on equilibrium behavior

to be the largest, we must consider the winner-take-all constituencies as one. At

first glance, it may appear that proposition 4.2 is weakened by the restriction on cw.

However, we note that this is necessary for if cw >
1
2

then π∗ = mw, by corollary 3.3

and the median voter theorem.

Proposition 4.3. Given a distribution of the total population n(ρ) with cumulative

distribution function N(ρ) =
∫ ρ

0
n(ρ) dρ and a proportion of the total population

cw <
1
2

allocated according to a winner-take-all rule, the lower bound Nash equilibrium

position is l∗(cw) = N−1
(

1−cw
2

)
, and the upper bound Nash equilibrium position is

l∗(cw) = N−1
(

1+cw
2

)
.

Proof. See appendix.

Proposition 4.3 states that the furthest that the equilibrium candidate position

may be skewed from the median in any case where cw < 1/2 is, according to propo-

sition 3.1 max{M − l, l −M}, and this only occurs when π∗ = l for l at a minimum,

or π∗ = l for l at a maximum. π∗ = l, l only when mw ∈ [0, l] ∪ [l, 1], though we note

that if mw < l, then it must be the case that l is not at a minimum as dw(ρ) > 0

and n(ρ) > 0 on the open support, and intuitively l occurs at the intersection of

Dw(ρ) + 1
2

and N(ρ) + cw. Therefore, the least l can be when l = mw, and simi-

larly, the greatest that l can be is when l = mw, which occur at N−1
(

1−cw
2

)
and

N−1
(

1+cw
2

)
, respectively.

We have avoided treating the cw > 1
2

case until this point because it introduces

another issue, specifically, the question of what constitutes a constructible median.
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We note that mass in the tails of our combined distributions is bounded, so if we

attempt to cut a winner-take-all distribution of a given size, cw, from it, we see that

the median must be within the interval [m(cw),m(cw)] = [N−1
(
cw
2

)
, N−1

(
2−cw

2

)
], for

if the median of a winner-take-all distribution with a proportion of the vote cw is

at a point m, it must be that N(m) ≥ cw
2

and 1 − N(m) ≥ cw
2
. This implies that

in order for the Nash equilibrium to be skewed as as far from the median of the

population as possible, it must be that mw be both constructible, and equal to either

l or l. This implies that π∗ is on the boundary of [l∗(cw), l∗(cw)]∩ [m(cw),m(cw)] when

it maximally skewed. By construction, we see that [l∗(cw), l∗(cw)] ⊆ [m(cw),m(cw)]

for cw < 1
2
, and similarly that [l∗(cw), l∗(cw)] ⊇ [m(cw),m(cw)] for cw ≥ 1

2
.3 Further

m(cw)−m(cw) is decreasing in cw, and l∗(cw)− l∗(cw) is increasing in cw.

When we apply proposition 4.3 and the constructible median concept to the gen-

eral set-up from example 1, that is N(ρ) = ρ · 1{ρ∈[0,1]}, we see that we have

[l∗(cw), l∗(cw)] = [N−1

(
1− cw

2

)
, N−1

(
1 + cw

2

)
]

= [
1− cw

2
,
1 + cw

2
]

= [1− 2ρ, 2ρ− 1],

and

[m(cw),m(cw)] = [N−1
(cw

2

)
, N−1

(
2− cw

2

)
]

= [
cw
2
,
2− cw

2
]

= [2ρ, 2− 2ρ],

3As m = N−1
(

cw

2

)
and l = N−1

(
1−cw

2

)
, we see that l ≤ m if and only if N−1

(
1−cw

2

)
≤ N−1

(
cw

2

)
if and only if 1−cw

2 ≤ cw

2 if and only if 1
2 ≤ cw, and similarly l∗(cw) ≥ m(cw) if and only if cw ≥ 1

2 .
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plotted in figure 4 (see appendix B). What these boundaries tell us is the greatest

extent to which the Nash equilibrium candidate position may be skewed from the

median of the combined population M given nothing but the size of the proportion

of the population represented by winner-take-all contests. We take caution to note,

however, that the constructible median is only guaranteed to hold for a single winner-

take-all constituency, though it is a consequence of these boundaries that the furthest

skewed positions, under any circumstance, that Nash equilibrium candidate position

may occupy are {m(1
2
),m(1

2
)} (see figure 4 in appendix B).

5 Implications for Constituencies

From the above, we see that constituencies have a certain degree of power over the

outcome of an election depending on whether or not they employ a winner-take-all

allocation scheme. We are led to ask under what circumstances would a constituency

decide to employ such a rule.

Proposition 5.1. Given a constituency g ∈ I with distribution dg(ρ) ≤ n(ρ), if

we denote the Nash equilibrium position in the two-candidate game when g ∈ W as

π∗WTA, and π∗P when g ∈ P, all else equal, then

|π∗WTA −mg| ≤ |π∗P −mg|.

Proof. See appendix.

Corollary 5.2. If a simple majority referendum is the mechanism used to deter-

mine whether constituency g ∈ I allocates its votes according to a winner-take-all

or a proportional allocation scheme, then constituency g will always allocate its votes

according to a winner-take-all rule.
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Proof. As we have assumed that the mechanism is a majority rules referendum, the

median voter theorem applies, implying the result by proposition 5.1.

Proposition 5.1 and corollary 5.2 imply that I =W is a pure strategy Nash equilib-

rium with constituencies acting as agents because at least majority of the constituents

in a constituency deciding between holding a winner-take-all and proportional allo-

cation contest would be better off by choosing winner-take-all. This is implied by the

skewing results that have been developed so far. We note that this equilibrium is not

necessarily unique, however, for there may exist at least one constituency j ∈ I for

which |π∗WTA−mj| = |π∗P −mj| as defined in proposition 5.1 implying that the voters

in j are (in an aggregate sense) indifferent between winner-take-all and proportional

allocations.

6 Conclusion and Possible Extensions

We have seen that, while the median voter theorem gives a general feel for the manner

in which candidates compete to gain a simple majority of the population, it also omits

details that allow for a small portion of the population to have influence over the

final results of combined contests. Additionally, we see that the median voter result

by itself does not show why constituencies assigning delegates in a United States

presidential primary would be more often assigning delegates according to winner-

take-all allocation (in the absence of regulations forbidding it).

There are a number of possible directions for future research in this area, a partic-

ularly ambitious extension is to consider cases including more than two candidates.

There are also possible refinements to the boundaries found in the section 4 when we

include information about the number of winner-take-all constituencies, their individ-

ual sizes, and restrictions on how the distributions of these individual constituencies
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over single-issue space differ from the overall population.
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Appendix

A Proposition Proofs

Proof of Proposition 2.1. We proceed with a proof by contradiction, so suppose that

M is a Nash equilibrium position for the two candidates and that, without loss of

generality, mw < M . As M is a Nash equilibrium by supposition,
∫M

0
dp(ρ) dρ+dw =

1/2, but

∫ M

0

dp(ρ) dρ+ dw =

∫ M

0

n(ρ) dρ−
∫ M

0

dw(ρ) dρ+ dw

=

∫ M

0

n(ρ) dρ−
∫ M

0

dw(ρ) dρ+

∫ M

0

dw(ρ) dρ+

∫ 1

M

dw(ρ) dρ

=

∫ M

0

n(ρ) dρ+

∫ 1

M

dw(ρ) dρ

> 1/2

as
∫ 1

M
dw(ρ) dρ > 0 by hypothesis, a contradiction. This implies that one of the candi-

dates may deviate to some p′ < M so that |p′−mw| < |M−mw| and
∫ p′

0
dp(ρ) dρ+dw ≥

1
2
, and thus that the candidate at position p′ will win.

Proof of Proposition 2.2. M, the median of n(ρ) is a Nash equilibrium if and only if

a candidate may not advantageously deviate from M, which occurs if and only if all

other positions, given a candidate at M receive a proportion of the vote less than

one-half. We exhaust the possibilities.

Suppose a candidate deviates to p < M. We therefore see that the deviating

candidate shall receive
∫ p+M

2

0

∑
i∈P di(ρ) dρ+

∑
{i∈W:mi≤ p+m

2
} ci ≤

∫M
0

∑
i∈P di(ρ) dρ+∑

{i∈W:mi<M} ci ≤
1
2
. This implies that if

∫M
0

∑
i∈P di(ρ) dρ +

∑
{i∈W:mi<M} ci <

1
2
,

then the candidate at M now has a proportion of the vote 1−
∫ p+M

2

0

∑
i∈P di(ρ) dρ+
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∑
{i∈W:mi≤ p+m

2
} ci >

1
2
. However, if

∫M
0

∑
i∈P di(ρ) dρ +

∑
{i∈W:mi<M} ci = 1

2
, then we

see that
∫ 1

M

∑
i∈P di(ρ) dρ +

∑
{i∈W:mi>M} ci = 1

2
, and either there is a tie, or the

candidate at M has won. Therefore, there was no advantageous deviation, implying

that M is a Nash equilibrium candidate position.

Proof of Proposition 3.1. We proceed case wise. Suppose that mw < l as defined

above. We see that a candidate positioned at l receives 1
2
− cw of the vote from the

portion of the population whose vote is allocated proportionally, and cw from the

winner-take-all population with median mw < l if the competing candidate enters

at some v > l, so the candidate at l receives at least 1
2

= 1
2
− cw + cw of the vote.

Suppose that the competitor enters at some p < l, then the candidate at l gains some

allocation a < 1
2
− cw + cw = 1

2
implying that the candidate at l will receive a portion

of the vote 1− a > 1
2
, therefore it is both candidates’ best reply to set their position

as l when mw < l.

Suppose that mw > l, then l is the Nash equilibrium by the same logic as the

mw < l case.

Suppose that l < mw < l, then the Nash equilibrium position of both candidates

is mw, for if one candidate is locates herself at mw, and another locates herself at a

position p < mw, then we see that the candidate at mw gains a portion of the vote

cw from being closest to mw, and as p < mw < l, we see that the candidate at mw

gains at least 1
2
− cw from the proportionally allocated population to the right of

l, so the candidate at mw gains a proportion of the population greater than 1
2

and

therefore wins. The logic is the same if the deviating candidate chooses some position

p > mw.

Proof of Proposition 3.2. We proceed with a proof by contradiction. Suppose that
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some p > π∗ is winning position. This implies that for

∑
{j∈W:mj≥p}

cj +

∫ 1

p

n(ρ)−
∑
{i∈W}

di(ρ) dρ ≥ 1

2
,

a contradiction by the definition of π∗.

Suppose that some p < π∗ is a winning position. This implies that

∑
{j∈W:mj≤p}

cj +

∫ p

0

n(ρ)−
∑
{i∈W}

di(ρ) dρ ≥ 1

2
,

a contradiction by the minimality of π∗.We therefore see that there is no advantageous

deviation from π∗ implying that it is a Nash equilibrium.

Proof of Corollary 3.3. Without loss of generality, let k = arg min{i ∈ W :
∑

j≤i cj ≥
1
2
} and mk ≤M. By the definition of mk, we see that to the left of M we have a propor-

tion of at least 1
4

of the total population represented by winner-take-all constituencies,

leaving no more than 1
4

to be represented by proportional allocation constituencies

to the left of M. This implies that, as mk ≤ M ,
∫ mk

0
n(ρ) −

∑
i∈W di(ρ) dρ ≤ 1

4
. By

proposition 3.2, we see that the Nash equilibrium will be mk∈{mi}i∈W .

Proof of Lemma 4.1. We proceed with a proof by contradiction. Suppose that for all

j ∈ K, mj < M. Then we may find m = maxi∈K{mi} so that m < M. This implies

that ∫ m

0

∑
i∈K

di(ρ) dρ =

∫ m

0

d0(ρ) dρ ≥ 1

2
,

a contradiction by the definition of M and the fact that it is uniquely by supposition.

Proof of Proposition 4.2. We proceed with a proof by contradiction. Without loss of

generality, let mw < M. Suppose that max |π∗−M | does not occur when we consider
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all of the winner-take-all contests as a single contest with a combined distribution.

Proposition 3.1 states that the Nash equilibrium for this case, π∗c ≥ mw in all cases.

Similarly, proposition 3.2 states that the Nash equilibrium for the case in which the

winner-take-all mass is subdivided is

π∗d = min
i∈W
{inf{p ≥ mi :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:j≤i}

cj ≥
1

2
}}.

We have, therefore, assumed that π∗d < π∗c , so it must be that∫ π∗d

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:mj<π∗d}

cj ≥
1

2
,

a contradiction. Lemma 4.1 says that for some j ∈ W , mj ≥M, so
∑
{i∈W:mi≤π∗d}

ci ≤∑
j∈W cj This implies that if

∑
{j∈W:mj≤π∗d}

cj =
∑

i∈W ci, then we see that M < π∗d <

π∗c and
∫ π∗d

0
n(ρ) −

∑
i∈W di(ρ) dρ +

∑
j∈W cj ≥

1
2
, a contradiction by the minimality

of π∗c . If
∑
{j∈W:mj≤π∗d}

cj <
∑

i∈W ci, then we see that

∫ π∗d

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:mj≤π∗d}

cj ≤
∫ π∗c

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:mj≤π∗d}

cj <
1

2

by the definition of π∗c . We therefore see that it must be that π∗d ≥ π∗c .

Proof of Proposition 4.3. Proposition 3.1 gives us the Nash equilibrium position of in

the two-candidate game when we have only one winner-take-all constituency, so we

use this result here. We note that the Nash equilibrium has lower bound

l = inf{p :

∫ p

0

n(ρ)− dw(ρ) dρ ≥ 1

2
− cw},

and upper bound

l = sup{p :

∫ 1

p

n(ρ)− dw(ρ) dρ ≤ 1

2
− cw},
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though we note that these only become active restrictions when mw ≤ l and mw ≥ l,

and as mw = {p : N(p) = cw
2
}, it must be that this happens when l∗ = N−1

(
1−cw

2

)
.

We see by a similar argument that l∗ = N−1
(

1+cw
2

)
. Just as an example, we are able

to construct distributions dw(ρ), dw(ρ) ≤ n(ρ) so that mw = l or mw = l, respectively.

These are

dw =


cwn(ρ)
1−cw 0 ≤ ρ ≤ N−1

(
1−cw

2

)
cwn(ρ)
2(1+cw)

N−1
(

1−cw
2

)
< ρ ≤ 1

,

and

dw =


cwn(ρ)
1+cw

0 ≤ ρ ≤ N−1
(

1+cw
2

)
cwn(ρ)
2(1−cw)

N−1
(

1+cw
2

)
< ρ ≤ 1

,

which work for most non-pathological distributions n(ρ).

Proof of Proposition 5.1. Suppose without loss of generality that mg ≤ M, and we

proceed case wise. By proposition 3.2 we have that the Nash equilibrium position of

the candidates is

min
i∈W
{inf{p ≥ mi :

∫ p

0

n(ρ)−
∑
i∈W

di(ρ) dρ+
∑

{j∈W:j≤i}

cj ≥
1

2
}}.

Suppose that π∗WTA < mg, denote the index set of winner-take-all constituencies as

W1 after g changes to proportional allocation and W0 before. We therefore see that

∫ π∗WTA

0

n(ρ)−
∑
i∈W1

di(ρ) dρ ≥
∫ π∗WTA

0

n(ρ)−
∑
i∈W0

di(ρ) dρ,

and as π∗WTA < mg, we have that
∑
{j∈W0:j≤π∗WTA}

cj =
∑
{j∈W1:j≤π∗WTA}

cj, so π∗P ≤

π∗WTA.

Suppose that π∗WTA > mg. We note that proposition 3.2 allows for the alternative
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specification of the equilibrium as

max
i∈W
{sup{p ≤ mi :

∫ 1

p

n(ρ)−
∑
k∈W

dk(ρ) dρ+
∑

{j∈W:j≥i}

cj ≥
1

2
}}.

By logic similar to the π∗WTA < mg case, this result holds.
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B Figures
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2

DwH Ρ L =
Ρ2

4

Figure 1: Above we see how the values l, l, and mw may be derived from the cumu-
lative distribution functions of n(ρ) and dw(ρ) (taken from our motivating example).
We see that l < l < mw implying that l is the Nash equilibrium position by proposi-
tion 3.1.
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0, m 0 m 1 m 2 m 3k 0k 1k 2k 3 1, m 4
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c 1 + c 2

c 1 + c 2 + c 3

1

1

2

S iÎ W D iH Ρ L +
1

2
=

Ρ 2

4
+

1

2

N H Ρ L = Ρ

Figure 2: Above we see the how the cumulative distribution functions are related to
the ki. Specifically, we have the values for example 2 plotted above, note the Nash
equilibrium candidate position k1 = inf{max{mi, ki}}.
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0, m 0 m 1 m 2 m 3 1, m 4

k 0

k 1

k 2

k 3

m 2

m 3

1

Figure 3: The more general specification of the Nash equilibrium candidate position
from proposition 3.2 applied to example 2. Specifically the points in inf{p ≥ mi :∫ p

0
n(ρ)−

∑
i∈W di(ρ) dρ+

∑
{j∈W:j≤i} cj ≥

1
2
} (blue)are plotted and joined. We note

how k1 = inf{max{mi, ki}} and the points (mi, ki) where mi > ki (not joined).
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0 M, 1

2
m w 1

1

4

1

2

1

Figure 4: The shaded region is bounded by the functions specified in proposition 4.3
(dotted) and the constructible medians (solid), calculated for n(ρ) = 1{ρ∈[0,1]} as done
in section 4. We note that mw falls outside of the shaded region at cw = 1

4
, implying

that it could never be the case that a candidate assumes mw in equilibrium, and
further that the greatest skewing possible occurs at cw = 1

2
.
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