Overlapping Generation (OLG) Modeling in GAMS

Econ 567 Computer Modeling: Project II Xiaolu Wang & Ying Guo Apr.23rd Tuesday, Spring 2013

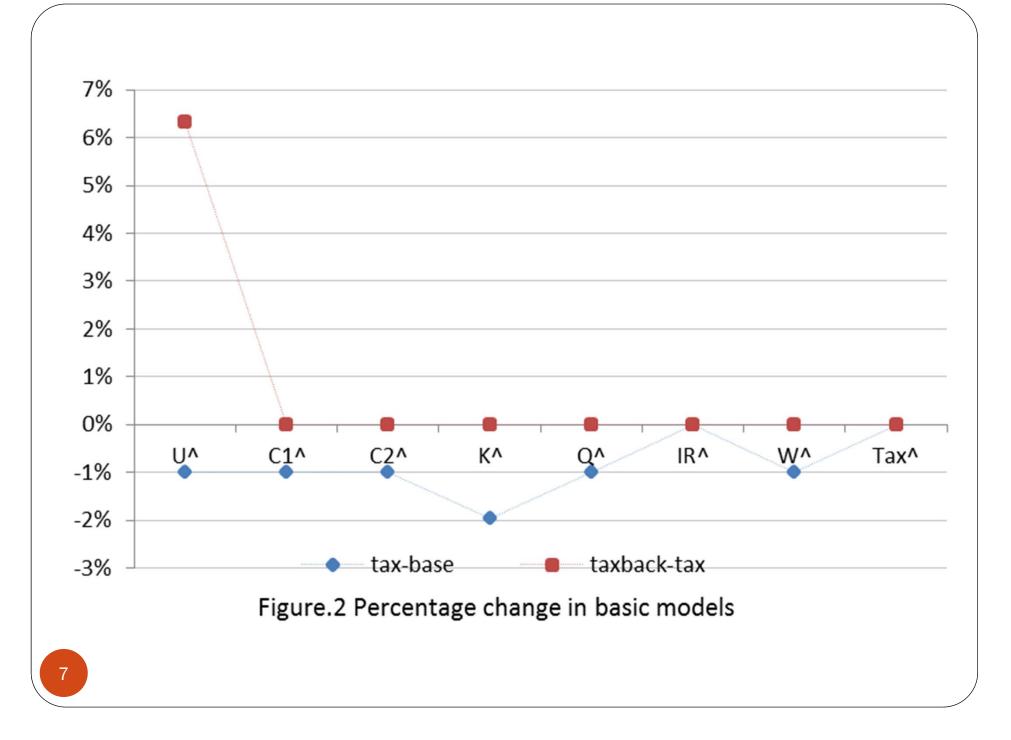
Objectives

- How to optimize consumption to maximize utility?
- How things will be affected by a saving tax? (tax on capital)
- How can tax-given-back benefit taxpayers, and exhibit good externality?
- Sensitivity Analysis on: (a) optimal saving tax: max utility;
 (b) inter-temporary consumption preference.
- Interpret this OLG Model in different dimensions=)

Basic Assumptions

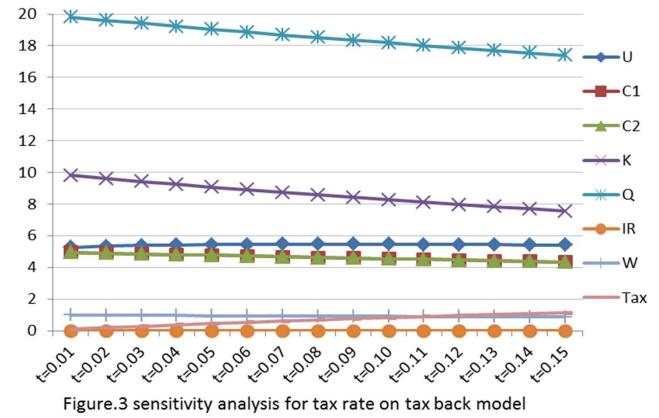
- People live for two periods, and only work in period one.
- Cobb-Douglas production function; two factors: K and L.
- 100 % depreciation rate. No capital accumulation.
- Market is clear. Products are consumed/as capital input.
- An ad valorem saving tax is imposed on capital.
- CRS Cobb-Douglas utility function in base model; extends to IRS utility function when tax is given back.
- In the model "with saving tax", the tax is used only by the king (not increase any utility of taxpayer); in "tax given back" model, the tax is used to increase people's utility.

Symbol System

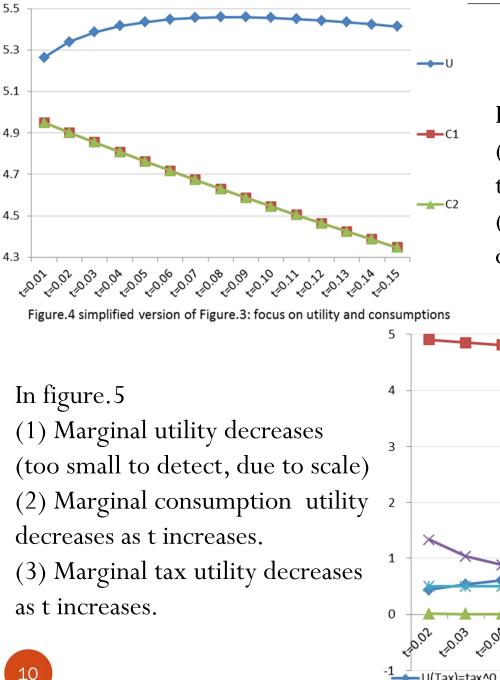

	Endogenous Variables		Exogenous Variables				
U	utility level		note	meaning	values		
C1	consumption	in	rho	share parameter of current	0.5		
	period 1			consumption in utility			
C2	consumption	in	beta	share parameter of tax in utility	0.5		
	period 2						
К	capital level		alpha	share parameter of labor in	0.5		
				production function			
Q	output level		Α	technology factor	2		
IR	interest rate		L	labor supply	10		
W	wages		t	tax rate	0.01		
Тах	Total tax						

Equation SystemUtility function:
$$U_{base} = C_1^{\ \rho} * C_2^{\ (1-\rho)};$$
 $U_{tax-given-back} = C_1^{\ \rho} * C_2^{\ (1-\rho)} + (Tax)^{\ \beta};$ Production function: $Q = A^* K^{(1-\alpha)} * L^{\alpha};$ Wage rate function: $W = A^* \alpha * (K/L)^{(1-\alpha)};$ Interest rate function: $1 + IR = A^*(1-\alpha)^*(L/K)^{\alpha};$ $1 + IR_{taxed} = A^*(1-\alpha)^*(L/K)^{\alpha} - t;$ Consumption allocation: $C_1 + C_2 / (1 + IR) = W^*L;$ Utility maximization : $C_2 / C_1 = (1 + IR)^*(1-\rho) / \rho$ Market clear condition: $Q = C_1 + C_2 + K + Tax;$ Tax quation: $Tax = t^*K$

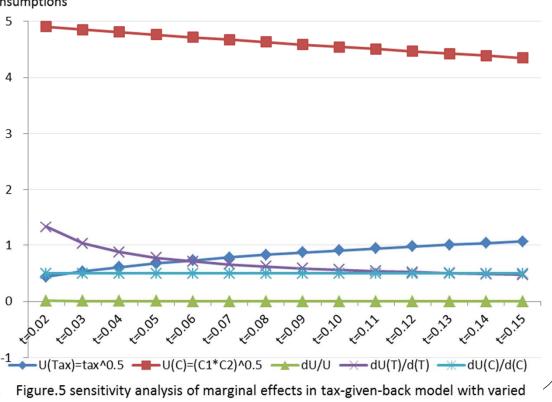
Optimized Solutions from GAMS


Table.2 CGE optimized output for the three models under initial setting

Exog	enous Variables	Base Value	with Saving Tax	Tax Given Back
U	utility level	5	4.950495	5.263592
C1	consumption in period one	5	4.950495	4.950495
C2	consumption in period two	5	4.950495	4.950495
К	capital level	10	9.802960	9.802960
Q	output level	20	19.801980	19.801980
IR	interest rate	0	0	0
W	wages	1	0.990099	0.990099
Тах	saving tax	NA	0.098030	0.098030



Extension: Sensitivity Analysis


- (1) Change t: find out the optimal tax that maximize utility. how can a rise of tax affect the optimal solution?
- (2) Change rho: does inter-temporary consumption preference matters?

	t=0.01	t=0.02	t=0.03	t=0.04	t=0.05	t=0.06	t=0.07
U	5.264	5.34	5.386	5.416	5.435	5.448	5.455
C1	4.95	4.902	4.854	4.808	4.762	4.717	4.673
C2	4.95	4.902	4.854	4.808	4.762	4.717	4.673
К	9.803	9.612	9.426	9.246	9.07	8.9	8.734
Q	19.802	19.608	19.417	19.231	19.048	18.868	18.692
IR	0	0	0	0	0	0	0
W	0.99	0.98	0.971	0.962	0.952	0.943	0.935
Тах	0.098	0.192	0.283	0.37	0.454	0.534	0.611
marginal ut	ility analysis						
U(Tax)=tax^0.5	0.313	0.438	0.532	0.608	0.674	0.731	0.782
U(C)=(C1*C2)^0.5	4.950	4.902	4.854	4.808	4.762	4.717	4.673
dU/U	NA	0.014	0.009	0.006	0.004	0.002	0.001
dU(T)/d(T)	NA	1.331	1.031	0.877	0.780	0.712	0.661
dU(C)/d(C)	NA	0.500	0.500	0.500	0.500	0.500	0.500
t=0.08	t=0.09	t=0.10	t=0.11	t=0.12	t=0.13	t=0.14	t=0.15
5.458	5.458	5.455	5.449	5.442	5.434	5.424	5.413
4.63	4.587	4.545	4.505	4.464	4.425	4.386	4.348
4.63	4.587	4.545	4.505	4.464	4.425	4.386	4.348
8.573	8.417	8.264	8.116	7.972	7.831	7.695	7.561
18.519	18.349	18.182	18.018	17.857	17.699	17.544	17.391
0	0	0	0	0	0	0	0
0.926	0.917	0.909	0.901	0.893	0.885	0.877	0.87
0.686	0.758	0.826	0.893	0.957	1.018	1.077	1.134
marginal utility analysis							
0.8282512	0.87063195	0.90884542	0.94498677	0.97826377	1.00895986	1.03778611	1.06489436
4.63	4.587	4.545	4.505	4.464	4.425	4.386	4.348
0.00055	0	-0.0005497	-0.0010999	-0.0012846	-0.00147	-0.0018403	-0.002028
0.6211504	0.58862201	0.56196275	0.53942315	0.51995306	0.50321463	0.48858042	0.47558344
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

In figure.4 (1) utility reaches the highest when t=0.09 (the optimal saving tax); (2) The consumption in both periods decreases at the same rate in our settings

(2) Inter-temporary consumption preference

rho=0.6 rho=0.7 rho=0.3 rho=0.4 rho=0.5 U 5.688 5.364 5.264 5.364 5.688 **C1** 2.97 3.96 4.95 5.941 6.931 **C2** 2.97 6.931 5.941 4.95 3.96 9.803 9.803 9.803 9.803 9.803 К 19.802 19.802 19.802 19.802 19.802 Q IR 0 0 0 0 0 W 0.99 0.99 0.99 0.99 0.99 0.098 0.098 Tax 0.098 0.098 0.098 0.06 0.05 **→**__U^ 0.04 -C1^ 0.03 0.02 ———К^ <u>→</u>Q^ 0.01 0 rho=0.03 rho=0.4 rho=0.5 rho=0.6 rho=0.7 -W^ -0.01 Tax^ -0.02 -0.03

Table.3 Change rho based on tax-given-back model

Figure.7 percentage change from model1 to 3 as rho changes

11

Conclusion and Recommendations

- The three *Basic Models* show: saving tax will decrease the utility, and will be partly compensated by a tax-given-back;
- The <u>optimal saving tax</u>: tax has decreasing marginal utility while consumption has constant marginal utility. Utility first increases and then decreases as tax rate rises.
- The <u>inter-temporary consumption preferences</u> shows: tax policy works best where people have equal consumption preference (rho=0.5) in our model settings. Policy makers should take people's consumption behavior into account.

Some interesting tricks in GAMS ...

• GAMS Code:

t=0.01;+'

MODEL+

ca3/Utility2,Production,Wage,InterestRate2,Decision,Consumption,MarketClear,TaxTotal/;+ SOLVE ca3 using nlp maximizing U;+

*REPORT+

```
K_R('SAVTAXBACK')=K.L;↓
Q_R('SAVTAXBACK')=Q.L;↓
IR_R('SAVTAXBACK')=IR.L;↓
U_R('SAVTAXBACK')=U.L;↓
C1_R('SAVTAXBACK')=C1.L;↓
C2_R('SAVTAXBACK')=C2.L;↓
W_R('SAVTAXBACK')=W.L;↓
TAX_R('SAVTAXBACK')=TAX.L;↓
```

*change tax rate in the Tax-back Modelt=0.03;+ SOLVE ca3 using nlp maximizing U;+ t=0.05;+ SOLVE ca3 using nlp maximizing U;+ t=0.07;+ SOLVE ca3 using nlp maximizing U;+

