Survival Statistics Diagnostic Testing: Cheat Sheet

Definitions and the 2x2 table

	"Gold Standa	ard" Result	_	
	Condition Present	Condition Absent		
Positive Test	a True Positive	b False Positive	a+b	PPV * = a/(a+b) portion of (+) test results that are correct
Negative Test	c False Negative	d True Negative	c+d	<u>NPV *</u> = d/(c+d) portion of (-) test results that are correct
	a+c	b+d	a+b+c+d	<u>Prevalence</u> = (a+c)/(a+b+c+d)
	<u>Sensitivity</u> = a/(a+c) portion of people with disease who correctly test (+)	Specificity = d/(b+d) portion of people without disease who correctly test (-)	Accuracy = (a+d)/(a+b+c+d)	(*denotes test is affected by disease prevalence)

Sensitivity

PID positivity in disease for sensitivity test low sensitivity-> miss cases (false negative results) SnN(-)OUT- negative rules out disease

Specificity

NIH negativity in health for specificity test low specificity-> incorrectly labels healthy people as having condition (false positives) SpP(+)IN- positive rules in disease

2X2 table example: Population size = 100,000 Sensitivity =90% Specificity =90%

disease prevalence = 1%			disease prevalence = 0.1%				
	(+) disease	(-) disease			(+) disease	(-) disease	
(+) test	900	9,900	PPV= 8.3%	(+) test	90	9,990	PPV= 0.9%
(-) test	100	89,100		(-) test	10	89,910	
	1,000	99,000	100,000		100	99,900	100,000
11 false (+) for every true (+)			111 false (+) for every true (+)				

Survival Statistics Diagnostic Testing: Cheat Sheet (cont.)

Likelihood ratios

combine sensitivity and specificity into one measure

Conceptual framework: in people with disease and without disease and we are trying to determine the discriminating ability of the test

Definitions of likelihood ratio (e.g. LR+ =10):

- odds of disease given a test result
- if the test is positive than the odds of disease is increased 10-fold
- a ratio that is a coefficient that modifies your pretest probability to generate post-test probability
- likelihood ratio of 10 means that that result is ten times more likely to occur in patients with disease than without
- a LR is a ratio which compares the likelihood of a particular test result for patients with disease to the likelihood of that same result to patients without
- a likelihood ratio is a ratio of likelihoods

test	disease (+)	Likelihood 1	disease (-)	Likelihood 2	Likelihood Ratio
					(L1/L2)
(+)	а	(a/a+c)	b	(b/b+d)	(a/a+c)/(b/b+d)
(-)	С	(c/a+c)	d	(d/b+d)	(c/a+c)/(d/b+d)

Relating LR to Sensitivity and Specificity: sometimes you will want to convert sensitivity and specificity directly into LR(+) or LR (-).

positive likelihood ratio (a/a+c)/(b/b+d)= sensitivity/(1-specificity) negative likelihood ratio (c/a+c)/(d/b+d)= (1-sensitivity)/ specificity