Learn to Fly a Drone in Three Minutes

By Erin Weeks

Missy Cummings has accomplished a lot of difficult things in her life — she was one of the Navy’s first female pilots, after all — but being a guest on The Colbert Report, she said, was hard.

Cummings told the story of her journey from Naval lieutenant to media drone expert last week at the Visualization Friday Forum seminar series in a talk (video archived here) titled “Designing a System for Navigating Small Drones in Tight Spaces.”

Missy Cummings joined Duke as an associate professor of mechanical engineering and materials science last semester

Missy Cummings joined Duke as an associate professor of mechanical engineering and materials science last semester.

Last semester, Cummings moved her renowned Humans and Automation Lab from MIT to Duke University. She’s wasted no time immersing herself in the new university and volunteered for the semester’s first seminar to introduce herself and her lab’s latest work to Duke’s visualization community.

Cummings’ research over recent years has centered on the development of a smartphone interface through which, she said, anyone can learn to pilot a one-pound drone in three minutes. The technology could be a boon to the U.S. Army, which now issues smartphones to its personnel and mostly relies on cumbersome, gas-powered drones.

The lab tested the technology by asking volunteers to maneuver a drone through an obstacle course both in the field — where they learned wind and cold temperatures are not a drone’s friend — and in simulated environments.

One of the things they discovered in both cases was that individuals who performed well in a spatial reasoning test were more likely to complete the obstacle course. Moreover, these performances tended to be gendered, with men scoring higher than women in spatial reasoning. Interestingly, Cummings noted, other studies have shown women tend to perform better piloting drones in long-term, “boring” scenarios with little action.

Cummings is interested in teasing out the reasons for these results, which could have significant implications for the U.S. Army or companies one day interested in hiring drone pilots.

As Stephen Colbert confirmed, you may be able to fly a drone with three minutes’ training, but that doesn’t mean you can fly it well.

Cummings talks to a full house at the Visualization Friday Forum on January 24.

Cummings talks to a full house at the Visualization Friday Forum on January 24.

New Course Offers Lessons from Lasering Priceless Art

Duke graduate student Tana Villafana and chief conservator at the NC Museum of Art William Brown stand over The Crucifixion (inset). (Photo: Martin Fischer)

Duke graduate student Tana Villafana and chief conservator at the NC Museum of Art William Brown stand over The Crucifixion (inset). (Photo: Martin Fischer)

By Erin Weeks

A group of chemists at Duke University has gained recognition in recent years for shooting lasers at medieval artwork — technology that allows a harmless peek at the many layers and materials in a painting and offers insight into long gone eras and artists. Now, Duke students will have the chance to learn from this pioneering work at the intersection of chemistry and art history in a new course on the science of color.

The course coincides with the publication of the first scientific measurements from the laser work, reported Jan. 20 in the Proceedings of the National Academy of Sciences.

“The images we have now are enormously better than a year ago,” said Warren S. Warren, head of the lab performing the imaging and the James B. Duke professor of chemistry. He and fellow Duke authors, grad student Tana Villafana and associate research professor Martin Fischer, have not only demonstrated the technology works — they’ve shown it works at an incredible level of detail, telling the difference, for example, between nearly identical pigments.

But lasering The Crucifixion by Puccio Cappano was just the start, as the team envisions countless more cultural applications of the technology. Given enough funding and manpower, they could visualize ancient scrolls of text too fragile to unroll, reveal the bright colors that once adorned Greek statues, learn the secrets of China’s terracotta warriors, and even detect the beginnings of pigment degradation in aging artwork.

There are talented people in art conservation, Warren said, whose work could benefit from more advanced technology, and there are talented people at the cutting-edge of laser science looking for meaningful ways to apply their inventions. For the past several years, Warren’s lab has brought these people together.

Now, he hopes to accomplish something similar with students at Duke. Warren, Fischer, and another chemistry instructor, Adele DeCruz, are teaming up to teach “The Molecular, Physical, and Artistic Bases of Color” in the second half of spring semester.

The class will visit the Nasher Museum of Art, the North Carolina Museum of Art in Raleigh, and possibly even the National Gallery of Art in Washington, D.C, to learn first-hand from art conservators and working artists. Students can expect to learn about how humans have used and made pigments over the millennia; how color works at a molecular level; and the basics of how human vision, microscopes, cameras, and lasers all see or image color.

Students can register for the half course, CHM 590, until the add/drop deadline for classes on January 22. “Students should not be scared off by the course number,” Warren said. “The prerequisite is one college-level science course, and the intent is to make both the science and artistic components accessible to a broad audience.”

Funding for the research was provided by National Science Foundation grant CHE-1309017.

CITATION: “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork.” Tana E. Villafana, William P. Brown, et al. Proceedings of the National Academy of Sciences, Jan. 20, 2014. Doi: 10.1071/pnas.1317230111

Pretty pictures show lemurs responding to changing climate

Guest Post by Sheena Faherty, Biology Graduate Student 

Madagascar’s much-adored and fuzzy lemurs might be “sweated out” of habitats by warming environments under global climate change. Or will they?

A team of researchers at the Duke Lemur Center is employing high-tech heat cameras used in  fire fighting, sports medicine and cancer diagnostics to take “glowing” rainbow pictures of lemurs and their forest surroundings. The results look similar to a child’s coloring project gone rogue.

A mother and baby Coquerel's Sifaka at the Lemur Center in thermograph and visible light. (Leslie Digby)

A mother and baby Coquerel’s Sifaka at the Lemur Center in thermograph and visible light. (Leslie Digby)

This technology, known as infrared thermography, is a camera that allows researchers to detect surface temperatures of lemurs and their hang-outs in the forest—at different depths and heights—and on varying surfaces such as the ground, leaves, and tree trunks.

Combining these data with records of where an animal prefers to spend time, the researchers can begin to determine what temperatures make lemurs most happy.

Leslie Digby, an associate professor in the Department of Evolutionary Anthropology, and her students want to see  how the lemurs are changing their behavior to warm-up on cool days, and cool-down on warm days without having to shiver or sweat.

This sounds rather like a lizard basking on a rock during a sunny day to warm his cold-blooded body up, but lemurs aren’t cold-blooded. They shouldn’t have to do this.

It turns out that even though lemurs are warm-blooded, they can conserve precious energy by channeling their inner Buddha — using sunning behaviors, just like lizards, to fine-tune core body temperatures.

Digby’s team is trying to understand why some species have seemingly restricted territories, even without obvious geographical barriers like mountain ranges or rivers. They suspect temperature plays a part.

“We know that primate species ranges have been very different in the past, so understanding how flexible these animals are, or [are] not, to temperatures can help us understand these larger scale impacts [of changing climate]”, says Digby.

Figuring out how animals respond to alterations in their environment, like rising temperatures, can help scientists anticipate species’ survival in the face of globally changing climates. And knowing which areas of the forest are preferred by lemurs, could help direct conservation efforts, like reforesting parts that have been cut down, or preserving those areas that have not.

Changing temperatures will undoubtedly have major impacts on lemur home ranges in the future, potentially altering them until the animals  are forced into an area outside their thermal limits. By gearing her research toward understanding the thermal tolerances of lemurs, Digby is doing her part to protect the vulnerable lemurs.

A ringtailed lemur striking the classic belly-warming Buddha pose in one of the natural enclosures at Duke Lemur Center. (David Haring)

A ringtailed lemur striking the classic belly-warming Buddha pose in one of the natural enclosures at Duke Lemur Center. (David Haring)

Teaching Young Scientists the Elements of Design

by Erin Weeks

Ten visiting undergraduate researchers spent the summer sharpening their science communication skills at Duke. They came from around the country to chemistry and engineering labs to participate in a National Science Foundation program called Chemistry and Applications of Smart Molecules and Materials and to learn the principles of ‘molecule-to-material’ research.

While the students spent most of their days in the lab, they were also tasked with creating a visual representation to explain some aspect of their summer research—once at the beginning of the summer, and once again at the end, after feedback and instruction on the basics of good visual design. The process was designed to help the students understand their research, their roles as scientists, and the importance of science communication.

“You want to catch peoples’ eye, but you want to be fairly simple and easy to interpret,” said chemistry professor and department chair Stephen Craig. Craig and project co-leader, associate chemistry professor Kathy Franz, discussed their project at a visualization seminar series last week (Nov 1).

As for the visual don’ts, Craig advised the students to skip abstract art and avoid anything flashy or over the top. In addition to the images, the students practiced explaining their research in strictly timed three-minute talks.

“We wanted them to give that elevator pitch, that three-minute pitch,” said Franz, so that the students would be able to “communicate to their peers what their project for the summer was going to be.”

Duke professor Jane Richardson first visualized protein as ribbon-like (Courtesy Wikimedia)

Duke professor Jane Richardson first visualized protein as ribbon-like (Courtesy Wikimedia)

When Franz was a student, she was never trained how to make her research graphics clear and intelligible. But as a chemist, she knew the significance of effective visuals. Take, for example, the structure of proteins, which were first visualized as ribbon-like in 1980 by Duke biochemist Jane Richardson. These days, Franz said, she and generations of biology students only picture protein as a ribbon.

“The way people represent scientific results changes the way we imagine it,” Franz said.

New App May Help Protect Wild Dolphins

By Ashley Yeager

A screenshot from a new app, the Nai'a Guide, which provide info about eco-friendly dolphin-watching tours in Hawai'i. Credit: Demi Fox, Lenfest.

A screenshot from a new app, the Nai’a Guide, which provide info about eco-friendly dolphin-watching tours in Hawai’i. Credit: Demi Fox, Lenfest.

Traveling to Hawai’i sometime soon?

If so, you’re probably excited to experience spinner dolphins in the wild. If not, you can still dream about it. And now, there’s an app for that.

Scientists at Duke’s Marine Lab in Beaufort, N.C. have released the Nai’a Guide — a new iPad app that teaches users about wild Hawai’i spinner dolphins and how to see the animals without harming them. Tourists can use the app to plan an eco-friendly tour to experience the dolphins.

“If we can harness the power presented by mobile technology for conservation and responsible tourism, we have the chance to reach a wide audience and really make a difference for these animals,” says Demi Fox, a postgraduate researcher at the Lenfest Ocean Program who developed the app, along with Duke marine biologist Dave Johnston.

Nai’a is the Hawaiian word for dolphin. The Nai’a Guide explores the biology and ecology of spinner dolphins with photos, videos and sound clips. It also describes sustainable dolphin-based tourism practices outlined NOAA’s Dolphin SMART program.

With the Nai'a Guide, users can learn about spinner dolphins and their habits. Credit: Demi Fox, Lenfest.

With the Nai’a Guide, users can learn about spinner dolphins and their habits. Credit: Demi Fox, Lenfest.

Designed by Fox and developed by an online company called Kleverbeast, the Nai’a Guide also connects tourists with sustainable tour operators so everyone can make more responsible decisions when going to see spinners.

“The principles advocated within the Naia Guide could also be useful for dolphin-based tourism in other places, and with other species. Many of these best practices are generalizable,” Johnston says.

He and other scientists are concerned about human interaction with wild dolphins and other species worldwide. In Hawai’i, the main concern is that spinner dolphins rest during the day in the same shallow bays that people use for snorkeling, kayaking and swimming. Many tourists misinterpret the dolphins’ close proximity and curiosity for playfulness and try to swim with and even ride the animals while they are sleeping.

Intense and consistent human interactions could affect the dolphins’ health over time, Johnston says. The negative effects may also threaten the animals, a resource the state uses to draw tourists to the islands. As a result, he and colleagues at Murdoch University’s Cetacean Research Unit have been tracking spinner populations and monitoring their interaction with people in the Hawai’i island bays.

Researchers study dolphins in boats and high on the cliffs of Hawai'i Island, which is covered in the new app. Credit: Demi Fox, Lenfest.

Researchers study dolphins in boats and high on the cliffs of Hawai’i Island, which is covered in the new app. Credit: Demi Fox, Lenfest.

Scientists “can do all the science in the world, but until we share our findings broadly and in an accessible way, we will not effect serious change,” Fox says. She included the team’s research in the app so users can better understand researchers’ concerns about human-dolphin interactions and can make more informed decisions when choosing a dolphin tour.

“My hope is that the app will serve as an ecological conscience,” she says.

The app, available in Apple’s iTunes Store, can also be found on Twitter @NaiaGuide and on its website, http://www.naiaguide.org.

Documenting Medicine to Understand Patients

Guest post by Clara Colombatto, T’15

The daily life of a doctor is filled with reports, numbers, and forms. Opportunities to sit down with patients and listen to their stories are rare. Yet, “most of the information practitioners need to care for patients is contained in their stories,” says Dr. John Moses, a Duke pediatrician who founded the Documenting Medicine program two years ago.

medical bracelets

A still from Dr. Tera Cushman’s “How to See the Forest

Mike and Patsy holding hands

Mike and Patsy from “I Will Go With You,” by Dr. Lisa Jones.

The innovative idea that he had with photographer Liisa Ogburn, an instructor at the Center for Documentary Studies, was to encourage medical residents to document their experiences and gain insight into patients’ stories to become better doctors.  Eleven Duke resident physicians, one physician and one physician assistant gathered on June 5 to share documentary projects they completed this year.

“The best attending physicians are both vast repositories of data and good storytellers – people who can bring the numbers and the patient into focus at the same time” says anesthesiologist Tera Cushman, one of the filmmakers. In her documentary How to See the Forest and the Trees, she presents both readings of medical records and interviews of patients Annie and Olivia.

Works produced in Documenting Medicine are objective reports of current issues in healthcare, but also powerful learning tools: residents enhance their understanding of patients to represent their perspective in the best way possible.

In Spectrum, Dr. Kathleen Dunlap interviews the parents of her patient Isaac, and discovers the deep changes and contrasting emotions beyond a simple and almost mechanical diagnosis of autism.

Dr. Lisa Jones tells us a patient’s journey after her time at the hospital in I Will Go with You: Patsy’s Mission to Educate Others about Colorectal Cancer Screening.

These stories also reveal aspects of patients’ lives that are crucial in recovery beyond treatments and prescriptions: in Welcome to Crazy Camp by Dr. Stephanie Collier, Tom, a patient at Duke Hospital, tells us about the importance of patients’ sincere care and profound respect for each other in a psychiatric clinic. The most supportive and understanding friend for him was a young friend who  “made a whole lot of sense except for this one little part of her life where she thought the government had placed something in her brain that was trying to control her.”

Documenting Medicine is now accepting applications for the coming year, and is open to medical residents, but also to anyone working in healthcare who wishes to tell a medical story.